级数习题课
级数求和与函数展开习题课
一、数项级数的审敛法√ 二、求幂级数收敛域的方法
4、5、7节
三、幂级数和函数的求法 四、函数的幂级数和付式级数
展开法
机动 目录 上页 下页 返回 结束
三、幂级数和函数的求法
• 求部分和式极限
• 利用幂级数性质,借用已知幂级数的和函数求解 (在收敛区间内)
anxn
n0
难
逐项求导或求积分
an xn
n0
求和
S(x)
对和式积分或求导
S * ( x)
• 数项级数 直接求和: 求部分和等 求和 间接求和: 转化成幂级数求和, 再代值
机动 目录 上页 下页 返回 结束
常用函数的幂级数(或常用幂级数的展开式)
ex 1 x 1 x2 1 xn ,
2!
n!
x (, )
ln(1 x)
x
1x2 2
1 x3 1 x4 34
(1)n n 1
xn1
x (1, 1]
sin x x x3 x5 x7 (1)n x2n1
3! 5! 7!
(2n 1)!
x (, )
cos x 1 x2 x4 x6 (1)n x2n
2! 4! 6!
(2n)!
x (, )
机动 目录 上页 下页 返回 结束
(1 x)m 1 mx m(m 1) x2 2!
m(m 1)(m n 1) xn x (1, 1) n!
当 m = –1 时
1 1 x x2 x3 (1)n xn , 1 x
x (1, 1)
级数习题课
解:∵ an xn 在 x 3处条件收敛,而 3 0 ,
n0
∴ an xn 在 x 3 3时绝对收敛 ,∴ R 3 。
n0
若 R 3 ,则 an xn 在 x 3处应绝对收敛 ,这与已知矛盾,∴ R 3 。
n0
12.设 an xn 的收敛半径为 3,则 nan (x 1)n1 的收敛区间为_____。
ln 1 1
x x
,
x
(1,1).
(2)
n1(2n
1 1)4n
n1
( 1 )2n 2 2n 1
1 2 n1
(
1 )2n1 2 2n 1
1 2
S(
1 2
)
1 2
1 2
ln
1 1
1
2 1
1 ln3. 4
2
14.已知 n 1 xn ( - x ) ,则其和函数 S(x) ______,
3 lim 1 n (1 1 )n
3 e
0
,∴
n1
3n n (1 n)
n
发散。
n
注:∵ lim n
n
un
lim n
n
3n n (1 n) n
lim n n 3 1, n 1n
∴本题不能用根值法判定,必然不能用比值法判定。
20.
4n
n15n 3n
解法 1(比值法):
∵ lim un1 lim
n1
n
n
∵ n n(un un1) u1 u0 2u2 2u1 3u3 3u2 nun nun1
k 1
nun (u0 u1 u2 u3 un1) ,∴ Sn nun n ,
∵ lim Sn lim (nun n ) AS ,∴ un AS 。
无穷级数习题课含解答
无穷级数习题课1.判别级数的敛散性:(1)(2)(3)(4)(5)()211ln1nn n¥=+å()41tan1nn p¥=+å363663666-+-++×××+-++×××++×××21sinlnnnnp¥=æö+ç÷èøå()211lnnnn n¥=--å解:(1)为正项级数,当时, ,根据比较审敛准则,与有相同敛散性,根据积分审敛准则,与反常积分有相同敛散性, 而发散,故发散.()211ln 1n n n ¥=+ån ®¥()2111~2ln ln 1n u n n n n =+()211ln 1n n n ¥=+å21ln n n n ¥=å21ln n n n¥=å21ln dx x x +¥ò21ln dx x x +¥ò()211ln 1n n n ¥=+å(2)为正项级数,当时,,而收敛,根据比较审敛准则,收敛.()41tan 1n n p¥=+ån ®¥()422421tan1tan~21n u n n n n npp p =+-=++211n n ¥=å()41tan1n n p¥=+å(3)为正项级数, 令,其中,易证单调递增且,故收敛;令,由,两边取极限得,,(舍去);,,根据达朗贝尔比值审敛法,该级数收敛.363663666-+-++×××+-++×××++×××3n n u a =-666n a =++×××+{}n a 3n a <{}n a lim n n a a ®¥=16n n a a -=+6a a =+Þ260a a --=3a =2a =-111113311333n n n n n n n a a u u a a a +++++-+=×=-++1111lim lim 136n n n nn u u a +®¥®¥+==<+(4)看成交错级数,单调递减趋于0,根据Leibniz 定理,该级数收敛; 其绝对值级数发散(这是因为当时,,而且),故级数条件收敛. ()2211sin 1sin ln ln n n n n n n p ¥¥==æö+=-ç÷èøåå1sin ln n ìüíýîþ21sin ln n n ¥=ån ®¥11sin ~ln ln n n 1lim ln n n n®¥×=+¥(5)为交错级数,其绝对值级数为,当时,, 所以,该级数绝对收敛.()211ln nn n n¥=--å211ln n n n ¥=-ån ®¥2211~ln n n n-2. 设,且,证明级数条件收敛. ()01,2,n u n ¹= lim 1n nn u ®¥=()111111n n n n u u ¥-=+æö-+ç÷èøå证明:设级数的部分和为,则 ,因为,所以,于是 ,即级数收敛;其绝对值级数为,因为, 所以级数发散,故原级数条件收敛.()111111n n n n u u ¥-=+æö-+ç÷èøån s ()()211223111111111111n n n n n n n s u u u u u u u u ---+æöæöæöæö=+-+++-++-+ç÷ç÷ç÷ç÷èøèøèøèø()111111n n u u -+=+-lim1n nn u ®¥=()()1111111lim 1lim 101n n n n n n n u u n --®¥®¥+++-=-×=+()1111111lim lim 1n n n n n s u u u -®¥®¥+éù=+-=êúëû()111111n n n n u u ¥-=+æö-+ç÷èøå1111n n n u u ¥=++å11111lim lim 21n n n n n n n n nn u u u u n ®¥®¥+++×+=+×=+1111n n n u u ¥=++å3. 填空(1) _____(2) 设幂级数在处收敛, 则级数__收敛__.(收敛还是发散)(3) 设幂级数在处条件收敛,则幂级数在处( 绝对收敛 ),在处( 发散 ); (4)设,, ,则________;________.11(1)2n n n -¥=-=å130(1)nn n a x ¥=-å12x =-0(1)n n n a ¥=-å1()nn x a n ¥=-å2x =-1()2nn n x a ¥=+åln 2x =-x p =11,02()1,12x f x x x ì£<ïï=íï ££ïî1()sin nn s x bn xp ¥==å102()sin n b f x n xdx p =ò3()2s =34-5()2s =344. 求幂级数的收敛域2112sin 22nn x n x ¥=+æöæöç÷ç÷-èøèøå 解:令,原级数变为变量t的幂级数.因为,所以收敛半径.又时级数发散,时级数收敛, 故收敛域为;再由,解得, 原函数项级数的收敛域为.122xt x +=-21sin 2n n t n ¥=æöç÷èøå ()11sin21limlim 11sin2n n n nn a a n+®¥®¥+==1R =1t=21sin 2n n ¥=å1t=-()211sin 2nn n ¥=-å21sin 2n n t n ¥=æöç÷èøå [)1,1-12112x x +-££-133x -£<2112sin 22nn x n x ¥=+æöæöç÷ç÷-èøèøå 13,3éö-÷êëø5.求下列级数的和函数(1) (2)221212n n n n x ¥-=-å()()()201123!nn n n x n ¥=-++å解:(1).令,,所以收敛半径. 当时,级数发散,所以幂级数的收敛域为.设级数的和函数为,对幂级数逐项积分得,, 对上式两边求导得, .221212n n n n x ¥-=-å212n n n a -=11lim 2n n n a a +®¥=1212R ==2x =±()2,2D =-()s x ()212200112122n xx n n n n n n x s x dx x dx -¥¥-==-==ååòò222212xx x x ==--()2,2x Î-()()2222222x x s x x x ¢+æö==ç÷-èø-()2,2x Î-(2). 易求该幂级数的收敛域为;设级数的和函数为,,, 两边取积分,逐项求积分得, ()()()201123!nnn n x n ¥=-++å(),-¥+¥()s x ()()()()201123!nn n n s x xn ¥=-+=+å()()()()2101123!nn n n xs x x n ¥+=-+=+å()()()()()()21220000111123!223!nnxx n n n n n xs x dx x dx x n n ¥¥++==-+-==++ååòò当时,,求导得 , 当时,由所给级数知.因此. 0x ¹()()()()230111sin 223!2nxn n xs x dx x x x x n x¥+=-==-+åò()2sin 1sin cos 22x x x x xxs x x x ¢--æö==ç÷èø()3sin cos 2x x x s x x -=0x =()106s =()3sin cos ,021,06x x xx xs x x -ì¹ïï=íï=ïî6.求级数的和.()22112n n n ¥=-å解:考虑幂级数,收敛区间,设和函数为, 则当且时,,. ()2211nn x n ¥=-å()1,1-()s x 11x -<<0x ¹()()222211121211nnnn n n x x s x x n n n ¥¥¥=====--+-ååå112212121n n n n x x x n x n -+¥¥===--+åå11220121212n n n n x x x x x n x n -+¥¥==æö=---ç÷-+èøåå()11ln 12224x x x x æö=--++ç÷èø()2211311153ln ln 2242288412nn s n ¥=æö==++=-ç÷-èøå()()211ln 1ln 1222x x x x x x éù=-------êúëû7.设,试将展开成的幂级数.()111ln arctan 412x f x x x x +=+--()f x x 解:,取0到x 的定积分,幂级数逐项求积分, .()241111111114141211f x x x x x¢=++-=-+-+-44011n n n n x x ¥¥===-=åå()11x -<<()()()4410111041xx nn n n f x f f x dx x dx x n ¥¥+==¢=+==+ååòò1x <8.设在上收敛,试证:当时,级数必定收敛. ()0nn n f x a x ¥==å[]0,1010a a ==11n f n ¥=æöç÷èøå证明: 由已知在上收敛,所以,从而有界. 即存在,使得 ,所以,;级数收敛,根据比较审敛准则,级数绝对收敛.()0n n n f x a x ¥==å[]0,1lim 0n n a ®¥={}n a 0M>n a M£()1,2,n = 0123232323111111f a a a a a a n n n n n n æö=++++=++ç÷èø()2231111111n M M M n n n n næö£++==ç÷-èø- ()2n ³()211n n n ¥=-å11n f n ¥=æöç÷èøå9.已知为周期是的周期函数,(1)展开为傅立叶级数; (2)证明;(3)求积分的值.[)2(),0,2f x x x p =Î2p ()f x ()1221112n n np -¥=-=å()10ln 1x dx x +ò解:(1)在处间断,其它点处都连续.所以由Dirichlet 收敛定理,时,级数收敛于,所以当时,有,亦即:.()f x ()20,1,2,x k k p ==±± ()()22220011183a f x dx f x dx x dx pppp pp pp-====òòò222022014cos ,14sin ,1,2,n n a x nxdx n b x nxdx n npp p p p ====-=òò ()()221414cos sin 20,1,2,3n f x nx nx x k k nn p p p ¥=æö=+-¹=±±ç÷èøå ()22214114cos sin ,0,23n x nx nx x nn p p p ¥=æö=+-Îç÷èøå()20,1,2,x k k p ==±± ()()2002022f f p p ++-=()20,1,2,x k k p ==±± 222141423n np p ¥=+=å22116n n p ¥==å(2)是连续点,所以即:;x p =()f x 2221414cos ,3n n np p p ¥==+å()221112nn n p¥=-=-å()1221112n n n p-¥=-Þ=å(3)积分是正常积分,不是瑕点, 对,令,.()10ln 1x dx x +ò0x=()1,1t "Î-()()()()111112000111ln 1111n n n tt tn n nn n n x dx x dx x dx tx n nn---¥¥¥--===+---===åååòòò1t -®()10ln 1x dx x +ò()01ln 1lim t t x dx x -®+=ò()12111lim n n t n t n --¥®=-=å()12111lim n n t n t n --¥®=-=å()1221112n n np -¥=-==å10.证明下列展开式在上成立:(1);(2).并证明. []0,p ()221cos 26n nxx x n pp ¥=-=-å()()()31sin 21821n n xx x n p p¥=--=-å()()133113221n n n p -¥=-=-å证明:将函数展开为余弦级数和正弦级数.(1) 对作偶延拓,再作周期延拓,得到的周期函数处处连续,根据Dirichlet 定理,时,的余弦级数处处收敛于.,()()f x x x p =-[]0,x p Î()f x []0,x p Î()f x ()f x ()()0022a f x dx x x dx ppp p p==-òò23202233x x pp p p æö=-=ç÷èø, ,所以在上,.()()022cos cos n a f x nxdx x x nxdx ppp p p==-òò()()()()200022sin 2sin 2cos x x nx x nxdx x d nx n n pppp p p ppéù=---=-êúëûòò()2211nn éù=--+ëû()()202112cos 11cos 26n n n n a f x a nx nx n p ¥¥==éù=+=--+ëûåå221cos 26n nxnp ¥==-å[]0,x p Î[]0,p ()221cos 26n nxx x n p p ¥=-=-å(2)对作奇延拓,再作周期延拓,得到的周期函数处处连续,根据Dirichlet 定理,时,的正弦级数处处收敛于. , ()f x []0,x p Î()f x ()f x ()()0022sin sin n b f x nxdx x x nxdx p pp p p ==-òò()()()()200022cos 2cos 2sin x x nx x nxdx x d nx n n p p p p p p p p éù=----=-êúëûòò()3411n n p éù=--ëû, 所以在上,. 令,有. ()()3114sin 11sin n n n n f x b nx nx n p ¥¥==éù==--ëûåå()()31sin 21821n n x n p ¥=-=-å[]0,x p Î[]0,p ()()()31sin 21821n n xx x n p p ¥=--=-å2x p =()()23181sin 214221n n n p p p ¥==--åÞ()()133113221n n n p -¥=-=-å。
高数 第六章
1 2 1 3 n 1 x ln(1 + x ) = x x + x L + ( 1) +L 2 3 n x ∈ (1,1]
(1 + x)α = 1 +αx +
n
α(α 1)
2!
x +L+
2
α(α 1)L(α n + 1)
n!
xn +L
x ∈(1,1)
二、典型例题
例1
判断级数敛散性: (1)
∑
n=1
∞
n
1 n+ n
1n (n + ) n
1 n
;
1 n
解
n nn n , un = = 1 n 1 n (1 + 2 ) (n + ) n n
1 1 n 1 n2 n Q lim(1 + 2 ) = lim[(1 + 2 ) ] = e 0 = 1; n→ ∞ n→ ∞ n n 1 1 1 n x lim n = lim x = exp{lim ln x } n→ ∞ x →∞ x →∞ x
6、幂级数
(1) 定义
的级数称为幂级数 幂级数. a n ( x x 0 ) n 的级数称为幂级数 ∑
n= 0 ∞
形如
当x0 = 0时,
an xn ∑
n=0
∞
为幂级数系数. 其中a n 为幂级数系数
定义: 正数R称为幂级数的收敛半径. 称为幂级数的收敛半径 定义: 正数 称为幂级数的收敛半径 幂级数的收敛域称为幂级数的收敛区间 幂级数的收敛域称为幂级数的收敛区间. 收敛区间
n→∞
收 , 其 数 敛 且 和s ≤ u1 ,其 项n 的 对 rn ≤ un+1. 余 r 绝 值
数项级数习题课完整版
如果lim n un = ρ ( ρ为数或 + ∞ ) ,
n→ ∞
时级数收敛; 时级数发散; 时失效. 则ρ < 1时级数收敛; ρ > 1时级数发散;ρ = 1时失效.
3、交错级数及其审敛法
定义
∞
负项相间的级数称为交错级数. 正 、负项相间的级数称为交错级数.
∞
(−1)n−1un 或∑(−1)nun (其中 n > 0) u ∑
3n sin ∑
1 ∞
5n
π
5n
n [(−1 + 3] ) () 6 ∑ n 6 1 解
∞ 6 n
n
n6[(−1)n + 3]n n6 4n * ≤ () n n 6 6 ∞ ∞ n6 4n ∑vn = ∑ 6n n=1 n=1 (n +1 6 4n+1 6n ) vn+1 = lim ⋅ 6 n 4(n + 1)6 Qlim n→ ∞ 6n+1 n 4 = lim n→∞ v n→∞ n 6n6 6 4 1 = lim 1 + = 4 < 1 n→∞ 6 n 6 ∞ ∞ n6 4n ∴∑vn = ∑ n (* *) 6 n=1 n=1 (*) (**)
第十二章习题课
1、常数项级数
定义
∑u
n=1
∞
n
= u1 + u2 + u3 +L+ un +L
级数的部分和 sn = u1 + u2 +L+ un = 级数的收敛与发散
∑u
i =1
n
i
数 级数 敛 发散 ⇔lim sn存在 不 收 ( ) 常 项 ( 存在 . )
幂级数习题课
第十四章 幂级数习题课一 疑难解析与注意事项1.如何求缺项幂级数的收敛半径 答:如果一个幂级数有无限多个项的系数为零这样的幂级数称为缺项幂级数,对这种幂级数,不能直接用公式1lim n n n n aa ρρ+→∞⎛⎫= ⎪ ⎪⎝⎭.常用方法是: 1)进行变量替换.将原幂级数变为一个无缺项的幂级数.计算出后一幂级数的收敛半径,再根据两变量之间的关系得出原幂级数的收敛半径.例如幂级数2112n n n x ∞=∑,可令2y x =,化为幂级数112n n n y ∞=∑,而幂级数112n n n y ∞=∑的收敛半径为2R =,从而当22x <时,原幂级数收敛,当22x >时,原幂级数发散,由此推出原幂级数的收敛半径为R =2)对缺项幂级数需要按照类似于定理14.2来求.例如求幂级数2202nn n x ∞=∑(缺项幂级数)的收敛半径.对于幂级数2202nnn x ∞=∑,因为22222222lim42n n n n nx xx ++→∞=,当214x<时,即2x <,2202nn n x ∞=∑收敛,则原来级数绝对收敛;当214x >时,即2x >,2202nnn x ∞=∑发散,则原来级数发散,所以收敛半径2=R . 2.如何求幂级数的收敛域答:1)首先求幂级数的收敛半径R ;2)写收敛区间(),R R -; 3)讨论端点处的收敛性,即讨论nn n a R∞=∑,()nn n a R ∞=-∑的收敛性,如果两个都收敛,则幂级数的收敛域为[],R R -,如果两个都发散,则收敛域为(),R R -,如果其中一个收敛,一个发散,则收敛域为[),R R -(()nn n a R ∞=-∑收敛),(],R R -(nn n a R∞=∑收敛).3.幂级数在()R R ,-内每一点都绝对收敛,那么在端点处敛散性如何 答:1)幂级数在()R R ,-端点处可能收敛可能发散.例如幂级数n x n ∑的收敛区间是()1,1-,在端点1处,级数1n∑发散,在端点1-处级数()1nn-∑收敛,收敛域是[)1,1-.2)如果是收敛,可能是绝对收敛,可能是条件收敛.n x n ∑在端点1-处是条件收敛,2nx n ∑收敛域是[]1,1-,在端点1与1-处都是绝对收敛的.4.幂级数与逐项求导逐项积分后幂级数具有相同的收敛半径、收敛区间,但收敛域相同吗答:不一定,例如nx ∑收敛域为()1,1-,但逐项积分和幂级数为11n x n ++∑收敛域为[)1,1-.设幂级数0nn n a x ∞=∑,11n n n na x∞-=∑,11n n n x a n +∞=+∑收敛域分别是12,,D D D ,则有12D D D ⊂⊂ 如果一个幂级数经逐项求导或逐项求积后其收敛性发生了变化,则变化的只能是收敛区间两个端点处的收敛性.一般来说,逐项求导后,系数由n a 变为n na ,不会使收敛区间端点处的收敛性变好;而逐项求积后,系数由n a 变为1na n +,不会使收敛区间端点处的收敛性变坏.5.如何求幂级数的和函数答:首先求出幂级数的收敛半径与收敛域,然后可通过以下几种方法求 幂级数的和函数:(1)变量替换法——通过变量替换,化为一较简单的幂级数. (2)拆项法——将幂级数分拆成两个(或几个)简单幂级数的和.(3)逐项求导法——通过逐项求导得出另一幂级数,而此幂级数的和函数是不难求得的;然后再通过牛顿莱布尼兹公式,得到原幂级数的和函数.(4)逐项积分法——通过逐项求积得出另一幂级数,而此幂级数的和函数是可以求得的;然后再通过求导数,得到原幂级数的和函数.一般通过逐项求导逐项积分向等比级数转化,系数含有!n ,向xe 的幂级数展开形式转化,系数含有()()2!,21!n n -向sin ,cos x x 展开形式转化.注意:上述运算过程在幂级数的收敛区间内总是可行的(而在幂级数的收敛域上却不一定可行).因此,我们一般只限定在幂级数的收敛区间内进行上述运算,由此得到在收敛区间上的和函数,而求幂级数在其收敛域上的和,还需要讨论在端点的函数值,利用函数在端点的左(右)连续性来求.还需指出,这里所介绍的方法,仅仅是可供选择的几种途经.对具体问题,常常要综合利用上述方法,或寻求其他方法才能得到问题的解.6.如何利用幂级数求数项级数的和答:选择合适的幂级数,使该数项级数为幂级数在某收敛点0x 处的值.然后求出幂级数的和函数()S x ,则()0S x 便是原数项级数的和.7.如何求函数f 在0x 处的幂级数展开式 答:主要有以下两种方法:(1)直接法.计算函数f 在0x 处的各阶导数()()0n f x ,写出它的泰勒级数,然后证明()0lim =∞→x R n n .(2)间接法.借助某些基本函数的展开式,通过适当变换,四则运算,逐项求导或者逐项求积等方法,导出所求函数色幂级数展开式.这是常用的方法.注意求展开式时,一定要写展开式成立的范围. 三 典型例题1.求幂级数的收敛域:1)∑n x n n )!2()!(2; 2)∑---)!12()2(12n x n ; 3)∑+-+n n n x n )1()2(3; 4)∑+++n x n)1211(Λ; 5)∑∞=1221n nnx . 解:1)由于2212[(1)!](2)!(1)1lim lim lim [2(1)]!(!)(22)(21)4n n n n na n n n a n n n n ρ+→∞→∞→∞++==⋅==+++,因此收敛半径14R ρ==,当4±=x 时,这个级数为∑±n n n )4()!2()!(2,通项记为n u ,则有 n u =)!2(4)!(2n n n =)!2(2)!(22n n n =)12(5312642-⋅⋅⋅⋅n nΛΛ12+>n , 于是∞→n lim n u +∞=,所以当4±=x 时级数∑nx n n )!2()!(2发散,从而可知这个级数的收敛域为)4,4(-.2)令2t x =-,则级数∑---)!12()2(12n x n 转化为21(21)!n t n --∑(缺陷幂级数),下面先求21(21)!n tn --∑的收敛域,因为21221(21)!lim lim 01(21)2(21)!n n n n t t n t n nn +-→∞→∞+==<+-,即对任意(),t ∈-∞+∞,21(21)!n t n --∑都收敛,因此21(21)!n t n --∑的收敛域为(),-∞+∞,因此的收敛域为(),-∞+∞.3)令1t x =+,则级数∑+-+nn n x n)1()2(3转化为3(2)n n n t n +-∑,下面先求3(2)n n n tn +-∑的收敛域,由于n ρ==3n ,所以收敛半径31=R ,因而级数3(2)n n nt n +-∑的收敛区间为11(,)33-, 当13x =-时,级数为∑⎪⎭⎫⎝⎛--+nn n n 31)2(3=∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-n nn n 3211)1(收敛, 当13x =时,级数为3(2)13n n n n +-⎛⎫ ⎪⎝⎭∑=1123n n n ⎡⎤⎛⎫+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑,123nn ⎛⎫- ⎪⎝⎭∑收敛(123n n ⎛⎫- ⎪⎝⎭∑收敛,因为213n =<),∑n 1发散,故3(2)13nn n n +-⎛⎫ ⎪⎝⎭∑发散,因此3(2)n n nt n +-∑的收敛域为11,33⎡⎫-⎪⎢⎣⎭,级数∑+-+nn n x n )1()2(3的收敛域为11133x -≤+<的解集,即⎪⎭⎫⎢⎣⎡--31,34. 4)因为nn n 1⋅n n1211+++≤Λn n 1⋅≤,又∞→n lim11=⋅nn ,所以∞→n lim11211=+++nnΛ, 从而收敛半径1=R ,又当1±=x 时,n n n)1)(1211(lim ±+++∞→Λ0≠, 可见级数∑+++nx n)1211(Λ在1±=x 时发散,故这个级数的收敛域为)1,1(-. 5)法1: (将其看成不缺项的幂级数 Λ++⋅++⋅4232210210x x x x )设 ⎪⎩⎪⎨⎧=-==k n k n a kn 2,2112,0∑∑∞=∞==11221n n nn n nx a x , 2121lim lim 2==∞→∞→nnn n n n a 2=∴R .法2: 令t x =2,∑∞=121n nnt 收敛半径为2,故R = 法3: (将其视为以x 为参数的数项级数或视为一般的函数项级数)22lim )()(lim 221x x x u x u n nn n ==∞→+∞→, 当122<x 即 2<x 时幂级数收敛, 当2>x 时发散,故R =. 即收敛半径为R =,收敛区间是(,当x =时,∑∞=1221n nnx 为111212n n n n ∞∞===∑∑发散,因此收敛域为(. 2.应用逐项求导或逐项求积分方法求下列幂级数的和函数(应同时指出它们的收敛域): (1)求幂级数1nn x n∞=∑的和函数;(2)求幂级数11nn x n ∞=+∑的和函数;(3)求幂级数11n n nx ∞-=∑的和函数;(4)求幂级数1n n nx ∞=∑的和函数;(5)求幂级数ΛΛ+++++++12531253n x x x x n 的和函数; (6)求幂级数∑∞=+1)1(n nn n x 的和函数;(7)求幂级数1!nn x n ∞=∑的和函数.注:应用:求幂级数的和函数.思想:一般是通过逐项求导,逐项积分向等比级数转化.(假如系数含有!n ,向xe 的展开形式转化,假如系数含有()()2!,21!n n -向sin ,cos x x 展开形式转化).必须的知识点:1)等比级数011nn ∞==-∑W W ,11nn ∞==-∑W W W---------; 2)牛顿莱布尼兹公式()()()xaf t dt f x f a '=-⎰;3)()()()xaf t dt f x '=⎰.注意点:1)求和函数时必须先要求收敛域;2)求()0f 时必须要看级数展开式中第一项;例 设()0n n n f x a x ∞==∑,先看展开式中第一项是0a ,因此()00f a =.常见错误,有些人把0直接代通项,()0000n f ∞===∑.设()1n n n f x a x ∞==∑,先看展开式中第一项是1a x ,因此()00f =.3)涉及到除以x 时,要讨论x 为0不为0. 幂级数求和函数步骤:求其收敛半径R 和收敛域D .在收敛区间内求和函数.(利用变量替换, 逐项求积, 逐项求导等方法) ,(假如系数含有!n ,向xe 的展开形式转化,假如系数含有()()2!,21!n n -向sin ,cos x x 展开形式转化);收敛域若不是开区间, 还须讨论在收敛域端点处的和,若左端点收敛,则在左端点右连续,若右端点收敛,则在右端点左连续.写出和函数, 注明定义域D . 解(1)1)求收敛域;1lim lim lim 1n nn n n n n a n n ρ→∞→∞→∞====(或111lim lim 11n n n na n a nρ+→∞→∞+===); 收敛半径11R ρ==;收敛区间()1,1-;当1x =-时,()11nn n∞=-∑收敛;当1x =时,11n n∞=∑发散.因此收敛域为[)1,1-. 2)向等比级数转化;分析:因为等比级数系数为1或()1n-,而1n n x n∞=∑的系数为1n ,要向等比级数转化必须要把n 抵消,此题可以通过逐项求导就可以把n 抵消.令()1nn x f x n∞==∑,在收敛区间()1,1-上逐项求导(注意幂级数在收敛区间内可逐项求导与逐项求积). ()1111n n f x x x∞-='==-∑, ()()()()0010ln 11xxf x f t dt f dt x t'=+==---⎰⎰,()1,1x ∈-. 当1x =-时,(若幂级数0n n n a x ∞=∑在收敛区间的左(右)端点上收敛,则其和函数也在这一端点上右(左)连续.)()()()111lim lim ln 1ln 2x x f f x x ++→-→--==--=-⎡⎤⎣⎦. (2)1)求收敛域; 收敛域为[)1,1-. 2)向等比级数转化;分析:要向等比级数转化,必须要把系数中的1n +抵消,但是只有1n x +的求导才能出现1n +,必须要乘一个x ,除以一个x ,111111n n n n x x n x n +∞∞===++∑∑,而要除以x ,就必须讨论x 为0不为0.当0x =时,()00f =当0x ≠时,()111111n n n n x x f x n x n +∞∞====++∑∑,(只需要求出111n n x n +∞=+∑就会求出()f x ,下面求111n n x n +∞=+∑) 令()111n n x g x n +∞==+∑,收敛域[)1,1-在收敛区间()1,1-上逐项求导.()11n n xg x x x∞='==-∑, ()()()()000ln 11xxtg x g t dt g dt x x t'=+==----⎰⎰,()1,1x ∈-. 当1x =-时,()()()111lim lim ln 11ln 2x x g g x x x ++→-→--==---=-⎡⎤⎣⎦. 于是()()()() 0 0ln 11 1,00,1 ln2 1 1x x f x x x x =⎧⎪-⎪=--∈-⎨⎪-=-⎪⎩U(3) 收敛域为()1,1- 令()11n n f x nx ∞-==∑,对()11n n f x nx ∞-==∑在()1,1-上逐项积分;()1111xx n n n n xf t dt ntdt x x∞∞-=====-∑∑⎰⎰, ()()2111x f x x x '⎛⎫== ⎪-⎝⎭-. (4)解1:收敛域为()1,1-()()-1211=1nn n n xf x nx x nx x ∞∞====-∑∑.解2 由于∞→n limnn a =∞→n lim11=⋅nn ,且当1±=x 时,这个幂级数发散,所以幂级数的收敛域为)1,1(-,设111()nn n n f x nx x nx∞∞-====⋅∑∑,令∑∞=-=11)(n n nxx g在)1,1(-上对()g x 逐项积分得,dt t g x ⎰)(dt ntx n n ⎰∑∞=-=011=xx x n n -=∑∞=11所以=)(x g ()1xx '-=2)1(1x -,从而)(x f 2)1(x x -= (1<x ).(5)讨论级数2121n n x n +∞=+∑,因为2322123lim21n n n x n x x n ++→∞+=+,当21x <,即1x <,21021n n x n +∞=+∑收敛,2121n n x n +∞=+∑收敛; 当21x >,即1x >,21021n n x n +∞=+∑发散,2121n n x n +∞=+∑发散, 因此收敛半径1R =,收敛区间为()1,1-,且1±=x 时,∑∞=+0121n n 与2100(1)12121n n n n n +∞∞==-=-++∑∑都是发散级数,所以幂级数的收敛域为)1,1(-,设210()21n n x f x n +∞==+∑,在)1,1(-逐项求导可得221()1n n f x x x ∞='==-∑, 所以)(x f dt t x⎰-=0211x x-+=11ln 21 (1<x ), (6)由1)1(1lim =+∞→nn n n 知幂级数的收敛半径为1=R . 又1±=x 时, 级数均收敛,故幂级数的收敛域为]1,1[-.令]1,1[,)1()(1-∈+=∑∞=x n n x x S n n则 ]1,1[,)1()(11-∈+=∑∞=+x n n x x xS n n 由于)1,1(-∈∀x , 有,))1(())((111∑∑∞=∞=+='+='n nn n nx n n x x xS,11)())((111∑∑∞=-∞=-=='=''n n n n x xn x x xS从而)1,1(-∈∀x , 有),1ln(1d d ))(())((00x ttt t tS x xS xx--=-=''='⎰⎰),1ln()1(d )1ln(d ))(()(0x x x t t t t tS x xS xx--+=--='=⎰⎰于是}.0{\)1,1(),1ln(11)(-∈∀--+=x x xxx S 而由)(x S 的定义, 0)0(=S .此外, 当1±=x 时, )(x S 在1-=x 处右连续, 在1=x 处左连续. 故,2ln 21)]1ln(11[lim )(lim )1(11-=--+==-++-→-→x xxx S S x x.1)]1ln(11[lim )(lim )1(11=--+==---→→x xxx S S x x综上知⎪⎪⎩⎪⎪⎨⎧=-∈--+==.1,1};0{\)1,1[),1ln(11;0,0)(x x x x x x x S(7)易求收敛域为(),-∞∞,()1011,,!!n nx n n x x e x n n ∞∞===-=-∈-∞+∞∑∑. 3.利用幂级数求数项级数的和. 1)求级数∑∞=122n nnx的和函数,并求数项级数∑∞=19n n n的和; 2) 求级数∑∞=-1212n nn 的和; 方法:先选择适当的幂级数, 使该数项级数是所选幂级数在某收敛点0x 处的值, 然后求出和函数)(x S , 则)(0x S 便为所求之和.解(1)法1:级数∑∞=122n nnx的收敛域为()11-,,∑∑∞=-∞==1121222n n n nnx x nx,令∑∞=-=1122)(n n nx x s ,逐项积分⎰∑∑⎰∞=∞=--===x n n nxn x x xdx nxdx x s 01122201212)(, 两边求导,得22221)1(2)'1()(x xx x x s -=-=, 所以222112)1(2)(2x x x xs nxn n-==∑∞=,()11x ∈-,,从而649)911(91221)31(22192121=-⋅==∑∑∞=∞=n nn nn n . 通过如下代数运算,使其求和过程非常简便. 法2 令ΛΛ+++++=nnxx x x x s 26422642)( ,ΛΛ------=-+)1(286422642)(n nxx x x x s x ,222642212)(2)()1(xx xx x x x s x n-=+++++=-ΛΛ , 所以222)1(2)(x x x s -= ,()11x ∈-,. (2)作幂级数221212-∞=∑-n n n x n ,并设和函数为()S x , 则⎰∑⎰∑∞=∞=--=-=xn xn n n n nx dx x n dx x s 0101122221212)(2121)2(12212xx x x x n n -⋅==∑∞=)0(≠x , 两边求导,得2222)2(2)'2()(x x x x x S -+=-= )2(<x , 因为1x =在收敛区间内,故用1x =带入上式得∑∞==-=13212)1(n nn S . 4.求函数的幂级数展开式1)将函数()2x e x f =,x a ,2sin x 展开成x 的幂级数;2)将函数()x x f ln =展开成(x -1)的幂级数;3)将函数()2sin f x x =展开成x 的幂级数; 4)21)(2--=x x x f 在1=x 处的泰勒级数展开式; 5)求0x =处的泰勒级数展开式; 6)求()ln(f x x =在0x =处的泰勒级数展开式.注意: 看清要在哪点展开; 确保得到的是幂级数; 注出定义域. 解:1)将2x 视为一个整体,由xe 的展开式可知n n n n x x n x n e 2020!1)(!12∑∑∞=∞=== ,)(+∞<<-∞x . 类似地n n n nn ax x x n a a x n ea ∑∑∞=∞====00ln !)(ln )ln (!1 ,)1,0(≠>a a )(+∞<<-∞x .∑∞=++-=01222)()!12()1(sin n n n x n x ∑∞=++-=024)!12()1(n n n x n )(+∞<<-∞x .2)∑∞==-011n nx x (11<<-x )⇒()011n n x x ∞==-+∑,()11x -<<. ⇒()()1ln 111n nn x x n +∞=+=-+∑,()11x -<≤. 10(1)ln ln[1(1)](1)1nn n x x x n ∞+=-=+-=-+∑ )20111(≤<≤-<-x x ,即.3)222221011cos 21212sin (1(1))(1),()22(2)!2(2)!n n n n n n n n x x x x x n n ∞∞+==-==--=--∞<<+∞∑∑. 4)]1121[31212+--=--x x x x11(1),0221(1)n n x x x x ∞=-==--<<---∑∑∞=<<---=-+=-+=+031,)21()1(21211121)1(2111n nn x x x x x100101(1)()[(1)(1)]321(1)[1](1),0 2.32n nn n n n nn n n f x x x x x ∞∞+==∞+=-∴=--+--=--<<∑∑∑5)[]1lnln(1)ln(1)2x x =+-- 11111(1)(1)()2n n n n n n x x n n ++∞∞==⎡⎤--=--⎢⎥⎣⎦∑∑1111(1)2n n n n n x x n n +∞∞==⎡⎤-=+⎢⎥⎣⎦∑∑211,(1,1)21n n x x n -∞==∈--∑. 6)()ln(f x x =,()f x '==,12221111()(1)(1)222(1)1!n n n x x n ∞-=-----+=+=+∑L211321()()()2221!n n n x n ∞=----=+∑L 21(1)(21)!!1,(1,1)!2n nnn n x x n ∞=--=+∈-∑. 而(0)0f =,于是[]211(1)(21)!!(),1,1!2(21)n xn n n n f x x x x n n ∞+=--==+∈-+∑⎰.。
高等数学下无穷级数习题课
(1, 5] .
例 2(2003A)设 x 2 = å an cos nx (-p £ x £ p) ,则 a2 =
¥ ¥
。= 1。 。
(-2, å an x n 的收敛半径为 3,则 å nan (x - 1)n +1 的收敛区间为
n =1 n =1
n =1
¥
2n -1
+ a2n ) 收敛 å an 收敛
n =1
¥
åa
n =1
¥
n
u (4) lim n = l ¹ 0 则 å un 和 å vn 有相同的敛散性 n ¥ v n
åa , åb
2
例 11(2006A)将函数 f (x ) = 例 10(2006C)求幂级数 å 收敛域为 [-1,1] 。
¥ ¥
x 展成 x 的幂级数。 2 + x - x2
n -1
1 ¥ æ 1ö n ç (-1)n +1 + n ÷ ÷ å ç ÷ x , x Î (-1,1) 。 è 3 n =0 2 ø
¥
例 5(2003C)求幂级数 1 + å (-1)n
n =1
x 2n ( x < 1 )的和函数 f (x ) 及其极值。 2n
1 f (x ) = 1 - ln(1 + x 2 ) , x < 1 , f (x ) 在 x = 0 处取得极大值,且极大值为 f (0) = 1 。 2
1+x 2 ì ¥ ï (-1)n ï x arctan x , x ¹ 0 试将 f (x ) 展开成 x 的幂级数,并求 å 的和。 例 4(2001A)设 f (x ) = í 2 ï 1, x =0 n =1 1 - 4n ï ï î
无穷级数习题课(1)
故由比较审敛法的极限形式,原级数收敛。
5
解法2:由比值审敛法
6n1
lim an1 a n
n
lim
n
7n1 5n1 6n
6(7n 5n )
lim
n
7n1
5n1
7n 5n
lim
n
6(1 ( 5)n ) 7
1 ( 5)n1
6 7
1
7
故由比值审敛法知原级数收敛。
6
1.什么是传统机械按键设计?
传统的机械按键设计是需要手动按压按键触动PCBA上的开关按键来实现功 能的一种设计方式。
e e x x
x x
e0
1
n
x
x
lim
n
an
1
0
由级数收敛的必要条件,原级数发散。
4
【例3】判别级数
n1
6n 7n 5n
的收敛性。
解法1:此级数为正项级数,
an
6n 7n 5n
6n
lim 7n 5n lim 1 1
n ( 6 )n
n 1 ( 5)n
7
7
而级数 ( 6 )n 为等比级数收敛, n1 7
n1
2
三、典型例题
【例1】判别级数 n1
2n 3n
1
的收敛性,并求级数的和。
解:
由于
an
2n 3n
1
3n 3n
n1 3n
n 3n1
n1 3n
,由定义
2 23 3 4
Sn
(1
) 3
( 3
32
)
( 32
33
)
n ( 3n1
n1 3n )
级数 复习题
第四章、级数----习题课: 1、 设已给复数序列}{n z 。
如果ζ=∞→n n z lim ,其中ζ是一个有限复数,那么ζ=+++∞→nz z z n n ...lim 21。
2、 证明:任何有界的复数序列一定有一个收敛的子序列。
3、 证明在两相乘级数中,一个收敛,一个绝对收敛时,第1段中关于柯西乘积的结果仍成立。
4、 证明定理2.1及2.2。
5、 试求下列幂级数的收敛半径:(1)∑∞+=02n nnz q,其中1||<q ; (2) ∑∞+=1!n n z;(3)∑∞+=0n np zn,其中p 是一正数;(4) ∑∞+=-+0])1(3[n nnn z;(5) n n nz nn ∑∞+=!;(6)...)1(!2)1()1(12++++++z c c b b a a z c ab...)1)...(1(!)1)...(1()1)...(1(+-++-++-+++nz n c c c n n b b b n a a a其中a 、b 、c 是复数,但c 不是零或负整数。
6、 设在R z <||内解析的函数)(z f 有泰勒展式......)(2110+++++=nn z z z z f αααα试证:(1)令|)(|max )(20θπθi re f r M ≤≤=,我们有n n rr M )(||≤α (柯西不等式),在这里;0,...;2,1,0R r n <<=(2)由(1)证明刘维尔定理; (3)当R r <≤0时∑⎰∞+==022202||d |)(|21n nn i rre f αθππθ。
7、 证明:如果在上r z <||及ρ<||z 内,我们分别有∑∞+==0)(n nn za z f 及∑∞+==0)(n nn zb z g ,其中+∞<<ρ及r 0,而且)(z f 在r z ≤||内连续,那么在ρr z <||内,⎰∑=∞+==r n nn n z g f i z b a ||0d )()(21ζζζζζπ。
fourier级数 习题课
定义 16.4.1 设函数 f 在[a , b]上除有限个点 a x0 x1 x2 x N b , 外均可导,而在 x i ( i 0,1,2,, N ) 处 f 的左右极限 f ( x i ) 和 (在 x0 a 右极限存在, 在 x N b 左极限存在) , f ( x i )都存在 并且极限 f ( x i h) f ( x i ) lim h 0 h 和 f ( x i h) f ( x i ) lim h 0 h 都存在(在 x0 a 上述第二个极限存在,在 x N b 上述第一 个极限存在) ,那么称 f 在[a, b]上分段可导。
数学分析 a0 (a n cos nx bn sin nx ) 是某个在[ , ]上可 推论 16.3.1 2 n 1 bn 积或绝对可积函数的 Fourier 级数的必要条件是 收敛。 n 1 n
定理 16.3.3 (Fourier 级数的逐项微分定理) 设 f ( x)在[ , ] a0 (a n cos nx bn sin nx ) , f ( ) f ( ) , 上连续, f ( x ) ~ 2 n 1 且除了有限个点外 f ( x)可导。进一步假设 f ( x)在[ , ]上可 积或绝对可积(注意: f ( x)在有限个点可能无定义,但这并 不影响其可积性) 。则 f ( x)的 Fourier 级数可由 f ( x)的 Fourier 级数逐项微分得到,即 d a0 d f ( x ) ~ (a n cos nx bn sin nx ) dx 2 n 1 dx
数学分析
2 f ( x ) ~ bn sin nx bn 0 f ( x ) sin nxdx ( n 1,2,) n 1
级数习题课
= e x , x ∈ ( −∞ , + ∞ ) ;
<4> ln(1 + x) = ∑ (−1)n
n =1
1 n +1 x , n +1
x ∈ (−1,1]
<5> − ln(1 − x) = ∑
1 n +1 x , n =1 n + 1
∞
x ∈ [−1,1)
通过逐项积分、逐项求导、加减、变量代换及恒等变形等求出 S ( x) . 5.将函数展为幂级数—Taylor 级数
n =1 n =1 ∞ ∞
4.幂级数的收敛域 D 与和函数 S ( x) 的求法 (1)关键在于求 ∑ a n x n ( ∑ a n ( x − x0 ) n )的收敛半径 R
n =0 n =0 ∞ ∞
a n +1 当其“不缺无限多项”时,使用公式:若 lim n →∞ an R= 1
= ρ 或 lim n an = ρ ,则
n =1 n =1
∞
∞
注: 运用比较法的关键在于: 1 事先估计待审级数的敛散性(当 n → ∞ 时 ,若 u n = o
()
1 n
,则 ∑ un 一般是收敛的,否则可能发散); 2 找到敛散性
n =1
∞
已知的级数作为比的较基准级数(通常是几何级数或 p − 级数). (3) 比值法与根值法
u n +1 若 lim n→∞ un
S (±l ) =
f (0 + 0) + f (2l − 0) ⎞ f (−l + 0) + f (l − 0) ⎛ , ⎜ S (0) = S (2l ) = ⎟. 2 2 ⎝ ⎠
(2)正弦级数与余弦级数
《高数》第十一章-习题课:级数的收敛、求和与展开
概念:
为收敛级数
若
收敛 , 称
若
发散 , 称
绝对收敛 条件收敛
Leibniz判别法: 若
且
则交错级数
收敛 , 且余项
4
例1. 若级数
均收敛 , 且
证明级数
收敛 .
证: 0 c n a n bn a n (n 1 , 2 , ), 则由题收敛
(1)n
n0
x2n ,
x (1,1)
arctan
x
x
01
1 x2
d
x
(1)n x2n1, n02n 1
x [1,1]
于是
f (x) 1 (1)n x2n (1)n x2n2
n1 2n 1
n02n 1
25
f
a 1 时收敛 ; a 1 时发散.
s 1 时收敛;
a 1 时, 与 p 级数比较可知 s 1 时发散.
7
P257 题3. 设正项级数 和 都收敛, 证明级数
也收敛 .
提示:
因
lim
n
un
lim
n
vn
0
,存在
N
>
0, 当n
>N
时
又因
2( un2 vn2 )
思考: 如何利用本题结果求级数
提示: 根据付式级数收敛定理 , 当 x = 0 时, 有
e 1 1
2 n1
f (0 ) f (0 ) 1
2
2
28
作业
P257 6 (2); 7 (3); 9(1) ; 10 (1) ;
无穷级数习题课
∞ 2 ∞a 收敛, (4)若 ∑an 收敛,则 ∑ n ) 绝对收敛) (绝对收敛) n n= 1 n= 1 ∞ ∞ ∞ 收敛, n发散, (5)若 ∑an 收敛, ∑b 发散,则 ∑(an ±b ) (发散) ) 发散) n n= 1 n= 1 n= 1
an 收敛且a ≠1时 若正项级数 ∑an收敛且an≠1时,则级数 ∑ 收敛) 1−an (收敛) n= 1 n= 1
n=1 n=1
判别下列级数的敛散性: 例2 .判别下列级数的敛散性 判别下列级数的敛散性
讨论下列级数的绝对收敛性与条件收敛性: 例3.讨论下列级数的绝对收敛性与条件收敛性 讨论下列级数的绝对收敛性与条件收敛性 π ∞ sin n+1 (2) ∑ −1 n+1 n+1 ; ( )
n= 1
π
n+1 (3) ∑ −1 ln ( ) ; n n= 1
(− )n+ 1 1 1 n + ∞ (− ) 1 1 + ] , un+1 = lim n+1 n+1 ∑[ lim 又如 n n n→ un n→ ∞ ∞ (− )n 1 1 n= 1 + n n − n (− )n n 1 + 同 (− )n n 乘 1 n+1 = − ,但该级数发散。 lim n+1 1 但该级数发散。 n n→ ∞ (− ) 1 1+ n
n= 1 ∞
n= 1+an 1
∞
(6)若 ∑an、∑b 都发散,则 ∑(an ±b ) ) n n都发散, n= 1 n= n= (可能发散也可能收敛) 1 可能发散也可能收敛) 1
∞ 1 1n 可能收敛也可能发散) (7)若 0 ≤ an < ,则 ∑(− ) an (可能收敛也可能发散) ) n n= 1 1 ∞ an = , ∑(−1 nan 收敛, ) 收敛, 例如 2n n= 1
无穷级数习题课
第九章
无穷级数
一、数项级数的审敛法 二、求幂级数收敛域的方法 三、幂级数和函数的求法 四、函数的幂级数展开法
习题课
对于函数项级数 求和 展开 当 当 *当 时为数项级数; 时为数项级数; 时为幂级数; 时为幂级数; (在收敛域内进行) 在收敛域内进行)
一、数项级数的审敛法 1. 利用部分和数列的极限判别级数的敛散性 2. 正项级数审敛法 必要条件 lim un = 0
求
∑ (n + 1) x
n =0
∞
∞
n
的和函数.
n+2 = 1, R = 1, n +1 ∞
n =0
解: ∵ 当x = 1,
n =0
ρ = lim
n →∞
当 x = −1, ∑ (n + 1) 发散, ∑ (n + 1)( −1)n 发散.
∞ n
Байду номын сангаас
∴ 收敛域为(-1,1).
设 s ( x) =
∑ (n + 1)x , ∞ x x ( n + 1) x n dx ∫0 s( x )dx = ∑ ∫ 0 n =0
∴
∞ 2n − 1 x 2 n − 2 1 x dx = ∑ n x 2 n−1 n ∫0 2 n =1 2 n =1 2 x 1 ∞ x2 1 x = ∑ ( )n = ⋅ 2 2 = , x x n =1 2 x 2 − x2 1− 2 ∞
常用展开 式的和: 式的和:
∞ x3 x5 x 2 n+1 x − + − ⋯ = ∑ (−1)n = sin x (−∞ < x < +∞) 3! 5! (2n + 1)! n=0
无穷级数 习题课
二 要点提示
(一)常数项级数 一 常数项级数 1.级数收敛的必要条件 级数收敛的必要条件: 级数收敛的必要条件 收敛,则 n→∞ 若 ∑ un 收敛 则 lim un = 0.
n =1 ∞
由此可得:若 必发散. 由此可得 若 lim un ≠ 0,则级数∑ un 必发散
n→∞ n =1
∞
常用来判定级数是发散的. 常用来判定级数是发散的.切不可用来判定
1 3 4 1. 1+ + ; 3 5 6
解 级数为
∑ ( 1)
n =1
∞
n 1
n n+2
由于一般项
lim ( 1)
n =1 ∞
答:不正确. 不正确. 因为证明中使用了比较判别法, 因为证明中使用了比较判别法, 而比较 判别法只适用于正项级数, 判别法只适用于正项级数, 题目中并未指 出级数是正项级数.正确方法如下: 出级数是正项级数.正确方法如下:
故 ∑ ( bn an )与∑ ( cn an )均为正项级数,
∞
n
2
n
ln ( 1 + x ) = ∑ ( 1)
n =1
∞
n 1
x x x =x + ( 1 < x ≤ 1) . n 2 3
n
2
3
三 思考与分析
1.试判断下列命题是否正确 试判断下列命题是否正确? 试判断下列命题是否正确 (1)若 lim un = 0,则 ∑ un 必定收敛 若 必定收敛. n→∞ n =1 (2)设 ∑ un , ∑ vn 是正项级数 设 是正项级数,
(2)间接展开法: 利用已知函数的展开式 间接展开法: 利用已知函数的展开式, 间接展开法 通过恒等变形 变量代换, 级数的代数运算 恒等变形,变量代换 通过恒等变形 变量代换 级数的代数运算 及逐项求导或积分,把函数展开成幂级数 把函数展开成幂级数. 及逐项求导或积分 把函数展开成幂级数 注意两点: 注意两点 1.熟记几个常用初等函数的马克劳林展出式 熟记几个常用初等函数的马克劳林展出式. 熟记几个常用初等函数的马克劳林展出式 2.根据已知展开式写出所求展开式相应的 根据已知展开式写出所求展开式相应的 收敛区间. 收敛区间 逐项求导或积分后 原级数的收敛半径不变 逐项求导或积分后,原级数的收敛半径不变 逐项求导或积分后 原级数的收敛半径不变, 但收敛域可能会变. 但收敛域可能会变
ch01 数列极限与数项级数 - 习题课
例2. 判别下列级数的敛散性:
提示: (1)
n n n lim n 1 n
1
1 lim n n n
据比较审敛法的极限Th4形式, 原级数发散
, 原级数发散 (比值审敛法Th8)
(3)
n cos 2 n3π 2
n
:
n 1
n cos 2 n3π n 0 n, n 2 2
1 n 1 n 数列{xn (1 ) }是单增的, xn (1 ) e , n n 1 n1 又 数列{ yn (1 ) }是单减的, n 1 n1 1 n 1 lim yn lim(1 ) lim(1 ) lim(1 ) e , n n n n n n n 1 n 1 n1 xn (1 ) e yn (1 ) , 取对数 : n n 1 1 1 ln(1 ) . n 1 n n
第一章 数列极限与数项级数
习题课
一、数列极限
二 、数项(正项)级数
二、数列极限
例1:求极限 (1) lim n a 1 (a 0) ;
n
(P4, 例4)
(2) lim n n 1.
解 : (2)
n
当 n 1 时,n n 1, 令 n n = 1 n , 则n 0 , n(n 1) 2 n (1 n ) 1 nn n ... (n ) n , 2 n(n 1) 2 2 n n , 即 0 n 0 (n ) , 2 n 1
n
于是
n
n = 1 n 1 ( n ) .
1 3 5 (2n 1) 例2:求极限 lim 1 . (P29, 题1(8)) n 2 4 6 2n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ′′′( z ) = e ze e z + 3(e z )2 e e z + (e z )3 e e z
由此得
f ( 0 ) = e , f ′( 0 ) = e , f ′′( 0 ) = 2 e , f ′′′( 0 ) = 5 e .
所以
eez = e + ez + ez2 + 5 ez3 + ". 6
N (ε ), 使 αn − α < ε 在 n > N 时成立,
那末 α 称为复数列 {αn }当 n → ∞ 时的极限,
记作
lim
n→∞
α
n
=α
.
此时也称复数列 {αn } 收敛于 α .
4
2.复数项级数
1) 定义 设{α n } = {an + bn } (n = 1,2,")为一复数列 ,
1− z
n=0
∑ (3)
1
∞
= 1 − z + z2 −"+ (−1)n zn +"= (−1)n zn,
1+ z
n=0
( z < 1)
(4) sin z = z − z3 + z5 − " + (−1)n z2n+1 + ",
3! 5!
(2n + 1)! ( z < ∞)
18
(5) cos z = 1 − z2 + z4 − " + (−1)n z2n + ",
29
例4 求 f (z) = ez cos z 在z = 0 的泰勒展式.
分析:采用间接法即利用已知的展开式来求.
解 因为 ez cos z = 1 ez (eiz + e−iz ) 2
∑ ∑ =
1[e(1+i )z 2
+
e(1−i )z ] =
1⎡ ∞ (1+ i)n zn 2⎢⎣n=0 n!
+
∞
∞
∞
∑α
绝对收敛
n
⇔
∑
an与∑
bn绝对收敛.
n=1
n=1
n=1
绝对收敛 条件收敛
7
3.复变函数项级数
设 { fn(z)} (n = 1,2,") 为一复变函数序列,
其中各项在区域 D内有定义.表达式
∞
∑ fn(z) = f1(z) + f2(z) + " + fn(z) + "
n=1
∞
称为复变函数项级数, 记作 ∑ fn(z).
10
3)收敛圆与收敛半径 对于一个幂级数, 其收敛半径的情况有三种: (1) 对所有的正实数都收敛.即级数在复平面内处 处收敛.
(2) 对所有的正实数除z = 0 外都发散.
此时, 级数在复平面内除原点外处处发散. (3) 既存在使级数发散的正实数, 也存在使级数收 敛的正实数.
11
y
o
αR.
.
=
1
λ
.
⎧1 λ, 0 < λ < +∞;
即
R
=
⎪ ⎨
+
∞,
λ = 0;
⎪⎩ 0, λ = +∞.
13
5)幂级数的运算与性质
∞
∞
∑ ∑ (1)设 f (z) = anzn , R = r1, g(z) = bnzn , R = r2 .
n=0
n=0
∞
∞
∞
∑ ∑ ∑ f (z) ± g(z) = anzn ± bnzn = (an ± bn )zn ,
n=0
是收敛圆 z − a < R 内的解析函数 .
15
(2) f (z) 在收敛圆 z − a < R 内的导数可将其幂
∞
∑ 级数逐项求导得到, 即 f ′(z) = ncn(z − z0 )n−1. n=1
(3) f (z) 在收敛圆内可以逐项积分, 即
∞
∫ f (z)dz = ∑ cn ∫ (z − a)ndz, c ∈ z − a < R.
幂项的级数是唯一的, 这就是 f (z) 的洛朗级数.
21
2)将函数展为洛朗级数的方法
(1) 直接展开法
∫ 根据洛朗定理求出系数
∞
cn
=
1
2π i C (ζ
f −
(ζ
z0
) )n+1
dζ
,
∑ 然后写出 f (z) = cn(z − z0 )n .
n = −∞
(2) 间接展开法
根据正、负幂项组成的的级数的唯一性, 可
n=0
n=0
n=0
∞
∞
∑ ∑ f (z) ⋅ g(z) = ( anzn) ⋅ ( bnzn),
n=0
n=0
R = min(r1, r2 )
∞
∑ = (anb0 + an−1b1 + " + a0bn )zn , n=0
z<R
14
(2)幂级数的代换(复合)运算 ∞ ∑ 如果当 z < r 时, f (z) = anzn , 又设在 n=0
收收敛敛半半径径RR
运运算算与与性性质质
幂幂级级数数
泰泰勒勒级级数数
洛洛朗朗级级数数
f (z) 在 z0 解析
复复 变变 函函 数数
3
1.复数列
设 {αn } (n = 1,2,") 为一复数列, 其中 αn = an + ibn , 又设 α = a + ib 为一确定的复数 , 如果任意给定 ε > 0, 相应地都能找到一个正 数
c
n=0 c
∫ ∑ 或 z f (ζ )dζ = ∞ cn (z − a)n+1.
a
n=0 n + 1
16
5. 泰勒级数
1)定理设 f (z) 在区域 D内解析, z0 为 D 内的一
点, d 为 z0到 D 的边界上各点的最短距离, 那末
∞
∑ 当 z − z0 < d 时, f (z) = cn(z − z0 )n 成立, n=0
β
收敛圆 收敛半径
x
注意 在收敛圆周上是收敛还是发散, 不能作出 一般的结论, 要对具体级数进行具体分析.
12
4)收敛半径的求法
方法1: 比值法
如果 lim cn+1 = λ ≠ 0, 那末收敛半径 R = 1 .
n→∞ cn
λ
方法2: 根值法
如果 lim n n→∞
cn
=λ
≠ 0,
那末收敛半径
R
α n→∞ n
n→∞ 2 + 3i
13
∑ 由正项级数的比值判别法知
∞ n=1
(
2
1 + 3i
)n
绝对收敛.
26
例2 求下列幂级数的收敛半径
∑ ∑ ∑ ∑ ∞ zn
(1)
∞ zn (2)
∞
(3) n!zn
∞
(4) zk2 .
n2
n=0
n=0 n!
n=0
k =1
解
(1)
由lim n→∞
cn+1 cn
=
因为级数是缺项级数 ,
故
1 R
=
lim n
n→∞
Cn
=
1,
即Cn
=
⎧0, ⎨ ⎩1,
R = 1.
n ≠ k2; n = k2.
28
解析函数展为幂级数的方法
例3 展开函数 f (z) = eez 成 z 的幂级数到 z3 项.
解 利用定义来求.
f ′( z ) = e z e e z , f ′′( z ) = e ze e z + (e z )2 e e z ,
e
−nπi 4
⎟⎟⎠⎞zn
∑ = ∞ ( 2)n cosnπ zn .
n=0 n!
4
( z < ∞)
31
例5 把 ez sin z 展开成 z 的幂级数.
分析:利用级数的乘除运算较为简单.
= ⎜⎛ − 1 + 1 − 1 + "⎟⎞+ i⎜⎛1 − 1 + 1 − "⎞⎟, ⎝246 ⎠ ⎝ 35 ⎠
∑ 故 ∞ in 收敛. n=1 n
收敛
收敛
25
三、典型例题
例1 判别级数的敛散性.
∑∞
1
(4) n=1 (2 + 3i)n .
解
设
αn
=
(2
1 + 3i)n
,
因为 lim αn+1 = lim 1 = 1 < 1,
cn
=
1
2πi C (ζ
f −
(ζ
z0
) )n+1
dζ
(n = 0,± 1,")
为洛朗系数.
C为圆环域内绕 z0的任一正向简单闭曲线.
20
∞
∑ f (z) = cn(z − z0 )n n= −∞ f (z)在圆环域内的洛朗(Laurent)级数.
函数 f (z)在圆环域内的洛朗展开式 某一圆环域内的解析函数展开为含有正、负
⎝ 2 ⎠ ⎝2⎠
lim⎜⎛ 26 ⎟⎞n ≠ 0, n→∞⎝ 2 ⎠
∑ 所以 ∞ ⎜⎛ 1 + 5i ⎟⎞n 发散. n=1 ⎝ 2 ⎠
24
三、典型例题