复变函数第三章答案
复变函数 高等教育出版社 课后习题详解 第三章
G
0
’ ( ## #C A ( ) -"
& $ ,
$ 1
& $ ,
& $ ,
&
& $ ,
& $ ,
$ 1
0
& $ ,
& $ ,
&
小结 ! 找出实部虚部分别计算 % 8.%利用在单位圆周上#C ! 的性质 ! 及柯西积分公式说明 # A #C # 0
G
其中 0 为正向单位圆周 F ! $ #FC !% & $ 解 ! 注意到复积分 -" 在 ## # 中积分变量# 始终限制在; 上变化 ! A
.
5 6 ! C4 1 " , 7 8 1 " C6
$ 1 $ )A 1 5 6 ?4 " # 1 1B$ 1 6 6 7 8 2 1 4 5 6 C$ 4 ?5 1 A 1D 4 1 1 A 1C $ $" , 6 6 6 7 8 C$ 4 ?5 ?5 ( $ * +’ ## #C 6 8 1 $ )A 1 A -" G ?7 8 4 5 6 81 1 1 A 1D 6 A 1 CD$ $" , C$ 6 ?7 ?7
复变函数 西安交通大学 第四版 高等教育出版社 课后答案
-$ 7 & 沿下列路线计算积分? #% 8!% , #A # 自原点至 -$ $ 的直线段 & !
课后习题全解 !!!
& # 自原点沿实轴至 -! 再由 - 沿直向上至 -$ $ & 自原点沿虚轴至$ 再由$ 沿水平方向向右至 -$ # ! $ % 解 !! 所给路线的参数方程为 % 起点参数1 # # ! -$ ## " $ 1 1 # ,( (!! 由复积分计算公式 % 终点参数1 #!% ,!
复变函数第三章习题答案
第三章柯西定理柯西积分掌握内容:1.柯西积分定理:若函数()f z 在围线C 之内是处处解析的,则()Cf z dz =⎰0 。
2.柯西积分定理的推广:若函数()f z 在围线C 之内的,,...n z z z 12点不解析,则()()()...()nCC C C f z dz f z dz f z dz f z dz =+++⎰⎰⎰⎰12,其中,,...nC C C 12是分别以,,...n z z z 12为圆点,以充分小的ε为半径的圆。
3.若在围线C 之内存在不解析点,复变函数沿围线积分怎么求呢?——运用柯西积分公式。
柯西积分公式:若函数z 0在围线C 之内,函数()f z 在围线C 之内是处处解析的,则()()Cf z dz if z z z π=-⎰002 4.柯西积分公式的高阶求导公式:若函数z 0在围线C 之内,函数()f z 在围线C 之内是处处解析的,则()()()()!n n Cf z i dz f z z z n π+=-⎰0102习题:1.计算积分⎰++-idz ix y x 102)(积分路径是直线段。
解:令iy x z +=,则idy dx dz += 积分路径如图所示:在积分路径上:x y =,所以313121212131211032223211211211210102102102i x ix y i x ix x dxix x i iydy xdx dx ix x dy ix x i iydy ydx dx ix x idy dx ix y x dz ix y x ii+-=-+--+=++--+=++--+=++-=+-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰++)()()()()())(()(2.计算积分⎰-iidz z 。
积分路径分别是:(1)直线段,(2)右半单位圆,(3)左半单位圆。
解:(1)令z x i y =+,则z dz xd idy ==+,在积分路径上,0x =,所以11iiz dz iydy iydy i--=-+=⎰⎰⎰(2)令i z re θ=,在积分路径上:,1i z r dz ie d θθ===//222i i iz dz ie d i πθπθ--==⎰⎰(3)令i z re θ=,在积分路径上:,1i z r dz ie d θθ===//2322ii iz dz ie d i πθπθ-==⎰⎰5.不用计算,证明下列分之值为零,其中为单位圆。
复变函数习题解答(第3章)
[,].
因为f(z)于区域D内是单叶的,即f(z)是区域D到的单射,而z(t)是[,]到D内的单射,故f(z(t))是[,]到内的单射.
因在D内有f’(z)0,故在[,]上,|f’(z(t))z’(t) |= |f’(z(t)) | ·|z’(t) |
x2
=v
y2
,v
x2
=u
y2,故w
xx+w
yy= 2 (u
x2
+v
x2
+u
y2
+v
y2
) = 4 (u
x2
+v
x2
) = 4 |f(z) |2;即(2
/x2
+2
/y2
) |f(z) |2
= 4 |f’(z) |2.
18.设函数f(z)在区域D内解析,且f’(z)
0.试证ln |f’(z) |为区域D内的调和函数.
xx+v
yy)v= 0;
由于u,v满足Cauchy-Riemann方程,故u
x2
=v
y2
,v
x2
=u
y2
,u
xv
x+u
yv
y= 0,因此(u
xu+v
xv)2
+ (u
yu+v
yv)2
=u
x2
u2
+v
x2
v2
+ 2u
xuv
xv+u
y2
u2
+v
y2
v2
+ 2u
yuv
复变函数1到5章测试题及答案
复变函数1到5章测试题及答案(总20页)--本页仅作预览文档封面,使用时请删除本页--- 2 -第一章 复数与复变函数(答案)一、 选择题1.当iiz -+=11时,5075100z z z ++的值等于(B ) (A )i (B )i - (C )1 (D )1-2.设复数z 满足arg(2)3z π+=,5arg(2)6z π-=,那么=z (A )(A )i 31+- (B )i +-3 (C )i 2321+-(D )i 2123+-3.复数)2(tan πθπθ<<-=i z 的三角表示式是(D )(A ))]2sin()2[cos(sec θπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i(C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i4.若z 为非零复数,则22z z -与z z 2的关系是(C ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是(B )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线- 3 -6.一个向量顺时针旋转3π,对应的复数为i 31-,则原向量对应的复数是(A )(A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得22z z =成立的复数z 是(D )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数8.设z 为复数,则方程i z z +=+2的解是(B ) (A )i +-43 (B )i +43 (C )i -43 (D )i --439.满足不等式2≤+-iz iz 的所有点z 构成的集合是(D ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域10.方程232=-+i z 所代表的曲线是(C )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周(C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为(B ) (A )221=+-z z (B )433=--+z z- 4 -(C ))1(11<=--a azaz (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则12()f z z -=(C ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.000Im()Im()limz z z z z z →--(D )(A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是(C ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续15.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为(A )(A )3- (B )2- (C )1- (D )1二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg 8arctan -π 3.设43)arg(,5π=-=i z z ,则=z i 21+- 4.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为 ie θ16- 5 -5.以方程i z 1576-=的根的对应点为顶点的多边形的面积为6.不等式522<++-z z522=++-z (或1)23()25(2222=+y x ) 的内部 7.方程1)1(212=----zi iz 所表示曲线的直角坐标方程为 122=+y x8.方程i z i z +-=-+221所表示的曲线是连接点 12i -+ 和 2i - 的线段的垂直平分线9.对于映射zi =ω,圆周1)1(22=-+y x 的像曲线为()2211u v -+= 10.=+++→)21(lim 421z z iz 12i -+三、若复数z 满足03)21()21(=+++-+z i z i z z ,试求2+z 的取值范围. (]25,25[+-(或25225+≤+≤-z )) 四、设0≥a ,在复数集C 中解方程a z z =+22. (当10≤≤a 时解为i a )11(-±±或)11(-+±a 当+∞≤≤a 1时解为)11(-+±a ) 五、设复数i z ±≠,试证21zz+是实数的充要条件为1=z 或Im()0z =. 六、对于映射)1(21zz +=ω,求出圆周4=z 的像.- 6 -(像的参数方程为π≤θ≤⎪⎩⎪⎨⎧θ=θ=20sin 215cos 217v u .表示w 平面上的椭圆1)215()217(2222=+v u ) 七、设iy x z +=,试讨论下列函数的连续性:1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f2.⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f .(1.)(z f 在复平面除去原点外连续,在原点处不连续; 2.)(z f 在复平面处处连续)第二章 解析函数(答案)一、选择题:1.函数23)(z z f =在点0=z 处是( B )(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导 2.函数)(z f 在点z 可导是)(z f 在点z 解析的( B )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件 3.下列命题中,正确的是( D )(A )设y x ,为实数,则1)cos(≤+iy x- 7 -(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析 (D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析 4.下列函数中,为解析函数的是( C )(A )xyi y x 222-- (B )xyi x +2 (C ))2()1(222x x y i y x +-+- (D )33iy x + 5.函数)Im()(2z z z f =在0z =处的导数( A )(A )等于0 (B )等于1 (C )等于1- (D )不存在 6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常 数=a ( C )(A )0 (B )1 (C )2 (D )2- 7.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( C )(A )0 (B )1 (C )1- (D )任意常数8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是( C )(A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数 (B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数 (C )若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数- 8 -(D )若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数 9.设22)(iy x z f +=,则=+')1(i f ( A )(A )2 (B )i 2 (C )i +1 (D )i 22+ 10.i i 的主值为( D )(A )0 (B )1 (C )2πe (D )2e π-11.z e 在复平面上( A )(A )无可导点 (B )有可导点,但不解析 (C )有可导点,且在可导点集上解析 (D )处处解析 12.设z z f sin )(=,则下列命题中,不正确的是( C )(A ))(z f 在复平面上处处解析 (B ))(z f 以π2为周期(C )2)(iziz e e z f --= (D ))(z f 是无界的13.设α为任意实数,则α1( D )(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于114.下列数中,为实数的是( B )(A )3)1(i - (B )i cos (C )i ln (D )i e 23π-15.设α是复数,则( C )(A )αz 在复平面上处处解析 (B )αz 的模为αz- 9 -(C )αz 一般是多值函数 (D )αz 的辐角为z 的辐角的α倍 二、填空题1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(limi +1 2.设iv u z f +=)(在区域D 内是解析的,如果v u +是实常数,那么)(z f 在D 内是 常数 3.导函数x v i x u z f ∂∂+∂∂=')(在区域D 内解析的充要条件为 xv x u ∂∂∂∂,可微且满足222222,xvy x u y x v x u ∂∂-=∂∂∂∂∂∂=∂∂ 4.设2233)(y ix y x z f ++=,则=+-')2323(i f i 827427- 5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f ic xyi y x ++-222或ic z +2c 为实常数6.函数)Re()Im()(z z z z f -=仅在点=z i 处可导 7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 3,2,1,0),424sin 424(cos 28=π+π+π+πk k i k8.复数i i 的模为),2,1,0(2 ±±=π-k e k9.=-)}43Im{ln(i 34arctan -- 10 -10.方程01=--z e 的全部解为),2,1,0(2 ±±=πk i k三、试证下列函数在z 平面上解析,并分别求出其导数 1.;sinh sin cosh cos )(y x i y x z f -= (;sin )(z z f -=')2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f x x ++-=(.)1()(z e z z f +=') 四、已知22y x v u -=-,试确定解析函数iv u z f +=)(. (c i z i z f )1(21)(2++-=.c 为任意实常数)第三章 复变函数的积分(答案)一、选择题:1.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2( D )(A )i 6561- (B )i 6561+- (C )i 6561-- (D )i 6561+2.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc⎰+-2)1)(1(为( D)(A )2i π (B )2iπ- (C )0 (D )(A)(B)(C)都有可能 3.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz z zc c c 212sin ( B ) (A ) i π2- (B )0 (C )i π2 (D )i π44.设c 为正向圆周2=z ,则=-⎰dz z zc2)1(cos ( C)(A )1sin - (B )1sin (C )1sin 2i π- (D )1sin 2i π5.设c 为正向圆周21=z ,则=--⎰dz z z z c23)1(21cos( B) (A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-6.设ξξξξd ze zf ⎰=-=4)(,其中4≠z ,则=')i f π(( A ) (A )i π2- (B )1- (C )i π2 (D )1 7.设)(z f 在单连通域B 内处处解析且不为零,c 为B 内任何一条简单闭曲线,则积分dz z f z f z f z f c ⎰+'+'')()()(2)( ( C )(A )于i π2 (B )等于i π2- (C )等于0 (D )不能确定 8.设c 是从0到i 21π+的直线段,则积分=⎰cz dz ze ( A )(A )21eπ-(B) 21eπ-- (C)i e21π+(D) i e21π-9.设c 为正向圆周0222=-+x y x ,则=-⎰dz z z c1)4sin(2π( A )(A )i π22(B )i π2 (C )0 (D )i π22-10.设c 为正向圆周i a i z ≠=-,1,则=-⎰cdz i a zz 2)(cos ( C) (A )ie π2 (B )eiπ2 (C )0 (D )i i cos 11.设)(z f 在区域D 内解析,c 为D 内任一条正向简单闭曲线,它的内部全属于D .如果)(z f 在c 上的值为2,那么对c 内任一点0z ,)(0z f ( C )(A )等于0 (B )等于1 (C )等于2 (D )不能确定12.下列命题中,不正确的是( D ) (A )积分⎰=--ra z dz a z 1的值与半径)0(>r r 的大小无关 (B )2)(22≤+⎰cdz iy x ,其中c 为连接i -到i 的线段(C )若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析 (D )若)(z f 在10<<z 内解析,且沿任何圆周)10(:<<=r r z c 的积分等于零,则)(z f 在0=z 处解析13.设c 为任意实常数,那么由调和函数22y x u -=确定的解析函数iv u z f +=)(是 ( D)(A)c iz +2 (B ) ic iz +2 (C )c z +2 (D )ic z +2 14.下列命题中,正确的是(C)(A )设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v =(B )解析函数的实部是虚部的共轭调和函数 (C )若iv u z f +=)(在区域D 内解析,则xu∂∂为D 内的调和函数 (D )以调和函数为实部与虚部的函数是解析函数15.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( B )(A )),(),(y x iu y x v + (B )),(),(y x iu y x v - (C )),(),(y x iv y x u - (D )xv i x u ∂∂-∂∂二、填空题1.设c 为沿原点0=z 到点i z +=1的直线段,则=⎰cdz z 2 22.设c 为正向圆周14=-z ,则=-+-⎰c dz z z z 22)4(23 i π103.设⎰=-=2)2sin()(ξξξξπd z z f ,其中2≠z ,则=')3(f 0 4.设c 为正向圆周3=z ,则=+⎰cdz zzz i π6 5.设c 为负向圆周4=z ,则=-⎰c z dz i z e 5)(π 12iπ 6.解析函数在圆心处的值等于它在圆周上的 平均值7.设)(z f 在单连通域B 内连续,且对于B 内任何一条简单闭曲线c 都有0)(=⎰cdz z f ,那么)(z f 在B 内 解析8.调和函数xy y x =),(ϕ的共轭调和函数为 C x y +-)(21229.若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a -3 10.设),(y x u 的共轭调和函数为),(y x v ,那么),(y x v 的共轭调和函数为),(y x u -三、计算积分 1.⎰=+-R z dz z z z)2)(1(62,其中1,0≠>R R 且2≠R ; (当10<<R 时,0; 当21<<R 时,i π8; 当+∞<<R 2时,0) 2.⎰=++22422z z z dz.(0) 四、求积分⎰=1z zdz z e ,从而证明πθθπθ=⎰0cos )cos(sin d e .(i π2)五、若)(22y x u u +=,试求解析函数iv u z f +=)(. (321ln 2)(ic c z c z f ++=(321,,c c c 为任意实常数))第四章 级 数(答案)一、选择题:1.设),2,1(4)1( =++-=n n nia n n ,则n n a ∞→lim ( C )(A )等于0 (B )等于1 (C )等于i (D )不存在 2.下列级数中,条件收敛的级数为( C )(A )∑∞=+1)231(n n i (B )∑∞=+1!)43(n nn i (C ) ∑∞=1n n n i (D )∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为(D )(B ) ∑∞=+1)1(1n n i n (B )∑∞=+-1]2)1([n n n in(C)∑∞=2ln n n n i (D )∑∞=-12)1(n nnn i 4.若幂级数∑∞=0n n n z c 在i z 21+=处收敛,那么该级数在2=z 处的敛散性为( A )(A )绝对收敛 (B )条件收敛 (C )发散 (D )不能确定 5.设幂级数∑∑∞=-∞=01,n n n n nn znc z c 和∑∞=++011n n n z n c 的收敛半径分别为321,,R R R ,则321,,R R R 之间的关系是( D )(A )321R R R << (B )321R R R >> (C )321R R R <= (D )321R R R == 6.设10<<q ,则幂级数∑∞=02n n n z q 的收敛半径=R ( D )(A )q (B )q1(C )0 (D )∞+ 7.幂级数∑∞=1)2(2sinn n z n n π的收敛半径=R ( B ) (A ) 1 (B )2 (C )2 (D )∞+8.幂级数∑∞=++-011)1(n n n z n 在1<z 内的和函数为( A )(A ))1ln(z + (B ))1ln(z - (D )z +11ln(D) z-11ln 9.设函数z e z cos 的泰勒展开式为∑∞=0n nn z c ,那么幂级数∑∞=0n n n z c 的收敛半径=R ( C )(A )∞+ (B )1 (C )2π(D )π 10.级数+++++22111z z z z的收敛域是( B ) (A )1<z (B )10<<z (C )+∞<<z 1 (D )不存在的 11.函数21z在1-=z 处的泰勒展开式为( D)(A ))11()1()1(11<++-∑∞=-z z n n n n (B ))11()1()1(111<++-∑∞=--z z n n n n(C ))11()1(11<++-∑∞=-z z n n n (D ))11()1(11<++∑∞=-z z n n n12.函数z sin ,在2π=z 处的泰勒展开式为( B )(A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n nn(C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n(D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n nn13.设)(z f 在圆环域201:R z z R H <-<内的洛朗展开式为∑∞-∞=-n n nz z c)(0,c 为H 内绕0z 的任一条正向简单闭曲线,那么=-⎰c dz z z z f 2)()(( B )(A)12-ic π (B )12ic π (C )22ic π (D ))(20z f i 'π14.若⎩⎨⎧--==-+=,2,1,4,2,1,0,)1(3n n c nn n n ,则双边幂级数∑∞-∞=n n n z c 的收敛域为( A ) (A )3141<<z (B )43<<z(C )+∞<<z 41 (D )+∞<<z 3115.设函数)4)(1(1)(++=z z z z f 在以原点为中心的圆环内的洛朗展开式有m 个,那么=m ( C )(A )1 (B )2 (C )3 (D )4 二、填空题1.若幂级数∑∞=+0)(n n n i z c 在i z =处发散,那么该级数在2=z 处的收敛性为 发散2.设幂级数∑∞=0n nn z c 与∑∞=0)][Re(n n n z c 的收敛半径分别为1R 和2R ,那么1R 与2R 之间的关系是 12R R ≥ .3.幂级数∑∞=+012)2(n n n z i 的收敛半径=R22 4.设)(z f 在区域D 内解析,0z 为内的一点,d 为0z 到D 的边界上各点的最短距离,那么当d z z <-0时,∑∞=-=00)()(n n n z z c z f 成立,其中=n c ),2,1,0()(!10)( =n z f n n 或()0,2,1,0()()(21010d r n dz z z z f ir z z n <<=-π⎰=-+ ). 5.函数z arctan 在0=z 处的泰勒展开式为 )1(12)1(012<+-∑∞=+z z n n n n .6.设幂级数∑∞=0n nn z c 的收敛半径为R ,那么幂级数∑∞=-0)12(n n n n z c 的收敛半径为2R. 7.双边幂级数∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 的收敛域为 211<-<z . 8.函数zze e 1+在+∞<<z 0内洛朗展开式为 nn nn z n z n ∑∑∞=∞=+00!11!1 . 9.设函数z cot 在原点的去心邻域R z <<0内的洛朗展开式为∑∞-∞=n n nz c,那么该洛朗级数收敛域的外半径=R π .10.函数)(1i z z -在+∞<-<i z 1内的洛朗展开式为 ∑∞=+--02)()1(n n nn i z i 三、若函数211z z --在0=z 处的泰勒展开式为∑∞=0n nn z a ,则称{}n a 为菲波那契(Fibonacci)数列,试确定n a 满足的递推关系式,并明确给出n a 的表达式. ()2(,12110≥+===--n a a a a a n n n ,),2,1,0(})251()251{(5111 =--+=++n a n n n ) 四、求幂级数∑∞=12n nz n 的和函数,并计算∑∞=122n n n 之值.(3)1()1()(z z z z f -+=,6)五、将函数)1()2ln(--z z z 在110<-<z 内展开成洛朗级数.(n n nk k z k n z z z z z z )1()1)1(()2ln(111)1()2ln(001-+--=-⋅⋅-=--∑∑∞==+)第五章 留 数(答案)一、选择题: 1.函数32cot -πz z在2=-i z 内的奇点个数为 ( D ) (A )1 (B )2 (C )3 (D )4 2.设函数)(z f 与)(z g 分别以a z =为本性奇点与m 级极点,则a z =为函数)()(z g z f的( B )(A )可去奇点 (B )本性奇点 (C )m 级极点 (D )小于m 级的极点 3.设0=z 为函数zz ex sin 142-的m 级极点,那么=m ( C ) (A )5 (B )4 (C)3 (D )2 4.1=z 是函数11sin)1(--z z 的( D ) (A)可去奇点 (B )一级极点 (C ) 一级零点 (D )本性奇点5.∞=z 是函数2323z z z ++的( B ) (A)可去奇点 (B )一级极点(C ) 二级极点 (D )本性奇点6.设∑∞==0)(n n n z a z f 在R z <内解析,k 为正整数,那么=]0,)([Re k zz f s ( C ) (A )k a (B )k a k ! (C )1-k a (D )1)!1(--k a k7.设a z =为解析函数)(z f 的m 级零点,那么='],)()([Re a z f z f s ( A ) (A)m (B )m - (C ) 1-m (D ))1(--m8.在下列函数中,0]0),([Re =z f s 的是( D )(A ) 21)(ze zf z -= (B )z z z z f 1sin )(-= (C )z z z z f cos sin )(+= (D) ze zf z 111)(--= 9.下列命题中,正确的是( C )(A ) 设)()()(0z z z z f m ϕ--=,)(z ϕ在0z 点解析,m 为自然数,则0z 为)(z f 的m 级极点.(B ) 如果无穷远点∞是函数)(z f 的可去奇点,那么0]),([Re =∞z f s(C ) 若0=z 为偶函数)(z f 的一个孤立奇点,则0]0),([Re =z f s(D ) 若0)(=⎰cdz z f ,则)(z f 在c 内无奇点10. =∞],2cos [Re 3zi z s ( A ) (A )32- (B )32 (C )i 32 (D )i 32- 11.=-],[Re 12i ez s i z ( B) (A )i +-61 (B )i +-65 (C )i +61 (D )i +65 12.下列命题中,不正确的是( D)(A )若)(0∞≠z 是)(z f 的可去奇点或解析点,则0]),([Re 0=z z f s(B )若)(z P 与)(z Q 在0z 解析,0z 为)(z Q 的一级零点,则)()(],)()([Re 000z Q z P z z Q z P s '= (C )若0z 为)(z f 的m 级极点,m n ≥为自然数,则)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-= (D )如果无穷远点∞为)(z f 的一级极点,则0=z 为)1(zf 的一级极点,并且)1(lim ]),([Re 0zzf z f s z →=∞ 13.设1>n 为正整数,则=-⎰=211z ndz z ( A ) (A)0 (B )i π2 (C )n i π2 (D )i n π214.积分=-⎰=231091z dz z z ( B ) (A )0 (B )i π2 (C )10 (D )5i π 15.积分=⎰=121sin z dz z z ( C ) (A )0 (B )61-(C )3i π- (D )i π- 二、填空题 1.设0=z 为函数33sin z z -的m 级零点,那么=m 9 .2.函数z z f 1cos 1)(=在其孤立奇点),2,1,0(21 ±±=+=k k z k ππ处的留数=]),([Re k z z f s 2)2()1(π+π-k k. 3.设函数}1exp{)(22zz z f +=,则=]0),([Re z f s 0 4.设a z =为函数)(z f 的m 级极点,那么='],)()([Re a z f z f s m - . 5.设212)(zz z f +=,则=∞]),([Re z f s -2 . 6.设5cos 1)(z z z f -=,则=]0),([Re z f s 241- . 7.积分=⎰=113z z dz e z 12i π .8.积分=⎰=1sin 1z dz z i π2 . 三、计算积分⎰=--412)1(sin z z dz z e z z .(i π-316) 四、设a 为)(z f 的孤立奇点,m 为正整数,试证a 为)(z f 的m 级极点的充要条件是b z f a z m az =-→)()(lim ,其中0≠b 为有限数. 五、设a 为)(z f 的孤立奇点,试证:若)(z f 是奇函数,则]),([Re ]),([Re a z f s a z f s -=;若)(z f 是偶函数,则]),([Re ]),([Re a z f s a z f s --=.。
复变函数习题答案第3章习题详解
解:分四种情形讨论:
1)若是 与 都在 的外部,那么 在 内解析,柯西—古萨大体定理有
2)若是 与 都在 的内部,由柯西积分公式有
3)若是 在 的内部, 都在 的外部,那么 在 内解析,由柯西积分公式有
和 知足拉普拉斯方程: ,
,
故 是 的解析函数。
23.设 为区域 内的调和函数及 ,问 是不是 内的解析函数?什么缘故?
解:设 ,那么 ,
,
,
因为 为区域 内的调和函数,具有二阶持续偏导且知足拉普拉斯方程
, 是 内的解析函数。
24.函数 是 的共轭调和函数吗?什么缘故?
解: , , , ,
故函数 不是 的共轭调和函数。
证明:因为 在 内解析,故积分 与途径无关,取从原点沿实轴到 ,再从 沿圆周 到 的曲线作为 ,那么:
13.设 和 为相交于 、 两点的简单闭曲线,它们所围的区域别离为 与 。 与 的公共部份为 。若是 在 与 内解析,在 、 上也解析,证明: 。
证明:如下图, 在 与 内解析,在 、 上也解析,由柯西—古萨大体定理有:
第三章习题详解
1.沿以下线路计算积分 。
1)自原点至 的直线段;
解:连接自原点至 的直线段的参数方程为:
2)自原点沿实轴至 ,再由 铅直向上至 ;
解:连接自原点沿实轴至 的参数方程为:
连接自 铅直向上至 的参数方程为:
3)自原点沿虚轴至 ,再由 沿水平方向向右至 。
解:连接自原点沿虚轴至 的参数方程为:
25.设 和 都是调和函数,若是 是 的共轭调和函数,那末 也是 的共轭调和函数。这句话对吗?什么缘故?
复变函数习题答案第3章习题详解.docx
第三章习题详解1・沿下列路线计算积分J;' z2dz o1)自原点至3 + i的直线段;解:连接自原点至34-1的直线段的参数方程为:z =(3+》0<r<l dz =(3 + i)dt2)自原点沿实轴至3,再由3铅直向上至3 +八解:连接自原点沿实轴至3的参数方程为:z = t 0</<1 dz = dt3 1=-33 «3连接自3铅直向上至3 +,的参数方程为:z = 3 + ir O<Z<1 dz = idt J J z2dz = £(3 + it)2 idt = -(34-17)3=-(3 + i)3彳" 3 n 3・・・ f z2dz = £t2dt 4- £(3 + it)2id/ = 133 4-1(3 4-1)3 - i33 = |(3 + i)33)自原点沿虚轴至i,再由i沿水平方向向右至3+i。
解:连接自原点沿虚轴至i的参数方程为:z = it 0</<1 dz = idtJ:Z2dz = J;(it)2 idt = | (i/)3= * 尸连接自i沿水平方向向右至3 + i的参数方程为:z = t^i 0<^<1 dz = dtr*edz=jo edz+广eaz=y+敦+厅-|/3=|(1+厅2.分别沿y =兀与y =兀2算出积分J;'(兀2 + iy^dz的值。
解:•/ j = x x2 + iy = x2 + ix ••• dz = (1 + i)dx・・・『(x2 + iy)dz = (1+ (x2 + ix)dx = (1 +•/ y = x2A x2 + iy = x2 4- ix2 = (1 + i)x2:. rfz = (1 + ilx)dxf 衣=[(3+03&二(3+讥♦3+i0=(3 + 厅0 d^ed Z=[\2dt=护而(W 宙討…T + 一 11.1.11 5. i = 1—i3 3 2 26 6/(z) =1 _ 1 z 2+2z + 4~ (z + 2)2在c 内解析,根据柯西一古萨定理,$匹J z 2 + 2z + 4/. £1+,(x 2+ iy)dz = (1 + /)£ * (1 + ilx)dx = (14-彳+ 设/(z)在单连通域〃内处处解析,C 为B 内任何一条正向简单闭曲线。
《复变函数》第四版习题解答第3章
-1-
∫ ∫
C
Re[ f (z )]dz = Im[ f (z )]dz =
∫ ∫
2π
0 2π
Re e iθ de iθ = cos θ (− sin θ + i cos θ )dθ = π i ≠ 0
[ ]
∫
2π
0
C
0
Im e iθ deiθ = sin θ (− sin θ + i cos θ )dθ = −π ≠ 0
3.设 f ( z ) 在单连域 D 内解析,C 为 D 内任何一条正向简单闭曲线,问
∫
解
C
Re[ f (z )]dz =
∫
C
Im[ f (z )]dz = 0
是否成立,如果成立,给出证明;如果不成立,举例说明。 未必成立。令 f ( z ) = z , C : z = 1 ,则 f ( z ) 在全平面上解析,但是
e z dz v ∫C z 5 , C :| z |= 1
= 2πe 2 i
解
(1)由 Cauchy 积分公式, ∫ 解 1: ∫ 解 2: ∫
C
ez dz = 2π i e z z−2
z =2
(2)
C
1 dz 1 = ∫ z + a dz = 2π i 2 2 C z−a z+a z −a
2
=
z =a
=0
(8)由 Cauchy 积分公式, (9)由高阶求导公式, ∫
v ∫
C
sin zdz = 2π i sin z |z =0 = 0 z
2
sin z
C
π⎞ ⎛ ⎜z − ⎟ 2⎠ ⎝
dz = 2π i(sin z )'
复变函数习题及答案解析(东南大学版)
第1章 复数与复变函数1.1 复数及复平面1-1若1||1,n nz z z ω==+(n 是正整数),则(). (A )Re()0ω=(B )Im()0ω=(C )arg()0ω=(D )arg()πω=解由||1z =知1z z=,因此1n n n n z z z z+=+为实数,故Im()0ω=. 选(B )||1z =时n z =1/.n n z z =1-23311()()22n n--+=(). (A )(1)2n -(B )1(1)2n --(C )2 (D )2-解2i π3e =2i π3e =知,等式中两项皆为1. 选(C )1-3i |(1e )|n θ+=().(A )2cos2n nθ(B )2sin2n nθ(C )/222(1cos )n n θ+(D )/222(1sin )n n θ+解i 222|1e |(1cos )sin 2(1cos )θθθθ+=++=+故i /22|(1e )|2(1cos ).n nn θθ+=+选(C )本题容易错选(A)项,因为2(1+2cos )4cos 2θθ=得i |1e |θ+=2cos .2θ错在cos 2θ应加上绝对值.1-442max{|i |||1}z z z +≤=(). (A(BC(D )2 解由4242|i |||||2,z z z z +≤+≤而当i4e z π=时,πi4i π2422e 1,i ie 1,|i |2z z z z ==-==-+=,故最大值为2.选(D )用不等式确定最大值是常用方法. 1-5对任意复数12,z z ,证明不等式121212||||||||||||.z z z z z z -≤±≤+证1121212*********|||()|||||||||||||||||z z z z z z z z z z z z z z z -=+-≤+-=+=+-≤++故1212||||||z z z z -≤+,同理2112||||||z z z z -≤+ 即121212||||||||z z z z z z -+≤-≤+ 也就是1212||||||||.z z z z -≤+证2(代数法)设i (1,2)k k k z x y k =+= 则只要证222121122||||2||||||z z z z z z +≤++即只要证1212x x y y +≤1) 只要证2222212121122()()()x x y y x y x y +≤++ 此不等式等价于22221221112220x y x y x y x y +-≥由于,k k x y 皆是实数,上式左边是完全平方式,故此不等式成立,也就是1212||||||z z z z +≤+成立,以下同证1.证3(三角法).设12i i 1122e ,e ,z r z r θθ==则2221211221122||(cos cos )(sin sin )z z r r r r θθθθ+=+++222212*********cos()2r r r r r r r r θθ=+-≤+ 21212()(||||)r r z z =+=+即1212||||||z z z z +≤+成立,以下同证1.1-6 当1||≤z 时,求||α+nz 的最大与最小值,n 是正整数,a 是复常数. 解1(代数法).由1-5题知.||1||||||||||||αα+≤+≤+≤-a z z z z n n n我们知道,当1||=nz ,且向量n z 与α夹角为0°时右边不等式等号成立.故||α+nz 的最大值是.||1α+对左边不等式,要分情况讨论.(1)若1||>α,则.1||||||||-≥-≥+αααnnz z 等号当,1||=z 且nz 与α方向相反时成立.这时最小值是.1||-α(2)若1||≤α,则由0||≥+αn z ,当α-=nz 时等号成立,最小值为0.总之,不论α为何复数,|1|+nz 的最大值是||1α+;而当1||>α时,最小值为1||-α.当1||≤α时,最小值为0.解2 (几何法).我们仅就1||>α加以证明.由1||≤z 知1||≤nz 。
复变函数答案 钟玉泉 第三章习题全解
即 Φ′(x) = 0, Φ( x) = C ,故
f (z) = e x (x cos y − y sin y) + i( xex sin y + e x y cos y + C)
又因 f (0) = 0, 故 f (0) = iC = 0 ⇒ C = 0 ,所以
f (z) = ex ( x cos y − y sin y) + i(xex sin y + e x y cos y)
′(
x)
= 0.
所以ϕ( x) = C ,故
x
y
f (z) = − x2 + y2 + C + i x2 + y2
又因为 f (2) = 0 ,所以 C = 1 ,故 2
x1
y
f (z) = − x2 + y2 + 2 + i x2 + y2
17.证明:设 f (z ) = u + iv ⇒ 4 f ′( z) 2 = 4(ux2 + vy2 )
∫ 2z 2 − z +1dz = 2πi(2z 2 − z +1) = 4πi
z ≤2 z −1
z =1
(2)可令 f (z) = 2z 2 − z +1,则由导数的积分表达式得
∫ 2z 2 − z +1dz = 2πif ′(z) = 6πi
z =2 (z − 1) 2
z =1
sin π zdz
∫ v = (xex cos y − e x y sin y + e x coy)dy
∫ = xex sin y + e x sin y − e x y sin ydy
复变函数经典习题及答案
于是 z 2i 9i
3
cos
π 2
2kπ
π i sin 2
2kπ
,
2
2
k 0,1
故z132来自223
2
2
i
,
z2
3 2
2 2 3 2 i. 2
3
例5 满足下列条件的点组成何种图形?是不是区 域?若是区域请指出是单连通区域还是多连通区域.
(1) Im (z) 0;
解 Im (z) 0是实数轴,不是区域.
使C1和C2也在C内,且C1与C2互不相交,互不包含,
据复合闭路定理有
y
ez
C z(1 z)3 dz
C1
ez z(1
z)3dz
ez C2 z(1 z)3 dz
C1
C
•
O 1x C2
30
而积分
C1
ez z(1
z)3dz即为2)的结果2i,
而积分
C2
ez z(1
z)3dz
即为3)的结果
x
y
x
y
由于 f (z) 解析,所以 u v , u v x y y x
即 2bxy 2cxy b c,
3ay2 bx2 3x2 cy2 3a c,b 3 故 a 1, b 3, c 3.
11
例5 研究 f (z) z Re z 的可导性.
解 设 z0 x0 iy0 为 z 平面上任意一定点,
1( x iy), 9
于是 w u iv 1 x 1 iy u 1 x, v 1 y
99
9
9
u2 v2 1 ( x2 y2) 1 表示 w 平面上的圆.
81
9
6
复变函数与积分变换第三章习题解答
fc Re[f (z)}Lz= s:·T Re[产�/0 = J�os0(- sin0+icos0}10= 冗 i-:t:O
、
f clm[J(z)}lz=
1 单位圆上 z=- 的性质 , 及柯西积分公式说明 4. 利用
s::r
il) i(J lm[e �e = fo�in0(-sin0+icos0}10 =- -:t:O
宣
(4) (5) ( 6)由柯西基本定理知 : 其结果均为0
1 正气衣 =f 一 (z+iXz +4) 如fz+il: lz 气 z +j z- J 3
2
I
1
=2冗i
(8)由
Cauchy 积分公式,
(9)由 高阶求导公式, (10)由高阶求导公式
fc ,'�"�『心 �2 i(sin,)
兀
f sinzdz =2
I。
: z 由=JJ3r +i t)\3+i肋
+I 2
(2)
I:
打
/dz = �··(. 止+f c, z油+f C2/dz•
2
l。
1 I 26. I =...:.(3+i)3 t3 1 =-(3+i)1=6+—I 3 3 3 0
=(3 + i)3
I
t d,
2
C3
{
x = 3, y =t,
(Ost 釭); c, 之参数方程为{ y = t,
-4 -
故 Re [
共部分为 B 。 如果 f伈)在B1 -B 与B2 -B内解析 , 在 证明
1 3. 设 cl 与 C 2为相交干 M、N两点的简单闭曲线
复变函数第三章习题答案
复变函数第三章习题答案复变函数第三章习题答案第一题:设f(z) = u(x,y) + iv(x,y) 是定义在D上的解析函数,其中D是包含原点的区域。
证明:如果f(z) 在D上为常数,则f(z) 在D上为零函数。
解答:根据题意,我们知道f(z) 是定义在D上的解析函数,并且在D上为常数。
即对于任意的z = x + iy ∈ D,有f(z) = c,其中c为常数。
由于f(z) 是解析函数,根据解析函数的性质,它满足柯西-黎曼方程:∂u/∂x = ∂v/∂y∂u/∂y = -∂v/∂x由于f(z) 在D上为常数,因此u(x,y) 和 v(x,y) 在D上也为常数。
假设u(x,y) = A,v(x,y) = B,则有:∂u/∂x = 0∂u/∂y = 0∂v/∂x = 0∂v/∂y = 0由柯西-黎曼方程可得:∂u/∂x = ∂v/∂y = 0∂u/∂y = -∂v/∂x = 0由此可得,u(x,y) 和 v(x,y) 为常数函数,即在D上为常数A和B。
由于f(z) =u(x,y) + iv(x,y),所以f(z) = A + iB。
因此,如果f(z) 在D上为常数,则f(z) 在D上为零函数。
第二题:设f(z) = u(x,y) + iv(x,y) 是定义在D上的解析函数,其中D是包含原点的区域。
证明:如果f(z) 在D上为纯虚函数,则f(z) 在D上为常数。
解答:根据题意,我们知道f(z) 是定义在D上的解析函数,并且在D上为纯虚函数。
即对于任意的z = x + iy ∈ D,有f(z) = iv(x,y),其中i为虚数单位。
由于f(z) 是解析函数,根据解析函数的性质,它满足柯西-黎曼方程:∂u/∂x = ∂v/∂y∂u/∂y = -∂v/∂x由于f(z) 在D上为纯虚函数,因此u(x,y) = 0,v(x,y) ≠ 0。
假设v(x,y) = B,则有:∂u/∂x = 0∂u/∂y = 0∂v/∂x = 0∂v/∂y = B由柯西-黎曼方程可得:∂u/∂x = ∂v/∂y = 0∂u/∂y = -∂v/∂x = -B由此可得,u(x,y) = 0,v(x,y) = B。
复变函数第三章答案
∫
C
1 dz : ( z − 1) 2
由于
1 1 在 ℂ \{1} 内存在单值的原函数 − , 所以, 由复积分的牛顿—莱布尼茨公式, 2 ( z − 1) z −1
I2 = ∫
再计算 I1 = 由于
C
1 1 3 1 1 1 dz = − = − = 。 2 ( z − 1) z −1 2 1− 3 1 − 2 2
1 1 I = ∫ zdz = ∫ ( −1 + 2t ) 2dt = 2 ( −t + t 2 ) = 0 。 C 0 0
���� �
���� �
( 2) −1 到 1的上半单位圆周 z = 1 的参数方程为: z = e ( 0 ≤ θ ≤ π ) ,所以,
iθ
I = ∫ zdz = ∫ e − iθ ie iθ dθ = ∫ idθ = −π i 。
同情况分四种情形来证明结论: Ⅰ:积分路线 C 如第 6 题图(1) 情形 情形Ⅰ ,
补充有向直线段 1, 0 ,显然 C + 1, 0 构成简单闭曲线,并且 ± i 既不在 C + 1, 0 的内部也不在
���
���
���
��� C + 1, 0 上,所以
理
��� 1 在 C + 1, 0 所围成的单连通闭区域上解析,由单连通区域上的柯西积分定 1+ z2
I1 = ∫
C
� � 构成闭曲线(非简单) ,此时 C + 3, 2 可分解成两个简单闭曲线 2 MA2 和 3 AN 3 ,类似于上面的情
形,有
��� �
∫
∫
于是由复积分的曲线可加性
� 2 MA 2
� 3 AN 3
最新复变函数习题答案第3章习题详解
第三章习题详解1. 沿下列路线计算积分⎰+idz z 302。
1) 自原点至i +3的直线段;解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3()()()⎰⎰+=⎥⎦⎤⎢⎣⎡+=+=+131033233023313313i t i dt t i dz z i2) 自原点沿实轴至3,再由3铅直向上至i +3;解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz =3303323233131=⎥⎦⎤⎢⎣⎡==⎰⎰t dt t dz z连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t idt dz =()()()331031023323313313313-+=⎥⎦⎤⎢⎣⎡+=+=⎰⎰+i it idt it dz z i()()()333310230230233133********i i idt it dt t dz z i+=-++=++=∴⎰⎰⎰+ 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。
解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t idt dz =()()310312023131i it idt it dz z i=⎥⎦⎤⎢⎣⎡==⎰⎰连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz =()()()33103102323113131i i i t dt i t dz z ii-+=⎥⎦⎤⎢⎣⎡+=+=⎰⎰+()()333332023021313113131i i i i dz z dz z dz z iiii+=-++=+=∴⎰⎰⎰++ 2. 分别沿x y =与2x y =算出积分()⎰++idz iy x102的值。
解:x y = ix x iy x +=+∴22()dx i dz +=∴1 ()()()()()⎪⎭⎫⎝⎛++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=++=+∴⎰⎰+i i x i x i dx ix x i dz iy x i213112131111023102102 2x y = ()22221x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴()()()()()⎰⎰⎪⎭⎫⎝⎛++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=++=+∴+1104321022131142311211i i x i x i dx x i x i dz iy xi而()i i i i i 65612121313121311+-=-++=⎪⎭⎫⎝⎛++3. 设()z f 在单连通域B 内处处解析,C 为B 内任何一条正向简单闭曲线。
复变函数习题三
第三章 复变函数的积分一、 判断题(1) 微积分中的求导公式、洛必达法则、中值定理等均可推广到复变函数。
( ) (2) 有界整函数必为常数。
( ) (3) 积分⎰=--ra z dz az 1的值与半径)0(>r r 的大小无关。
( ) (4) 若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析。
( )(5) 若)(z f 在10<<z 内解析,且沿任何圆周)10(:<<=r r z c 的积分等于零,则)(z f 在0=z 处解析。
( )(6) 设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v =。
( ) (7) 解析函数的实部是虚部的共轭调和函数。
( ) (8) 以调和函数为实部与虚部的函数是解析函数。
( ) 二、选择题:1.设C 为从原点沿0至i 21+的有向线段,则=⎰Cz z d Re ( )(A )i -21 (B )i +-21 (C )i +21(D )i --212.设C 为不经过点1,0与i -的正向简单闭曲线,则z i z z z Cd )()1(12⎰+-为( )(A )2i π (B )2i π- (C )0 (D )(A)(B)(C)都有可能 3.设C 为从1沿1=+y x 至i 的直线段,则=-+⎰y xy x y x Cd 2d )(22( )(A )i - (B )i (C )1 (D )1-4.设C 为正向圆周2=z ,则=+⎰-z z e c zd )1(2( ) (A )i π2- (B )i e π2- (C )i e π2 (D )12i π5.设C 为正向圆周21=z ,则=+---⎰z z z z z C d 10621sin)2(23 ( ) (A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-6.设ξξξξd ze zf ⎰=-=43)()(,其中4≠z ,则=')i f π(( ) (A )i π- (B )1- (C )i π (D )17.设C 为正向圆周0222=-+x y x ,则=-⎰z z z C d 1)4sin(2π( ) (A )i π22 (B )i π2 (C )0 (D )i π22- 8.设C 为椭圆1422=+y x ,则积分⎰C z z d 1= ( )(A )i π2 (B )π (C )0 (D )i π2-9.设c 为任意实常数,那么由调和函数22y x u -=确定的解析函数iv u z f +=)(是( )(A)c iz +2(B ) ic iz +2(C )c z +2(D )ic z +210.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( )(A )),(),(y x iu y x v + (B )),(),(y x iu y x v -(C )),(),(y x iv y x u - (D )xv i x u ∂∂-∂∂三、填空题1.设C 为负向圆周2||=z ,则=⎰C z z d2.设C 为正向圆周2=-i z ,则=-++⎰C z i z z z d )(12532 3.设,2)(2⎰-+-=Cd z z f ξξξξ其中曲线C 为椭圆19422=+y x 正向,则=)1(f =+')2(i f =-'')(i f4.设C 为正向圆周1=z ,则⎰Czzd 5.解析函数在圆心处的值等于它在圆周上的6.设C 是从π到i 的直线段,则积分=⎰Czz z e d cos7.设C 为过点i 32+的正向简单闭曲线,则当z 从曲线C 内部趋向i 32+时,=-⎰+→ξξξd ze c i z 32lim ,当z 从曲线C 外部趋向i 32+时,=-⎰+→ξξξd z c i z cos lim32 。
复变函数习题总汇与参考答案
复变函数习题总汇与参考答案(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--复变函数习题总汇与参考答案第1章 复数与复变函数一、单项选择题1、若Z 1=(a, b ),Z 2=(c, d),则Z 1·Z 2=(C )A (ac+bd, a )B (ac-bd, b)C (ac-bd, ac+bd )D (ac+bd, bc-ad)2、若R>0,则N (∞,R )={ z :(D )}A |z|<RB 0<|z|<RC R<|z|<+∞D |z|>R3、若z=x+iy, 则y=(D) A B C D4、若A= ,则 |A|=(C ) A 3 B 0 C 1 D 2二、填空题1、若z=x+iy, w=z 2=u+iv, 则v=( 2xy )2、复平面上满足Rez=4的点集为( {z=x+iy|x=4} )3、( 设E 为点集,若它是开集,且是连通的,则E )称为区域。
2zz +2z z -izz 2+iz z 2-)1)(4()1)(4(i i i i +--+4、设z 0=x 0+iy 0, z n =x n +iy n (n=1,2,……),则{z n }以z o 为极限的充分必要条件是 x n =x 0,且 y n =y 0。
三、计算题1、求复数-1-i 的实部、虚部、模与主辐角。
解:Re(-1-i)=-1 Im(-1-i)=-1|-1-i|=2、写出复数-i 的三角式。
解:3、写出复数 的代数式。
解:4、求根式的值。
+∞→n lim +∞→n lim ππ45|11|arctan ),1(12)1()1(=--+=--∴--=-+-i ary i 在第三象限 ππ23sin 23cos i i +=-i i i i i i i i i i i i i i i 212312121)1()1)(1()1(11--=--+-=⋅-++-+=-+-ii i i -+-11327-解:四、证明题1、证明若 ,则a 2+b 2=1。
复变函数习题解答-3
e z dz v ∫C z 5 , C :| z |= 1
= 2πe 2 i
解
(1)由 Cauchy 积分公式, ∫ 解 1: ∫ 解 2: ∫
C
ez dz = 2π i e z z−2
z =2
(2)
C
1 dz 1 = ∫ z + a dz = 2π i 2 2 C z−a z+a z −a
2
=
z =a
iη θ ie θ 1 1 1 π 2i cosη d dx d dη . (分子分母同乘以 1 + e −2iη ) ζ = + η = + , 关。则 ∫ ∫0 1 + x 2 ∫0 1 + e2iη ∫ 0 1+ ζ 2 0 4 2 + 2 cos 2η
3π i 2z
=0
−π i
2)
∫π ch 3zdz = 3 sh 3z |π
6 i
0
1
0 i/6
= −i/3
3) 4) 5) 6)
∫ π sin
- i
1
πi
2
zdz = ∫
1 − cos 2 z z sin 2 z π i 1 dz = ( − ) |-π i = (π − sh 2π )i -π i 2 2 4 2
3.设 f ( z ) 在单连域 D 内解析,C 为 D 内任何一条正向简单闭曲线,问
∫
解
C
Re[ f (z )]dz =
∫
C
Im[ f (z )]dz = 0
是否成立,如果成立,给出证明;如果不成立,举例说明。 未必成立。令 f ( z ) = z , C : z = 1 ,则 f ( z ) 在全平面上解析,但是
3复变函数 课后答案(王绵森 著) 高等教育出版社
习题一解答1.求下列复数的实部与虚部、共轭复数、模与辐角。
(1)i 231+; (2)i13i i 1−−; (3)()()2i 5i 24i 3−+; (4)i 4i i 218+−解 (1)()()()2i 31312i 32i 32i 32i 31−=−+−=+ 所以133=⎭⎬⎫⎩⎨⎧+i 231Re ,1322i 31Im −=⎭⎬⎫⎩⎨⎧+,()2i 31312i 31+=+,131********i 3122=⎟⎠⎞⎜⎝⎛−+⎟⎠⎞⎜⎝⎛=+, k π2i 231arg i 231Arg +⎟⎠⎞⎜⎝⎛+=⎟⎠⎞⎜⎝⎛+",2,1,0,232arctan ±±=+−=k k π(2)()()()()i,25233i 321i i)(1i 1i 13i i i i i 13i i 1−=+−−−=+−+−−−=−−所以,23i 13i i 1Re =⎭⎬⎫⎩⎨⎧−− 25i 13i i 1Im −=⎭⎬⎫⎩⎨⎧−−25i 23i 13i i 1+=⎟⎠⎞⎜⎝⎛−−,2342523i 13i i 122=⎟⎠⎞⎜⎝⎛−+⎟⎠⎞⎜⎝⎛=−−, k π2i 1i 3i 1arg i 1i 3i 1Arg +⎟⎠⎞⎜⎝⎛−−=⎟⎠⎞⎜⎝⎛−− ",±,±,=,+−=210235arctan k k π.(3)()()()()()()()()()42i 7i 262i 2i 2i 5i 24i 32i 5i 24i 3−−=−−−+=−+ 13i 27226i7−−=−−=所以()()272i 5i 24i 3Re −=⎭⎬⎫⎩⎨⎧−+,()()132i 5i 24i 3Im −=⎭⎫⎩⎨⎧−+,()()l3i 272i 5i 24i 3+−=⎥⎦⎤⎢⎣⎡−+()()22952i5i 24i 3=−+, ()()()()k ππk π2726arctan 22i 2i 52i 43arg i 2i 52i 43Arg +−=+⎥⎦⎤⎢⎣⎡−+=⎥⎦⎤⎢⎣⎡−+ ()",2,1,0,12726arctan±±=−+=k k π.(4)()()()()i i 141i i i 4i i 4i i 10410242218+−−−=+−=+−3i 1i 4i 1−=+−=所以{}{}3i 4i i Im 1,i 4i i Re 218218−=+−=+−3i 1i 4i i 218+=⎟⎠⎞⎜⎝⎛+−,10|i 4i i |218=+− ()()()2k π3i 1arg 2k πi 4i i arg i 4i i Arg 218218+−=++−=+−=.2,1,0,k 2k πarctan3"±±=+−2.如果等式()i 13i53y i 1x +=+−++成立,试求实数x , y 为何值。
复变函数第三章习题参考答案
工程数学(复变函数) 第三章复习题参考答案
湖南大学数学与计量经济学院
一、判断题(每题2分,5题共10分)
1、 f ( z ) 为定义在区域 D 内的解析函数,则其导函数 f ( z ) 也是解析函数. ( 若 2、 f ( z ) 在区域 D 内解析, 若 则对 D 内任一简单闭曲线 C 都有 f ( z )dz 0 ( .
i i
1 1 2 1 2 i sin 2 i i (e e ) ( sh2 )i 2 4i 2
(3)
0 z sin zdz 0 zd cos z z cos z 0 0 cos zdz
1
1
1
1
cos1 sin z 0 sin1 cos1
2 2
1 1 (2 i ) z 2 i 2 2
y
0
y 2x dy c 2 arctan c 2 2 x x y
f (1 i) u(1,1) iv(1,1) ln 2 i(2arctan1 c) ln 2
y 故 c , v( x, y ) 2 arctan 2 x 2
1 5 5、解 ( 1) ( x iy )dz ( x ix )d ( x ix ) i c 0 6 6
C
) )
3、若函数 f ( z ) 是区域 D 内的解析函数,则它在 D 内有任意阶导数.( 4、当复数 z 0 时,其模为零,辐角也为零.
( ).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I1 = ∫
C
� � 构成闭曲线(非简单) ,此时 C + 3, 2 可分解成两个简单闭曲线 2 MA2 和 3 AN 3 ,类似于上面的情
形,有
��� �
∫
∫
于是由复积分的曲线可加性
� 2 MA 2
� 3 AN 3
1 dz = 2π i , z −1 1 dz = 2π i , z −1
∫
��� � C + 3,2
C
综上所述,
I1 = ∫
( 2)当 n ≠ 1 时,
C
1 。 dz = k ⋅ ( ±2π i ) + ln 2 ( k = 0,1, 2,⋯ ) z −1
1 1 在 ℂ \{1} 内存在单值的原函数 ⋅ ( z − 1)1− n ,所以,由复积分的 n ( z − 1) 1− n
牛顿—莱布尼茨公式,
I = ∫ Im zd z = ∫
C
1 0
( Im a + Im( b − a) ⋅ t )(b − a ) d t
1 ⎛ ⎞ 1 = ( b − a ) ⎜ Im a + Im(b − a ) ⎟ = (b − a ) Im ( a + b ) 。 2 ⎝ ⎠ 2
3. 计算下列积分:
I1 = ∫
∫
在 C + 1, 0 上,所以
���
1 1 1 1 1 dz = ∫ ���� ( − )dz = (2π i) = π , 2 C + 1,0 1+ z 2i z −i z +i 2i 同理如果 C 仅围绕 i 按顺时针转一周,有 1 1 1 1 1 dz = ∫ ���� ( − )dz = ( −2π i) = −π , ��� � 2 ∫C +1,0 1+ z 2i C +1,0 z − i z + i 2i
(
)
���� 2 i, i
1 1 1 −i 1 dz = ∫ dt = ∫ dt = ln 2 。 0 (2 − t )i 0 2−t z
I=∫
1 1 1 1 1 dz = ∫ ���� dz + ∫ + dz + ∫ ���� dz + ∫ − dz 1,2 C2 2 i ,i C1 z z z z z = ln 2 + ( −1) + ln 2 + 1 = 2 ln 2 .
1 1 1 1 dz = ∫ ���� dz + ∫���� dz = ∫���� dz , C +3,2 z − 1 2,3 z − 1 2,3 z − 1 z −1
I1 = ∫����
2,3
3 1 1 dz = ∫ dx = ln( x − 1) 3 2 = ln 2 . 2 z −1 x −1
C π π
0
0
( 3) −1 到 1的下半单位圆周 z = 1 的参数方程为: z = e ( −π ≤ θ ≤ 0 ) ,所以,
iθ
I = ∫ zdz = ∫
C
0 −π
e − iθ ie iθ dθ = ∫
0 −π
idθ = π i 。
2. 计算积分
I = ∫ Im zdz ,
C
其中积分路径 C 是: ( 1)按逆时针从 1到 1 的单位圆周 z = 1 ; ( 2)直线段 a, b ( a, b ∈ ℂ ). 解( 1)单位圆周 z = 1 的参数方程为: z = eiθ ( 0 ≤ θ ≤ 2π ) ,所以,
同情况分四种情形来证明结论: Ⅰ:积分路线 C 如第 6 题图(1) 情形 情形Ⅰ ,
补充有向直线段 1, 0 ,显然 C + 1, 0 构成简单闭曲线,并且 ± i 既不在 C + 1, 0 的内部也不在
���
���
���
��� C + 1, 0 上,所以
理
��� 1 在 C + 1, 0 所围成的单连通闭区域上解析,由单连通区域上的柯西积分定 1+ z2
��� �
��� �
��� �
��� � ��� � 1 C + 3, 2 上,所以 在 C + 3, 2 所围成的单连通闭区域上解析,由单连通区域上的柯西积分定 z −1
理
∫
从而
��� � C + 3,2
1 dz = 0 , z −1
I1 = ∫
C
��� � 再注意到直线段 2,3 的参数方程为: z = x ,其中 2 ≤ x ≤ 3 ,可得
C
1 dz , I 2 = ∫ z − a dz , C z−a
iθ iθ 2
其中积分路径 C 是圆周 z − a = R 上从点 A = a + R ⋅ e 1 按逆时针到点 B = a + R ⋅ e
的一段弧(
0 ≤ θ1 < θ 2 ≤ 2π ) ;
解 C 的参数方程为: z = a + R ⋅ eiθ ( θ1 ≤ θ ≤ θ 2 ) ,所以,
Ⅱ: 情形 情形Ⅱ 积分路线 C 如第 5 题图 (b) , 此时 C 仅围绕 1按逆时针转一周, 补充有向直线段 2,3 , 显然 C + 3, 2 构成简单闭曲线,并且 1 在 C + 3, 2 的内部,所以
��� �
��� �
��� �
∫ ∫
于是
��� � C + 3,2
1 dz = 2π i , z −1 1 dz = −2π i , z −1
∫
C
1 dz : z −1
1 在 ℂ \ {1} 内不存在单值的原函数,所以我们不能直接用复积分的牛顿—莱布尼茨 z −1 公式计算。下面,根据从 2 到 3 的积分路线 C 的不同情况分两种情形来计算此积分:
Ⅰ:积分路线 C 如第 5 题图(a) 情形 情形Ⅰ , 补充有向直线段 2,3 ,显然 C + 3, 2 构成简单闭曲线,并且 1 既不在 C + 3, 2 的内部,也不在
第三章 复变函数的积分
1. 计算积分
I = ∫ zdz ,
C
其中积分路径 C 是: ( 1)直线段 −1,1 ; ( 2)从 1 到 1 的下半单位圆周 z = 1 . 解( 1)直线段 −1,1 的参数方程为: z = −1 ⋅ (1 − t ) + 1 ⋅ t = −1 + 2t ( 0 ≤ t ≤ 1 ) ,所以,
��� �
I = ∫ Im zd z = ∫
C
2π 0
sin θ ieiθ d θ = i ∫
2π 0
2π 0
( sin θ cos θ + i sin θ ) dθ
2
= i∫ ��� �
2π 0
sin θ cos θ dθ − ∫
sin 2 θ dθ = −π .
( 2)直线段 a, b 的参数方程为: z = a ⋅ (1 − t ) + b ⋅ t = a + (b − a) ⋅ t ( 0 ≤ t ≤ 1 ) ,所以,
C
5. ( 1)计算下列积分
I1 = ∫
C
1 1 dz , I 2 = ∫ dz , C ( z − 1) 2 z −1
其中积分路径 C 是从 2 到 3 的任意不过 1 简单光滑曲线; (2)试归纳出积分
In = ∫
C
1 dz ( n ∈ ℤ ) , ( z − 1) n
一般的结果,其中积分路径 C 是从 2 到 3 的任意不过 1 简单光滑曲线. 解( 1)先计算 I 2 =
C1− : z = 1 ; C2+ z = 2 。
所以,
∫
− C1
1 z 1 dz = ∫ − dz = ∫ − zdz = (12 − i 2 ) = 1 , C C 1 1 2 z z⋅z
∫
+ C2
∫
∫
��� � 1,2
1 z 1 1 2 dz = ∫ + dz = ∫ + z dz = ( 2i ) − 22 = −1 , C2 z ⋅ z 4 C2 8 z 1 1 1 dz = ∫ dt = ln 2 , 0 1+ t z
∫
从而
��� � C +1,0
1 dz = 0 , 1+ z2
∫
1
1 0
��� 再注意到直线段 0,1 的参数方程为: z = x ,其中 0 ≤ x ≤ 1 ,可得
1 1 1 1 dz = ∫ ���� dz + ∫���� dz = ∫���� dz 2 2 2 C +1,0 1 + z 0,1 1 + z 0,1 1 + z 2 1+ z
1 1 1 dz = ∫� dz + ∫� dz = 2 ⋅ 2π i , 2MA 2 z − 1 3 AN 3 z − 1 z −1
同理如果 C 仅围绕 1 按顺时针转两周,有
∫
故
��� � C + 3,2
1 dz = 2 ⋅ ( − 2π i ) , z −1
I1 = ∫
1 1 1 dz = ∫ ���� dz + ∫���� dz C z −1 C + 3,2 z − 1 2,3 z − 1 1 = 2 ⋅ ( ±2π i ) + ∫���� dz = 2 ⋅ ( ± 2π i ) + ln 2 . 2,3 z − 1 1 dz = k ⋅ ( ±2π i ) , z −1
类似的方法,当 C 仅围绕 1 按逆时针或顺时针转 k 周时,同理可得
∫
其中逆时针时取正号. 于是
��� � C + 3,2