三代PacBio单分子实时测序

合集下载

PacBioRS单分子实时测序系统

PacBioRS单分子实时测序系统

第三代测序技术
第 X 代
公司
平台名 称
测序 方法
检测方法
大约读长 (碱基数)
ห้องสมุดไป่ตู้
优点
相对局限性
并不能高效地将DNA聚 合酶加到测序阵列中; 准确性一次性达标的机 会低(81-83%);DNA 聚合酶在阵列中降解; 总体上每个碱基测序成 本高(仪器昂贵);
第 三 代
太平洋 生物科 学公司
PacBio RS
第 三 代
全基因 组学公 司
GeXP遗 传分析 系统
复合 探针 锚杂 交和 连接 技术
荧光/光 学
10
低读长; 模板制备妨碍 长重复序列区域测序; 样品制备费事;尚无商 业化供应的仪器
第 三 代
Ion 个人基 Torrent/ 因组测 生命技 序仪 术公司 (PGM)
合成 测序 法
以离子敏 感场效应 晶体管检 测pH值 变化
PacBio RS
单分子实时测序系统
报告内容
• 测序技术发展简介 • PacBio RS技术
测序原理 流程和策略 优势
应用
第一代测序方法
第 X 公司 平台名 称 大约读 测序方法 检测方法 长(碱基 优点 相对局限性

数)
高读长,准确
第 一 代
ABI/生 命技术 公司
3130xL3730xL
桑格-毛细 管电泳测 序法
荧光/光 学
6001000
度一次性达标 率高,能很好 处理重复序列 和多聚序列 高读长,准确
通量低;样品制备成本高, 使之难以做大量的平行测 序
第 一 代 贝克曼
GeXP遗 传分析 系统
桑格-毛细 管电泳测 序法

pacbio测序原理

pacbio测序原理

pacbio测序原理PacBio测序原理。

PacBio测序是一种基于单分子实时测序技术的第三代测序方法,它具有高通量、长读长、低假阳性率等特点,在生物医学研究、基因组学和生物信息学等领域有着广泛的应用。

PacBio测序的原理主要包括DNA样品制备、DNA聚合酶链反应、测序反应和数据分析等步骤。

首先,DNA样品制备是PacBio测序的第一步。

DNA样品可以来源于各种生物组织或细胞,如血液、细胞培养物等。

在这一步骤中,需要对DNA样品进行纯化和质量检测,确保样品的纯度和完整性,以保证后续的实验顺利进行。

接下来是DNA聚合酶链反应(PCR)。

PCR是一种体外扩增DNA的方法,通过PCR可以将少量的DNA扩增成足够用于下游实验的量。

在PacBio测序中,PCR主要用于扩增目标DNA片段,以便进行后续的测序反应。

测序反应是PacBio测序的核心步骤。

PacBio测序采用的是单分子实时测序技术,其原理是将目标DNA片段连接到一种特殊的DNA聚合酶上,形成DNA聚合酶-DNA复合物。

然后,将DNA聚合酶-DNA复合物固定在测序芯片上,通过激光逐个测序DNA片段,实现对DNA序列的高通量测序。

最后是数据分析。

PacBio测序生成的数据量大,需要进行复杂的数据分析和生物信息学处理。

数据分析的步骤包括测序数据的质控、序列拼接、基因组注释等,最终得到目标DNA序列的完整信息。

总的来说,PacBio测序原理是基于单分子实时测序技术,通过DNA样品制备、PCR扩增、测序反应和数据分析等步骤,实现对DNA序列的高通量、长读长、低假阳性率的测序。

这种测序方法在基因组学研究、临床诊断、药物开发等领域有着广泛的应用前景,将为生命科学领域的研究和发展带来新的机遇和挑战。

Pacbio 第三代测序仪

Pacbio 第三代测序仪

第三代测序-单分子实时测序一,PacBio RS平台介绍二,PacBio RS测序仪系统服务领域1,动植物复杂基因组测序2,真菌基因组完成图3,细菌基因组完成图4,BAC克隆完成图5,从头组装(DE Novo Assembly)三,天津生物芯片提供的PACBIO RS系统测序方案四,PacBio RS测序仪系统优势五,PacBio RS测序仪系统原理一,PacBio RS平台介绍PacBio RS测序仪系统是太平洋生物技术公司(Pacific Biosciences)基于单分子实时(SMRT)测序技术的第三代测序平台,可以在一天内完成从样品制备到测序和读取序列的全过程。

天津生物芯片利用PacBio RS测序仪系统全面解决了二代测序几大困扰:海量数据拼接难,变异检测假阳性高,稀有突变被淹没,高GC含量区域无法跨越,高度片段无法准确测定等,得到高质量,完整的数据信息,为合作伙伴提供优质的基因组组装,目标区域测序,碱基修饰检测等技术服务。

二,PacBio RS测序仪系统服务领域1,动植物复杂基因组测序(1)杂合基因组:杂合基因组主要指杂合率高于0.5%的二倍体基因组,如大部分水产类和昆虫等;(2)高重复基因组:主要指重复序列比例高于50%的二倍体基因组,大部分林木;(3)超大基因组:基因组大小大于3G,甚至是10G以上的物种,如两栖类,部分林木;(4)多倍体基因组:如四倍体、六倍体植物等。

图1 主要技术策略示意图2,真菌基因组完成图(1)适用于所有真菌菌株;(2)尤其适合超高GC/超低GC真菌;(3)其它用传统方法测序比较困难真菌;(4)真菌基因组草图或精细图补洞。

3,细菌基因组完成图(1)普通细菌快速完成图构建;(2)尤其适合超高GC/超低GC细菌;(3)其它用传统方法测序比较困难细菌菌株通过采用第三代测序技术,直接进行细菌基因组的完成图绘制。

4,BAC克隆完成图通过PacBio RS平台进行单分子实时测序,可以快速得到超长读长。

第三代测序技术(单分子实时DNA测序)与第二代测序技术(高通量测序技术)简介

第三代测序技术(单分子实时DNA测序)与第二代测序技术(高通量测序技术)简介

第三代测序技术(单分子实时DNA测序)与第二代测序技术(高通量测序技术)简介第三代测序技术(单分子实时DNA测序)与第二代测序技术(高通量测序技术)简介第三代测序技术简介如果有人告诉你用显微镜实时观测单分子DNA聚合酶复制DNA,并用它来测序,你一定会认为他异想天开,没有一点生物的sense。

我最初就是这样认为的,然而它不仅可以实现,而且已经实现了~这个就是被称为第三代的测序技术,Pacific Biosciences公司推出的“Single Molecule Real Time(SMRT) DNA Sequencing”(单分子实时DNA测序)。

我有幸在NIH听到了这个技术发明人Stephen Turner博士的讲座,根据自己粗浅的理解记录整理一下。

要实现单分子实时测序,有三个关键的技术。

第一个是荧光标记的脱氧核苷酸。

显微镜现在再厉害,也不可能真的实时看到“单分子”。

但是它可以实时记录荧光的强度变化。

当荧光标记的脱氧核苷酸被掺入DNA链的时候,它的荧光就同时能在DNA链上探测到。

当它与DNA链形成化学键的时候,它的荧光基团就被DNA聚合酶切除,荧光消失。

这种荧光标记的脱氧核苷酸不会影响DNA聚合酶的活性,并且在荧光被切除之后,合成的DNA链和天然的DNA链完全一样。

第二个是纳米微孔。

因为在显微镜实时记录DNA链上的荧光的时候,DNA链周围的众多的荧光标记的脱氧核苷酸形成了非常强大的荧光背景。

这种强大的荧光背景使单分子的荧光探测成为不可能。

Pacific Biosciences公司发明了一种直径只有几十纳米的纳米孔[zero-mode waveguides (ZMWs)],单分子的DNA聚合酶被固定在这个孔内。

在这么小的孔内,DNA链周围的荧光标记的脱氧核苷酸有限,而且由于A,T,C,G这四种荧光标记的脱氧核苷酸非常快速地从外面进入到孔内又出去,它们形成了非常稳定的背景荧光信号。

而当某一种荧光标记的脱氧核苷酸被掺入到DNA链时,这种特定颜色的荧光会持续一小段时间,直到新的化学键形成,荧光基团被DNA聚合酶切除为止(见图)。

二代和三代测序原理及技术详解

二代和三代测序原理及技术详解

二代和三代测序原理及技术详解二代测序(Second Generation Sequencing)和三代测序(Third Generation Sequencing)是现代生物学中常用的两种高通量测序技术。

二代测序技术主要包括Illumina测序技术和Ion Torrent测序技术,而三代测序技术则由PacBio和Oxford Nanopore等公司开发。

本文将详细介绍二代和三代测序的原理和技术。

二代测序技术采用了不同的原理,但其基本步骤相似。

首先,DNA 或RNA样本需要经过一系列的前处理步骤,如DNA片段化、连接测序指示子、PCR扩增等。

然后,将样品片段化的DNA或RNA分子固定到测序平台上,通过荧光标记的碱基依次加入到模板上,并经过图像采集系统进行扫描和记录。

最后,根据荧光信号的强度和位置确定每个碱基的序列,并通过计算机算法进行基因组的重建和分析。

Illumina测序技术是目前应用最广泛的二代测序技术之一。

其基本原理是通过将DNA片段固定到测序芯片上的特定位置上,然后通过反复的循环扩增和碱基加入的方式进行测序。

在每个循环中,只能加入一种荧光标记的碱基,并记录荧光信号,之后通过去除荧光信号并进行图像分析来确定碱基的序列。

Illumina测序技术具有高通量、高准确性和较低的测序成本,并广泛应用于基因组学、转录组学和表观遗传学等领域。

Ion Torrent测序技术是另一种常用的二代测序技术。

其原理基于DNA聚合酶催化链延伸反应,该反应会释放出质子,通过测量质子释放的情况来确定碱基的序列。

Ion T orrent测序技术具有高通量和较低的测序成本,但由于其测序误差率较高,主要应用于低复杂度的基因组测序和个体检测等领域。

与二代测序技术相比,三代测序技术具有更长的读长和更高的速度。

PacBio是其中一种代表性的三代测序技术。

PacBio测序技术基于单分子实时测序(Single-Molecule Real-Time Sequencing)原理,通过将DNA聚合酶与荧光标记的碱基一起加入到DNA模板上,通过测量聚合酶引发的荧光信号来确定碱基的序列。

pacbio三代测序原理

pacbio三代测序原理

pacbio三代测序原理随着生物学的发展,对于基因组的研究和分析也越来越重要。

在基因组研究中,测序是必不可少的一步。

测序技术的发展使得人们能够更加深入地了解基因组和生物学的本质。

PacBio三代测序技术是近年来新兴的一种测序技术,其原理和流程与传统的二代测序有很大的不同。

本文将详细介绍PacBio三代测序的原理和流程。

PacBio三代测序是基于单分子实时测序技术的。

其使用的测序仪是PacBio RS II或Sequel,这些测序仪能够实现单分子实时测序。

与传统的二代测序技术不同,PacBio三代测序能够在单个分子水平上进行测序,因此无需进行PCR扩增和文库构建等步骤,从而避免了PCR扩增引入的偏差和文库构建过程中的损失。

此外,PacBio三代测序还具有长读长优势,能够产生数千到数万的bp长的reads,从而大大提高了测序的准确性和覆盖度。

PacBio三代测序的原理是基于SMRT(Single Molecule Real Time)技术,该技术基于荧光信号实现单分子实时测序。

具体来说,PacBio 测序仪利用荧光标记的四种不同核苷酸(A、T、C、G)在DNA合成过程中的释放来进行测序。

当DNA合成时,DNA聚合酶会在荧光标记的核苷酸加入到新合成的链中时释放荧光信号。

这些荧光信号被PacBio 测序仪捕获并转化为序列信息。

由于荧光标记的核苷酸释放荧光信号的速度是非常快的,因此PacBio测序仪可以实时监测DNA合成的过程,从而实现单分子实时测序。

PacBio三代测序的流程主要分为三个步骤:样品准备、测序反应和数据分析。

首先,需要从样品中提取DNA,并将其质量和浓度进行检测。

接下来,将DNA片段直接加入到PacBio测序仪中,不需要进行PCR扩增和文库构建等步骤。

在测序反应中,PacBio测序仪会将荧光标记的核苷酸加入到新合成的DNA链中,并实时监测荧光信号。

最后,将测序得到的数据进行分析,包括序列拼接、错误校正和注释等步骤,从而得到高质量的基因组序列。

pacbio sequencing原理

pacbio sequencing原理

pacbio sequencing原理PacBio测序(Pacific Biosciences sequencing)是一种第三代测序技术,采用了单分子实时测序(Single Molecule Real-Time Sequencing,SMRT)技术原理。

本文将介绍PacBio测序的原理和工作流程,并讨论其优势和应用。

PacBio测序的原理是基于DNA聚合酶的活性。

在测序过程中,DNA模板被固定在一个单个的微小孔中,该孔被称为SMRT细胞。

然后,DNA聚合酶从DNA模板的单链上开始合成新的DNA链。

DNA聚合酶在添加新的核苷酸时会释放出一个荧光信号,这个信号会被检测器记录下来。

PacBio测序的工作流程包括样本准备、测序反应、数据分析和结果解读。

首先,需要从待测样本中提取DNA,并对其进行质量检测和纯化。

然后,将纯化的DNA片段连接到SMRT细胞中,形成DNA 片段库。

接下来,将SMRT细胞放入PacBio测序仪中进行测序反应。

在测序反应中,DNA聚合酶会逐个加入核苷酸,并记录下荧光信号。

这个过程是实时进行的,所以可以获得实时的测序数据。

一旦测序完成,就可以进行数据分析。

PacBio测序产生的数据量较大,需要进行数据过滤和校正。

数据过滤可以去除低质量的测序数据,提高测序结果的准确性。

数据校正可以修正由于DNA聚合酶的错误引入的测序错误。

校正后的数据可以被用来进行序列组装和变异检测等进一步分析。

PacBio测序相比传统的二代测序技术有许多优势。

首先,PacBio 测序可以产生较长的读长,通常在10 kb以上,这使得对基因组结构和复杂变异的研究更加方便。

其次,PacBio测序的错误率较低,尤其是在相同覆盖度下,比二代测序技术更准确。

此外,PacBio测序可以直接检测DNA的甲基化状态,有助于研究表观遗传学。

PacBio测序在许多领域都有广泛的应用。

在基因组学研究中,PacBio测序可以用于基因组组装、变异检测和结构变异分析等。

三代测序鉴定菌种

三代测序鉴定菌种

咨询年终工作计划范文模板尊敬的各位同事:大家好!随着一年的工作即将接近尾声,年终工作计划成为了我们共同关注的焦点。

为了更好地达成我们的工作目标,提高工作效率,我特意起草了年终工作计划,以便我们共同商讨和完善。

一、回顾过去一年的工作在过去的一年里,我们取得了许多值得骄傲的成绩。

我们团队在市场推广方面取得了较好的成绩,产品的市场份额稳步增长。

在客户服务方面,我们加强对客户的维护和管理,提高了客户满意度。

在团队建设方面,我们加强了部门人员的培训,提升了团队的整体素质和创造力。

在内部协作方面,我们建立了更为完善的协作机制,团队成员之间的合作更加紧密。

二、年终工作总结与考核在取得成绩的同时,我们也应当清醒地认识到存在的问题和不足之处。

在市场推广方面,我们与竞争对手相比还存在一定的差距,我们需要加大宣传和推广力度。

在客户服务方面,部分客户对产品的满意度未能得到提高。

在团队建设方面,部分团队成员的工作积极性不够高。

在内部协作方面,团队成员之间的信息沟通不畅,存在一定的理解和沟通障碍。

三、未来一年的工作目标和计划在未来的一年里,为了更好的完成各项工作任务,我们团队制定了以下工作目标和计划。

在市场推广方面,我们将加大宣传力度,扩大产品的市场份额,加强与经销商的合作。

在客户服务方面,我们将加大对客户的关怀和维护,提高客户的满意度。

在团队建设方面,我们将加强团队成员的培训和激励,提高团队整体素质和创造力。

在内部协作方面,我们将建立更为完善的协作机制,加强团队成员之间的信息沟通和协调,解决工作中存在的沟通和理解障碍。

四、年终工作计划的实施和落实为了更好地实施和落实年终工作计划,我们团队将采取以下几种措施。

在市场推广方面,我们将加大宣传和推广力度,制定详细的宣传计划,加强与经销商的合作。

在客户服务方面,我们将建立客户满意度调查机制,及时掌握客户的需求和意见,不断改进客户服务质量。

在团队建设方面,我们将定期组织各类培训和学习活动,提高团队成员的综合素质。

pacbio三代测序原理

pacbio三代测序原理

pacbio三代测序原理随着基因组学的发展,测序技术也在不断地进步和完善。

其中,第三代测序技术因其高通量、高准确性、长读长等优势,被越来越多的科研人员所关注和使用。

PacBio三代测序技术是目前最先进的单分子实时测序技术之一。

本文将介绍PacBio三代测序的原理、优势和应用。

一、PacBio三代测序原理PacBio三代测序技术主要基于SMRT(Single Molecule Real Time)技术,其基本原理是将DNA分子固定在聚合酶上,通过单分子实时监测DNA聚合酶的扩增过程,从而实现对DNA序列的测定。

具体过程如下:1. DNA样本制备:将DNA样本进行适当处理,使其适合于PacBio 测序。

2. DNA聚合酶固定:将DNA聚合酶固定在透明的聚合酶盘上,并在盘底部加入荧光素和底物。

3. DNA扩增:加入DNA样本,DNA聚合酶开始扩增,同时荧光素也被释放出来。

4. 荧光检测:荧光素被激发后会发出荧光信号,通过摄像头实时捕捉荧光信号,记录DNA聚合酶扩增的过程。

5. 数据分析:通过计算机处理荧光信号,得到DNA序列信息。

由于PacBio三代测序技术采用单分子实时监测技术,因此其读长可以达到10kb以上,比第二代测序技术要长得多。

此外,PacBio三代测序技术还可以实现单分子级别的准确性,能够准确地检测到DNA序列中的各种变异。

二、PacBio三代测序优势1. 长读长:PacBio三代测序技术的读长可以达到10kb以上,比第二代测序技术要长得多。

这使得PacBio三代测序技术可以检测到更多的基因组结构变异和复杂序列。

2. 高准确性:PacBio三代测序技术可以实现单分子级别的准确性,能够准确地检测到DNA序列中的各种变异。

3. 高通量:PacBio三代测序技术可以在短时间内完成大量的测序工作,提高了测序效率和产出量。

4. 适用范围广:PacBio三代测序技术可以用于各种样本类型的测序,包括基因组、转录组、表观基因组等。

第三代测序技术介绍

第三代测序技术介绍

第三代测序技术介绍目前,主要的第三代测序技术包括单分子测序技术和纳米孔测序技术。

单分子测序技术是指将DNA样本直接读取成单个分子的测序技术。

这种技术的一个典型代表是PacBio Single Molecule Real-Time(SMRT)测序技术。

这种技术基于真核生物DNA聚合酶的特点,通过监测单个DNA分子的合成过程来实现测序。

在PacBio SMRT测序技术中,DNA分子被固定在悬浮在荧光物质中的微小光子学平台上,随着DNA合成的进行,DNA聚合酶会释放出光子,从而可以实时监测到DNA的合成过程。

这种技术能够实现长读取长度和高保真度,具有快速、高效、高通量的特点,被广泛应用于基因组学、转录组学等研究领域。

纳米孔测序技术是指通过将DNA样本引导通过一个纳米孔,并通过监测DNA分子在纳米孔中电信号的变化来实现测序的技术。

这种技术的一个代表是Oxford Nanopore Technologies(ONT)的MinION测序技术。

在MinION测序技术中,DNA样本通过纳米孔时,会引起电信号的变化,这种变化可以被转化成测序信息进行读取。

这种技术具有实时、长读取长度、低成本的特点,可以在实验室和户外等多种场合进行测序,被广泛应用于移动基因组学、环境监测等领域。

第三代测序技术的出现极大地推动了基因组学、转录组学等研究领域的发展。

它们不仅提高了测序的速度和准确性,还降低了测序的成本,使得大规模基因组和转录组的测序成为可能。

在人类基因组计划中,第三代测序技术被广泛应用于完成全基因组的测序任务,为研究人类基因组提供了重要的数据资源。

同时,第三代测序技术也被广泛应用于微生物学、农业科学、生物多样性研究等领域,为相关研究提供了有力的支持。

然而,尽管第三代测序技术在测序速度和准确性上有了巨大的进步,但其仍然存在一些挑战和限制。

比如,第三代测序技术在读取长度和错误率等方面仍有改进的空间,同时对于复杂的基因结构和重复序列的测序仍然存在困难。

三代测序技术的应用以及与二代技术的比较

三代测序技术的应用以及与二代技术的比较
表观组
微生物组
无需打断、无需组装,转录本直接反转录得全长cDNA
平均读长15K,无需PCR,均匀覆盖基因组
测序同时直接检测各种碱基修饰、脉冲间隔持续时间IPD不同来识别
快速获得基因组完成图
根据长度不同,会建600bp(Hiseq测)【HGAP、MHAP、Falcon】
Params.xml
二代、三代测序平台比较
三代测序技术
二代测序技术
A经PCR扩增后形成分子簇,变合成边测序
测序对象
单分子DNA
PCR扩增后的DNA分子簇
测序读长
平均15K,最长45K
PE150、PE300
测序准确率
单次测序准确率87.5%,测序深度15X准确度达到Q40,30X达到Q50
通常Q30
通量
一个run(8个SMRT cell) 8G
一个Lane 60G [Hiseq PE150]
一个Lane 15G[Miseq PE300]
代表
PacBio、Oxford Nanopore
三代测序也叫单分子实时测序(SMRT),PacBio SMRT技术,不需要进行PCR扩增,具备超长读长、高准确率、高敏感性、无GC偏向性和直接检测修饰碱基等特点,能解决二代测序的海量数据拼接困难、稀有突变被淹没、高GC区域无法跨越、高重复片段无法准确测定的困扰。
三代测序应用范围
全长转录组
全基因组De novo
Hiseq、Miseq
基因组组装
二代补洞、三代辅助组装提升contig N50;IRYS光学图谱,提升Scaffold N50到染色体水平【将Scaffold N50再浓缩提升延长】
读长较短,只能组做表达鉴定(可以检测低丰度、同源基因、超家族基因或等位基因表达的转录本

pacbio 简书

pacbio 简书

pacbio 简书PacBio是一家生物技术公司,其核心技术是第三代单分子实时DNA测序技术。

PacBio公司的全称是Pacific Biosciences of California,成立于2004年,总部位于美国加利福尼亚州门洛帕克(Menlo Park)。

PacBio公司的创始人是Stephen Turner和Joseph Jacobson。

PacBio公司的第三代单分子实时DNA测序技术第三代单分子实时DNA测序技术是指直接将DNA单分子放在测序仪上进行测序,不需要进行PCR扩增和文库构建等复杂的前处理步骤。

这种技术可以避免PCR扩增过程中的偏差和错误,可以直接读取单个DNA分子的信息,因此能够获得更准确、更完整的DNA序列信息。

PacBio公司的第三代单分子实时DNA测序技术的原理是利用Zero-Mode Waveguide(ZMW)孔技术,该技术可以将单个DNA分子限制在一个非常小的空间内,使其在光学激发下发出荧光信号,从而实现DNA序列信息的读取。

PacBio公司的测序仪可以读取每个ZMW孔中的荧光信号,从而实现对单个DNA分子的读取。

PacBio公司的第三代单分子实时DNA测序技术的优点是可以获得长读长、高准确度的DNA序列信息。

相比于第二代测序技术,PacBio 公司的测序仪可以获得几十kb甚至上百kb的长读长,可以避免DNA 序列中的重复区域和高GC区域等难以测序的区域,从而获得更完整的DNA序列信息。

此外,PacBio公司的测序仪可以根据荧光信号的强度和时间信息来判断DNA碱基的类型和位置,因此可以获得更高的准确度。

PacBio测序技术的应用PacBio测序技术可以应用于基因组学、转录组学、表观基因组学等领域。

在基因组学领域,PacBio测序技术可以获得更完整的基因组序列信息,可以发现新的基因和功能区域,可以研究基因组结构和进化等问题。

在转录组学领域,PacBio测序技术可以获得更准确的转录本信息,可以发现新的剪接形式和非编码RNA等信息,可以研究基因调控和信号通路等问题。

基因测序三代技术介绍

基因测序三代技术介绍

基因测序三代技术介绍基因测序是指对生物体的基因组进行测序,以获取其基因序列信息的过程。

而基因测序的三代技术则是指第三代测序技术,相对于第一代和第二代测序技术而言,具有更高的速度、更低的成本以及更高的准确性。

第一代测序技术是指最早期的测序技术,如Sanger测序技术。

这种技术通过将待测DNA片段进行复制扩增,然后使用荧光标记的dideoxynucleotide作为终止子,以分子量为基础进行分离,从而确定DNA序列。

虽然第一代测序技术具有高度的准确性,但其速度较慢、成本较高,且只能测序较短的DNA片段。

第二代测序技术则是指近年来发展起来的一系列高通量测序技术,如454测序、Illumina测序、Ion Torrent测序等。

这些技术主要基于并行测序的原理,通过将DNA分子进行大规模的并行测序,从而实现高通量、高速度的测序。

相对于第一代测序技术,第二代测序技术具有更高的测序速度、更低的测序成本,且可同时测序多个样品。

然而,第二代测序技术在长读长、测序错误率较高等方面仍存在不足之处。

而第三代测序技术则是在第二代测序技术的基础上进行了进一步的改进与创新,被广泛认为是测序技术的新一代。

第三代测序技术主要包括PacBio测序、Nanopore测序等。

这些技术的共同特点是能够实现单分子测序,即直接对单个DNA分子进行测序,从而避免了PCR扩增等步骤可能引入的错误。

此外,第三代测序技术还具有高度的测序速度、更长的读长、更低的测序错误率等优势。

PacBio测序技术是一种基于单分子实时测序原理的第三代测序技术。

该技术通过将待测DNA片段引入到PacBio测序平台中的Zero Mode Waveguide(ZMW)孔中,然后使用DNA聚合酶合成DNA链,同时检测DNA链的合成过程,从而实现实时的单分子测序。

PacBio测序技术具有极高的测序速度和极长的读长,能够实现全基因组的长读长测序。

Nanopore测序技术则是一种基于纳米孔原理的第三代测序技术。

重测序技术方案

重测序技术方案

重测序技术方案引言重测序技术是一项用于测序DNA或RNA的技术,可以帮助我们了解生物体内的基因组结构和功能。

随着测序技术的不断发展和进步,重测序技术也在不断创新和完善。

本文将介绍几种常见的重测序技术方案,并比较它们的特点和应用。

Sanger测序技术Sanger测序技术是第一代测序技术,也被称为链终止法。

它基于DNA合成过程中的链终止原理,使用一组标记有荧光的缺失氧核苷酸,并与待测DNA模板进行扩增反应。

在扩增反应中,不同长度的引物扩展产生的片段会被分离并测量其荧光信号,从而确定DNA序列。

Sanger测序技术具有高准确性和可靠性,能够读取数百个核苷酸,但其缺点是低通量和高成本。

由于需要单个片段的扩增和测序,Sanger测序技术适合对小规模的基因片段进行测序。

Illumina测序技术Illumina测序技术是一种广泛应用的高通量测序技术,也被称为第二代测序技术。

它基于桥式扩增(bridge amplification)和荧光染料标记的可逆终止原理,通过在DNA复制过程中加入终止核苷酸和复合酶的方法进行测序。

Illumina测序技术具有高通量、低成本和高可靠性的特点。

其通过并行测序技术,能够同时读取上百万个DNA片段,从而大大提高了测序速度和效率。

然而,Illumina测序技术对于长序列的读取存在一定的挑战,需要通过后续的重组技术来获得完整的DNA序列信息。

PacBio测序技术PacBio测序技术是一种第三代测序技术,也被称为单分子实时测序技术。

它基于聚合酶链反应(PCR)和DNA聚合酶的原理,通过监测DNA合成过程中的荧光信号来实现测序。

PacBio测序技术的主要优点是能够实现长读取长度和高准确性。

由于其对DNA片段长度没有限制,因此适用于测序整个基因组或长片段DNA。

另外,PacBio测序技术还能够实时监测DNA合成过程,提高了测序准确性。

然而,PacBio测序技术的缺点是测序速度较慢,并且存在一定的错误率。

picbio三代测序原理

picbio三代测序原理

p i c b i o三代测序原理The manuscript can be freely edited and modified三代测序之P a c B i o S M R T技术全解析2017-05-1111:29来源:气温回升;天气渐暖;花儿开了一簇又一簇~在这美好的季节里;我们准备聊点新话题..今天小编要来和你分享:PacBioSMRT测序那些事儿~测序技术在近几年中又有里程碑的发展;PacificBiosciences公司成功推出商业化的第三代测序仪平台;让三代测序正式走入我们的视线..与前两代相比;第三代测序有什么不同呢今天小编带大家详细了解测序界新宠-PacBioSMRT测序平台..PacBioSMRT测序原理PacificBiosciences公司研发的单分子实时测序系统SingleMoleculeRealTime;SMRT应用了边合成边测序的原理;并以SMRT芯片为测序载体..基本原理如下:聚合酶捕获文库DNA序列;锚定在零模波导孔底部4种不同荧光标记的dNTP随机进入零模波导孔底部荧光dNTP被激光照射;发出荧光;检测荧光荧光dNTP与DNA模板的碱基匹配;在酶的作用下合成一个碱基统计荧光信号存在时间长短;区分匹配碱基与游离碱基;获得DNA序列酶反应过程中;一方面使链延伸;另一方面使dNTP上的荧光基团脱落聚合反应持续进行;测序同时持续进行PacBioSMRT测序原理PacBioSMRT的单分子测序和超长读长是如何实现的我们重点看一下该技术的两点关键创新:分别是零模波导孔zero-modewaveguides;ZMWs和荧光标记在核苷酸焦磷酸链上Phospholinkednucleotides..SMRTCell含有纳米级的零模波导孔;每个ZMW都能够包含一个DNA聚合酶及一条DNA样品链进行单分子测序;并实时检测插入碱基的荧光信号..ZMW是一个直径只有10~50nm的孔;当激光打在ZMW底部时;只能照亮很小的区域;DNA聚合酶就被固定在这个区域..只有在这个区域内;碱基携带的荧光基团被激活从而被检测到;大幅地降低了背景荧光干扰.. SMRTCell和ZMWs将荧光染料标记在核苷酸的磷酸链而不是碱基上;当核苷酸掺入到新生的链中;标记基团就会自动脱落;减少了DNA合成的空间位阻;维持DNA链连续合成;延长了测序读长..SMRT测序最大限度地保持了聚合酶的活性;是最接近天然状态的聚合酶反应体系..荧光标记在焦磷酸链上的核苷酸PacBioSMRT测序送样要求PacBioSMRT测序建库流程DNA打断之后;经过末端修复、接头连接、片段筛选、杂交测序引物和聚合酶绑定;即可出库准备上机测序;建库过程无PCR反应..PacBioSMRT建库流程PacBioSMRT技术特点PacBioSMRT技术有两种测序平台;RSⅡ和Sequel;应该如何选择小编已将二者的对比表准备好啦~表3RSⅡ和Sequel测序平台比较Sequel平台与RSII平台相比具有很大的优势;Sequel平台测序通量高、单Gb数据成本低、周期短..1.第三代基因测序技术又被为"SingleMoleculeRealTimeSMRT DNASequencing"单分子实时DNA测序技术;该方法基于纳米孔的单分子读取技术;不需要扩增即可快速读取序列..目前;PacificBiosciences公司已经成功推出了商业化的第三代测序仪PacB ioRS平台;使得第三代测序正式走入人们的视角..PacBioRSII是PacificBiosciences公司研发的单分子实时测序系统SingleMolecu leRealTime;SMRT;其专利的SMRTCell含有15;000个纳米级的零模波导孔zero-mod ewaveguides;ZMWs;每个ZMW都能够包含一个DNA聚合酶及一条DNA样品链进行单分子测序;并实时检测插入碱基的荧光信号..2.2技术特点ü 利用测序过程聚合酶反应的动力学变化;首次实现对碱基修饰进行直接测序..ü 超长的读长:平均测序读长能达到7;000-8;000bp;最长读长能达到3;0000bp;ü 准确率高:对基因组组装和基因组变异检测;可以最多达到99.999%的准确率;ü 敏感性强:可以检测频率在0.1%的minorvariants;ü 无PCR扩增偏好性:样本不需要进行PCR扩增;避免了覆盖度不均一和PCRartif acts;ü 最小的GC偏好性GCbias:在极端高GC和极端低GC区域;可以轻松测定;从而保证序列的均匀覆盖度..3.3数据产出试剂盒平均读长数据量/SMRTCellP4-C2Chemistry 5.5-6Kb ~200MbP5-C3Chemistry 8-10Kb ~250Mb4.4应用领域1全基因组denovo测序与二代测序最高不超过1kb的读长相比;PacBioRSII的长读长将有效解决短序列数据的拼接难题..同时;与二代测序的模板样品需要扩增相比;PacBioRSII无需扩增可直接对单个分子进行测序;有效避免了PCR扩增偏好性和GC偏好性;PacBioRSII可轻松跨越GC含量异常过高或过低及高度序列重复的区域;实现序列覆盖的完整性和均一性..2基因组草图的优化或基因组完成图绘制对前期已开展测序的动植物、微生物基因组结合三代长读长测序数据进行完善和提升..针对前期已经开展全基因组测序;获得基因组草图的动植物、微生物等;可以结合PacBioRSII平台长读长reads进行补充;从而快速获得前期没有测得的信息及提升基因组的完整度..另外还可以针对前期没有检测获得的结构变异信息structural -variationevents、串联重复序列信息tandemduplication、易位信息Inversion 等..尤其在微生物基因组完成图的绘制中;可在一天之内、成本低于$1;000即可将基因组完善获得0gapcontig..3全长转录本测序PacBioRSII的长读长可实现全长转录本测序;并使基因可变剪接形式的识别成为可能;因此可以对新基因及其isoform进行更全面的研究..同时;长读长不再需要对RN A-Seq的reads进行组装;因此可以更完整的对基因模型和转录的基因进行更全面的注释;用以改进参考基因组中的基因注释信息..4宏基因组测序长读长reads能够更为精准地鉴定水体、土壤、肠道等生境中微生物的种类的鉴定;能够更加快捷地获得更多微生物种的全基因组序列..516SrDNA全长测序PacBioRSII的平均读长为8-10Kb;而16SrDNA长度大约为1540bp;因此结合该平台测序可以成功测序获得16S的全长序列..6细胞器基因组测序叶绿体基因组和线粒体基因组序列都包含重复序列、反向重复序列等复杂结构;Pac BioRSII的长读长可直接跨越这些区域获得这些细胞器的全基因组序列信息等;基因组组装不依赖于是否有近缘物种的线粒体和叶绿体基因组信息等、重测序能够检测到全面的SNPs及indel信息..7全基因组重测序&稀有变异鉴定PacBioRSII长读长测序reads无GC偏号;能够全面获得基因组的遗传变异;包括SN Ps的鉴定到CNV、SV结构变异等;可运用至人类癌症基因组重测序等..PacBioRSII 平台测序周期在10hours小时即可完成测序;可应用至需要快速反馈的临床检测中;如细菌感染疾病中细菌的鉴定、病毒的鉴定等;取样开展重测序和目前已有的细菌、病毒基因组数据库进行比对鉴定即可..8表观遗传学PacBioRSII利用测序过程聚合酶反应的动力学变化;首次实现对碱基修饰进行直接测序..当碱基有额外修饰时;DNA聚合酶的合成速度会减慢;对应的信号会被检测出来..每种碱基修饰事件都会使聚合酶的“停顿模式”PacBioRSII产生微小差异;最终反映到荧光脉冲信号的间隔上..除了甲基化修饰;还可以检测5-hC、5-hmU、5-h U、1-mA、6-mA、8-oxoA、BPDE、6-mT、6-mG等碱基修饰;甚至可以鉴别传统亚硫酸氢盐测序法无法区分的甲基化修饰和羟甲基化修饰..PacBio平台可以在测序的同时即可检测表观遗传学修饰信息;只需对测序数据选择合适的软件即可分析碱基修饰信息..5.5。

如何理解PacBio的准确度

如何理解PacBio的准确度

Understanding Accuracy in SMRT Sequencing介绍第三代测序中的PacBio单分子实时(Single Molecule Real-Time, SMRT)DNA 测序可以实现超过99.999%(QV50)的高度精确测序,且不受DNA序列中GC和AT含量的影响,平均读长可达10-15kb(最长>40kb),这是如何实现的呢?这是因为SMRT技术在与DNA测序精确度相关的三个方面均有独到之处:1. Consensus accuracy(一致性准确性)2. Sequence context bias(测序偏好性)3. Mappability of sequence reads(测序reads的map表现)本文将从专业客观的角度从这三方面详细阐述SMRT测序技术的表现,图文并茂,数据详实,请各位看官留步,细细品味。

1. Consensus accuracy(一致性准确性)一个典型的测序过程通常包括三个基本步骤:(i)生成测序reads,(ii)将生成的reads mapping到已知的参考序列上,(iii)为了得到最终的序列而生成consensus。

如果DNA样本是未知起源的,那么第(ii)步就会被de novo基因组组装所代替,以便生成一个新的参考基因组。

最后一步是将原始测序reads mapping到assembly结果。

为了使大家更好的理解SMRT测序技术是怎样达到准确度>99.999%的,图1我们先来review一下在second-generation sequencing系统中,测序结果是怎样得到的。

在这个例子中,一条120bp的read被mapping到参考基因组上,红色箭头表示与参考基因组不一致的碱基。

但是我们不能单凭这一条read的mapping结果就给出生物学结论,因为我们不知道这种不一致究竟来自于真正的生物学变异还是仅仅是由于测序错误导致的。

PacBio发展历程

PacBio发展历程

PacBio发展历程
PacBio发展历程:
1990年代末,由于高通量测序技术仅限于短序列的测定,对
于复杂基因组的测序和结构分析存在一定的困难。

2000年,PacBio公司成立,致力于开发第三代测序技术,旨
在提供更长、更准确的DNA测序结果。

2005年,PacBio开发出了单分子实时(Single Molecule Real Time,SMRT)测序技术,该技术利用其独特的零模式(Zero Mode Waveguide,ZMW)阵列,实现了长达数万个碱基的DNA分子实时测序。

2010年,PacBio发布了首个商业化的SMRT测序系统,即PacBio RS,该系统具备高通量、长读长和高精度等优势,成
为第三代测序技术的代表。

2016年,PacBio推出了Sequel系统,相比前一代的RS系统,Sequel系统在读长、吞吐量和效率方面都有了显著的提升。

近年来,PacBio公司不断改进其测序技术,并推出了Sequel II 和Sequel IIe系统,大幅提高了测序效率和精度。

目前,PacBio的SMRT测序技术已经广泛应用于基因组学研究、转录组学分析、人类遗传变异等领域,并为科学家提供了
更全面、准确的基因信息。

未来,PacBio将继续改进其测序技术,推动基因组学和生物学研究的发展。

picbio三代测序原理

picbio三代测序原理

p i c b i o三代测序原理集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#三代测序之PacBio SMRT技术全解析2017-05-11 11:29 来源:气温回升,天气渐暖,花儿开了一簇又一簇~在这美好的季节里,我们准备聊点新话题。

今天小编要来和你分享:PacBio SMRT测序那些事儿~测序技术在近几年中又有里程碑的发展,Pacific Biosciences公司成功推出商业化的第三代测序仪平台,让三代测序正式走入我们的视线。

与前两代相比,第三代测序有什么不同呢今天小编带大家详细了解测序界新宠-PacBio SMRT 测序平台。

PacBio SMRT测序原理Pacific Biosciences公司研发的单分子实时测序系统(Single Molecule Real Time,SMRT)应用了边合成边测序的原理,并以SMRT芯片为测序载体。

基本原理如下:聚合酶捕获文库DNA序列,锚定在零模波导孔底部4种不同荧光标记的dNTP随机进入零模波导孔底部荧光dNTP被激光照射,发出荧光,检测荧光荧光dNTP与DNA模板的碱基匹配,在酶的作用下合成一个碱基统计荧光信号存在时间长短,区分匹配碱基与游离碱基,获得DNA序列酶反应过程中,一方面使链延伸,另一方面使dNTP上的荧光基团脱落聚合反应持续进行,测序同时持续进行PacBio SMRT测序原理PacBio SMRT的单分子测序和超长读长是如何实现的我们重点看一下该技术的两点关键创新:分别是零模波导孔(zero-mode waveguides, ZMWs)和荧光标记在核苷酸焦磷酸链上(Phospholinked nucleotides)。

SMRT Cell含有纳米级的零模波导孔,每个ZMW都能够包含一个DNA聚合酶及一条DNA样品链进行单分子测序,并实时检测插入碱基的荧光信号。

ZMW是一个直径只有10~50 nm的孔,当激光打在ZMW底部时,只能照亮很小的区域,DNA聚合酶就被固定在这个区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档