四点共圆(习题)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆内接四边形与四点共圆

思路一:用圆的定义:到某定点的距离相等的所有点共圆。→若连在四边形的三边的中垂线相交于一点,那么这个四边形的四个顶点共圆。(这三边的中垂线的交点就是圆心)。

产生原因:圆的定义:圆可以看作是到定点的距离等于定长的点的集合。

基本模型:

AO=BO=CO=DO ⇔A、B、C、D四点共圆(O为圆心)

思路二:从被证共圆的四点中选出三点作一个圆,然后证另一个点也在这个圆上,即可证明这四点共圆。→要证多点共圆,一般也可以根据题目条件先证四点共圆,再证其他点也在这个圆上。

思路三:运用有关性质和定理:

①对角互补,四点共圆:对角互补的四边形的四个顶点共圆。

产生原因:圆内接四边形的对角互补。

基本模型:

=

∠D

180

+

B)⇔A、B、C、D四点共圆A(或0

180

=

∠D

+

②张角相等,四点共圆:线段同侧两点与这条线段两个端点连线的夹角相等,则这两个点和线段的两个端点共四个点共圆。

产生原因:在同圆或等圆中,同弧所对的圆周角相等。

方法指导:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角(即:张角)相等(同弧所对的圆周角相等),从而即可肯定这四点共圆。

=

∠⇔A、B、C、D四点共圆

CAB∠

CDB

③同斜边的两个直角三角形的四个顶点共圆,其斜边为圆的直径。

产生原因:直径所对的圆周角是直角。

∠D

=

C⇔A、B、C、D四点共圆

90

=

④外角等于内对角,四点共圆:有一个外角等于其内对角的四边形的四个顶点共圆。产生原因:圆内接四边形的外角等于内对角。

基本模型:

∠⇔A、B、C、D四点共圆

=

ECD∠

B

1.如图,已知ABC ∆的两条角平分线AD 和CE 相交于H ,0

60B ∠=,F 在AC 上,且AE AF =。

证明:B,D,H,E 四点共圆:

证明:CE 平分DEF ∠。

2.如图,AC ⊥BC ,CE ⊥AB ,CF ⊥AD.求证:∠AFE=∠B.

3.已知在凸五边形ABCDE 中,3BAE BC CD DE α∠===,,且1802BCD CDE α∠=∠=︒-,求证:BAC CAD DAE ∠=∠=∠. E D C B A E

D C B A

4、如图,点C 为线段AB 上任意一点(不与点A 、B 重合),分别以AC 、BC 为一腰在AB 的同侧作等腰△ACD 和△BCE ,CA =CD ,CB =CE ,∠ACD 与∠BCE 都是锐角,且∠ACD =∠BCE ,连接AE 交CD 于点M ,连接BD 交CE 于点N ,AE 与BD 交于点P ,连接CP 。

(1)求证:△ACE ≌△DCB ;

(2)请你判断△ACM 与△DPM 的形状有何关系并说明理由;

(3)求证:∠APC =∠BPC 。

相关文档
最新文档