基本不等式常见题型归纳汇总

合集下载

基本不等式题型及常用方法总结

基本不等式题型及常用方法总结

基本不等式题型及常用方法总结1. 引言不等式是数学中重要的概念之一,它在数学建模、优化理论、概率论等领域中有着广泛的应用。

基本不等式是解决不等式问题的基础,掌握常用的解题方法对于学习和应用不等式理论至关重要。

本文将系统总结基本不等式题型及常用方法,以帮助读者更好地理解和应用这一领域的知识。

2. 一元一次不等式2.1 一元一次线性不等式2.1.1 基本性质:线性函数图像特点、函数值与符号关系在解决一元一次线性函数时,我们首先需要了解线性函数图像的特点。

对于形如ax+b>0或ax+b<0的线性函数,我们可以通过求解对应方程ax+b=0得到临界点x=-b/a,并以此为界将数轴分为两个区间。

在每个区间内,我们可以通过选取任意一个测试点来判断该区间内函数值与符号之间的关系。

2.1.2 解法:图像法、代数法对于一元一次线性不等式,我们可以通过图像法和代数法来解决问题。

图像法是通过绘制线性函数的图像,通过观察函数在不同区间的变化来确定不等式的解集。

代数法则是通过代数运算,将不等式转化为等价的形式,从而得到解集。

例如,对于ax+b>0形式的线性不等式,我们可以将其转化为ax>-b,并根据a的正负性讨论出解集。

2.2 一元一次绝对值不等式绝对值函数是一个常见的非线性函数,在解决绝对值不等式时我们需要特别注意其特点和解题方法。

对于形如|ax+b|>c或|ax+b|<c的绝对值不等式,我们可以将其转化为一个或多个线性不等式,并根据这些线性不等式得到最终的解集。

2.3 一元二次根号型不等式二次根号型函数在数学中也有着重要地位,在解决二次根号型函数时我们需要掌握特定方法。

例如,在求解形如√(ax^2+bx+c)>0或√(ax^2+bx+c)<0 的二次根号型函数时,可以通过求出二次方程ax^2+bx+c=0 的两个实数根,并根据根的位置和函数的凹凸性来确定函数值与符号之间的关系。

基本不等式题型20种

基本不等式题型20种

基本不等式题型20种不等式是数学中重要的概念,它描述了数之间的大小关系。

在解决实际问题和推导数学推论中,不等式起着非常重要的作用。

本文将介绍20种常见的基本不等式题型。

一、一元一次不等式一元一次不等式是最简单的不等式类型。

例如:解不等式3x+4>10。

解:首先将不等式转化为等式:3x+4=10;然后解方程:3x=6;得到解:x=2。

二、一元二次不等式一元二次不等式是一元二次函数的不等式形式。

例如:解不等式x^2-5x+6>0。

解:首先求出一元二次函数的根:(x-2)(x-3)>0;然后画出函数的图像或根据韦达定理判断函数的正负;得到解:x<2或x>3。

三、绝对值不等式绝对值不等式是含有绝对值符号的不等式。

例如:解不等式|2x-3|≥5。

解:将含有绝对值的不等式拆分为两个不等式:2x-3≥5或2x-3≤-5;然后求解这两个不等式得到:x≥4或x≤-1。

四、分式不等式分式不等式是含有分式的不等式。

例如:解不等式(3x-2)/(2x+1)≤1。

解:首先将不等式化简:3x-2≤2x+1;然后解方程:x≤3。

五、根式不等式根式不等式是含有根式的不等式。

例如:解不等式√(x-4)≥2。

解:将不等式平方得:x-4≥4;然后解方程:x≥8。

六、乘法不等式乘法不等式是含有乘法的不等式。

例如:解不等式2x(x-1)≤0。

解:将不等式化简:2x(x-1)≤0;然后求解这个不等式得到:0≤x≤1。

七、除法不等式除法不等式是含有除法的不等式。

例如:解不等式(3x+6)/(x+2)≤4。

解:首先将不等式转化为等式:(3x+6)/(x+2)=4;然后解方程:x=-5;由于分母不能为0,所以解为x<-2或x>-5。

八、加法不等式加法不等式是含有加法的不等式。

例如:解不等式x+2>5。

解:将不等式化简:x>3。

九、减法不等式减法不等式是含有减法的不等式。

例如:解不等式2x-5≥1。

《基本不等式》17种题型高一

《基本不等式》17种题型高一

基本不等式是高中数学中非常重要且基础的一部分。

它在高一数学中占据着重要的地位,对于学生的数学基础和逻辑推理能力的培养起着至关重要的作用。

在高一数学教学中,基本不等式的学习也是一个重要的环节,不仅需要掌握它的概念和性质,还需要学会运用它解决实际问题。

本文将从基本不等式的概念入手,详细介绍其性质和运用方法,并列举17种题型,帮助学生全面理解和掌握基本不等式的相关知识。

一、基本不等式的概念基本不等式是指在任意三个实数a、b、c之间,必有以下基本不等式成立:1)正数的不等式:a >b ⟹ a +c > b + ca > 0,b > 0 ⟹ ac > bca > b, c > 0 ⟹ ac > bca > b, c < 0 ⟹ ac < bc2)负数的不等式:a <b ⟹ a +c < b + ca < 0,b < 0 ⟹ ac > bca < b, c > 0 ⟹ ac < bca < b, c < 0 ⟹ ac > bc以上基本不等式是学习基本不等式的基础,对于解决实际问题是非常重要的。

二、基本不等式的性质基本不等式还具有一些重要的性质,包括:1)传递性:若a > b,b > c,则a > c2)对称性:若a > b,则-b > -a3)倒置性:若a > b,则1/a < 1/b,且a/b > 0这些性质对于运用基本不等式解决实际问题时起着重要的作用,可以帮助学生更好地理解和运用基本不等式。

三、基本不等式的运用方法基本不等式在解决实际问题时有着广泛的应用,其运用方法主要包括:1)利用基本不等式的性质化简题目;2)利用基本不等式构造等式或方程组,进而求解问题;3)利用基本不等式证明不等式关系,讨论最值等问题。

学生在解决实际问题时,可以根据具体情况选择不同的运用方法,灵活运用基本不等式,解决各种复杂的问题。

基本不等式题型及常用方法总结

基本不等式题型及常用方法总结

基本不等式题型及常用方法总结基本不等式题型包括一元一次不等式、一元二次不等式、绝对值不等式和有理不等式等。

1. 一元一次不等式:- 解法1:通过移项和化简来求解,确保不等号方向的正确性。

- 解法2:将不等式转化为等价的集合表示,再通过集合的交、并运算求解。

2. 一元二次不等式:- 解法1:将不等式化为一元二次函数的图像,通过观察图像求解或者利用函数的性质来求解。

- 解法2:通过移项和配方法将不等式转化为二次函数的标准形式,再判断二次函数图像的位置与不等号关系来求解。

3. 绝对值不等式:- 解法1:将绝对值不等式分段求解,分别讨论绝对值内部是正数还是负数的情况。

- 解法2:通过绝对值的定义和不等式的性质,将绝对值不等式转化为两个简单的不等式来求解。

4. 有理不等式:- 解法1:将有理不等式化为分式的形式,然后通过分式的性质来求解。

- 解法2:通过变量的替换来将有理不等式转化为一元二次不等式或者一元一次不等式,再利用对应的方法来求解。

常用方法总结:1. 对于一元一次不等式和一元二次不等式,常用的方法是移项和化简、画函数图像和利用函数的性质来求解。

2. 对于绝对值不等式,常用的方法是分段求解和利用绝对值的性质来求解。

3. 对于有理不等式,常用的方法是化为分式形式和利用分式的性质来求解。

4. 在求解不等式的过程中,经常需要进行合并同类项、开方、取倒数、乘除等基本运算,需要注意运算法则和符号的变化。

5. 在不等式的求解过程中,需要注意不等式两边的平方值是否相等,以及是否存在不等式的等价变换等。

同时,在进行运算过程中,需要根据不等式的符号关系来选择合适的方式。

基本不等式题型大全

基本不等式题型大全

基本不等式题型大全知识点:1.几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤ ②(基本不等式)2a b+≥()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: a b +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号). ⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号).⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b aab a b<+≤-若则(当仅当a=b 时取等号)⑦ban b n a m a m b a b <++<<++<1,其中(000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小.⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<<⑨绝对值三角不等式.a b a b a b -≤±≤+2.几个著名不等式①平均不等式:1122a b a b --+≤≤≤+()a b R +∈,,(当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++1122(,,,).x y x y R ∈④二维形式的柯西不等式: 22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.板块一 基本不等式及其变换一、“配、凑、拆”的技巧 ①基本不等式及变形1.函数f (x )=x +1x (x >0)值域为________;函数f (x )=x +1x (x ∈R )值域为________;2.函数f (x )=x 2+1x 2+1的值域为________.2.若x >1,则x +4x -1的最小值为________. 解:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:53.已知x <0,则f (x )=2+4x +x 的最大值为________. 解:∵x <0,∴-x >0,∴f (x )=2+4x +x =2-⎣⎢⎡⎦⎥⎤4-x+-x .∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x =-2时等号成立.∴f (x )=2-⎣⎢⎡⎦⎥⎤4-x+-x ≤2-4=-2,∴f (x )的最大值为-2..54124,45.1的最大值求函数已知-+-=<x x y x 答案:1.,)0(312)(.2的值并求取最值时的最值求x x x xx f ≠+=答案:略223.,,()().a b y x a x b =-+-(三星)为实常数求的最小值解:(1)方法一:方法二:(1)函数f (x )=x (1-x )(0<x <1)的值域为____________; (2)函数f (x )=x (1-2x )⎝ ⎛⎭⎪⎫0<x <12的值域为____________.解:(1)∵0<x <1,∴1-x >0, x (1-x )≤⎣⎢⎡⎦⎥⎤x +1-x 22=14, ∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,14.(2)∵0<x <12,∴1-2x >0.x (1-2x )=12×2x (1-2x )≤12·⎣⎢⎡⎦⎥⎤2x +1-2x 22=18,∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,18.8.已知0<x <1,则x (3-3x )取得最大值时x 的值为________. 解:由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.9.函数y =x 1-x 2的最大值为________.解:x 1-x 2=x 21-x 2≤x 2+1-x 22=12..)2)(12(,523.42222的最大值求已知++==+b a y b a答案:147162223.,1,1.2y x y R x x y +∈+=+(三星)设且求的最大值221y+≤2210.1,.x yx y xyx y+>=-(二星)若且求的最小值答案:23.设x,y∈R,且xy≠0,则⎝ ⎛⎭⎪⎫x2+1y2·⎝⎛⎭⎪⎫1x2+4y2的最小值为________.解:⎝⎛⎭⎪⎫x2+1y2⎝⎛⎭⎪⎫1x2+4y2=5+1x2y2+4x2y2≥5+21x2y2·4x2y2=9,当且仅当x2y2=12时“=”成立.14.在各项都为正数的等比数列{}n a中,若2018a=,则2017201912a a+的最小值为________.4 14.已知正数x y,满足2230x xy+-=,则2x y+的最小值是___________.3②二次分式有关12.已知t>0,则函数y=t2-4t+1t的最小值为________.答案-2解:∵t>0,∴y=t2-4t+1t=t+1t-4≥2-4=-2,且在t=1时取等号.13.当x>0时,则f(x)=2xx2+1的最大值为________.解:∵x>0,∴f(x)=2xx2+1=2x+1x≤22=1,当且仅当x=1x,即x=1时取等号.14.(1)求函数f(x)=1x-3+x(x>3)的最小值;(2)求函数f(x)=x2-3x+1x-3(x>3)的最小值;解:(1)∵x>3,∴x-3>0.∴f(x)=1x-3+(x-3)+3≥21x-3·x-3+3=5.当且仅当1x-3=x-3,即x=4时取等号,∴f(x)的最小值是5.(2)令x-3=t,则x=t+3,且t>0.∴f(x)=t+32-3t+3+1t=t+1t+3≥2t·1t+3=5.当且仅当t=1t,即t=1时取等号,此时x=4,∴当x=4时,f(x)有最小值为5.15.设x>-1,求函数y=x+4x+1+6的最小值;解:∵x>-1,∴x+1>0.∴y=x+4x+1+6=x+1+4x+1+5≥2x+1·4x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.∴当x=1时,函数y的最小值是9.4.当x>0时,则f(x)=2xx2+1的最大值为________.解:(1)∵x >0,∴f(x)=2xx2+1=2x+1x≤22=1,当且仅当x=1x,即x=1时取等号.5.函数y=x2+2x-1(x>1)的最小值是________.解:∵x>1,∴x-1>0.∴y=x2+2x-1=x2-2x+2x+2x-1=x2-2x+1+2x-1+3x-1=x-12+2x-1+3x-1=x-1+3x-1+2≥2 x-13x-1+2=23+2.当且仅当x-1=3x-1,即x=1+3时,取等号.答案:23+2③平方平均数的应用228.,1,.x y R x y x y +∈+=+(一星)已知且求的最大值解:使用不等式变形2a b +≤.11.()0,0,1,.a b a b >>+=二星设答案:7.(三星)设,0,5,a b a b >+= _________. 解:因为,0,5,a b a b >+=所以()()139a b +++=由不等式2x y+≤2≤=,13.(四星)已知实数a b c ,,满足22201a b c a b c ++=++=,,则a 的最大值是 ____________. 解:∵222b c bc +≥,即()()2222222b c b c bc b c +++=+≥,∴()2222b c b c++≥,由0a b c ++=,得b c a +=-,由2221a b c ++=,得()22222122b c a a b c +-=+=≥,∴223a ≤,∴a ,故a .9.(三星)已知R k ∈,点(),P a b 是直线2x y k +=与圆22223x y k k +=-+的公共点,则ab 的最大值为( )BA .15B .9C .1D .53-1.(二星)若0,0x y >>的最小值为_________.2.)510)(51(.52的最值求函数≤≤-=x x x y答案:4675.cos sin ,.62的最大值求为锐角设θθθ=y答案:9二、附条件求最值:“1”的代换5:已知正数a ,b 满足a +2b =1,则1a +1b 的最小值是____. 解:1a +1b =a +2b a +a +2b b =3+2b a +ab ≥3+22b a ·ab =3+2 2.36.已知x >0,y >0,且2x +y =1,则1x +2y 的最小值是_________. 解 因为1x +2y =(2x +y )⎝ ⎛⎭⎪⎫1x +2y=4+y x +4x y ≥4+2y x ·4x y =8,等号当且仅当y =12,x =14时成立.37.已知x >0,y >0,且2x +y =1,则1x +1y 的最小值为________; 解 ∵x >0,y >0,且2x +y =1,∴1x +1y =2x +y x +2x +y y=3+y x +2xy ≥3+2 2.当且仅当y x =2xy 时,取等号.38.已知x >0,y >0,且9x +1y =1,求x +y 的最小值. 解:∵9x +1y =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫9x +1y =10+9y x +x y ≥10+29y x ·xy =16.当且仅当9y x =x y 且9x +1y =1,即x =12,y =4时取等号. ∴当x =12,y =4时,x +y 有最小值为16.39.已知x ,y 为正实数,且1x +16y =1,求x +y 的最小值. 解:∵1x +16y =1,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +16y =17+16x y +y x ≥17+216x y ·yx =25.当且仅当16x y =y x 且1x +16y =1时,等号成立. ∴x =5,y =20时,x +y 有最小值25.1.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是________. 解: ∵a +b =2,∴a +b2=1.∴1a +4b =⎝ ⎛⎭⎪⎫1a +4b ⎝⎛⎭⎪⎫a +b 2 =52+⎝ ⎛⎭⎪⎫2a b +b 2a≥52+22a b ·b 2a=92⎝ ⎛⎭⎪⎫当且仅当2a b =b 2a ,即b =2a 时,等号成立. 故y =1a +4b 的最小值为92.40.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285 C .5 D .6解 ∵x >0,y >0,由x +3y =5xy 得15⎝ ⎛⎭⎪⎫1y +3x =1.∴3x +4y =15(3x +4y )⎝ ⎛⎭⎪⎫1y +3x=15⎝ ⎛⎭⎪⎫3xy +4+9+12y x =135+15⎝⎛⎭⎪⎫3x y +12y x ≥135+15×23x y ·12yx =5(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5.41.正数x ,y 满足1x +9y =1. (1)求xy 的最小值; (2)求x +2y 的最小值. 解:(1)由1=1x +9y ≥2 1x ·9y 得xy ≥36,当且仅当1x =9y ,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )⎝ ⎛⎭⎪⎫1x +9y =19+2y x +9x y ≥19+22y x ·9xy =19+62,当且仅当2y x =9xy ,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2.9.,,280,.x y R x y xy x y +∈+-=+(二星)已知且求的最小值答案:18227.()01,,,().1a b x a b f x x x<<=+-三星设为常数求的最小值答案:2()a b +2.(二星)若直线()10,0x ya b a b+=>>过点(1,1),则a b +的最小值等于( )A.2B.3C.4D.5解:因为直线过点(1,1),所以111=+b a ,所以ba ab b a a b b a b a b a ++=+++=++=+211)11)((,因为0,0>>b a ,所以4222=⨯+≥++baa b b a a b ,当且仅当“a=b=2”时等号成立.14.(二星)若()42log 34log a b +=则a b +的最小值是( )DA .6+B .7+C .6+D .7+112511.0,0,1,:.4a b a b a b a b ⎛⎫⎛⎫>>+=++≥ ⎪⎪⎝⎭⎝⎭(三星)设求证1.(四星)已知20x y >>,且满足181022x y x y++=-,求实数x 的最大值. 答案:[]2,181.已知,x y 都是正数,且1x y +=,则4121x y +++的最小值为__________.941.(三星)设,x y 是正实数,且1x y +=,则2221x y x y +++的最小值是___________.141.(三星)已知1,,(0,1)4ab a b =∈,则1211a b+--的最小值是__________.20.(四星)函数()22log 1log 1x f x x -=+,若()()1221f x f x +=(其中1x 、2x 均大于2),则()12f x x 的最小值为_______。

基本不等式的常见题型

基本不等式的常见题型
2a b b 2b a a
12.已知x 0, y 0, x y 1, 则
13.已知2 x y 0,
1
1

的最小值是 _____.
1 x 1 2 y
1
1

1, 则x y的最小值是 _____.
2 x-y x +2 y
1 1
4x
9y
14.已知x 0, y 0, 1, 则
2.基本不等式
一、知识点梳理
(1)基本不等式成立的条件:a≥0,b≥0.
(2)等号成立的条件:当且仅当 a=b 时取等号.
a+b
称为正数 a,b 的算术平均数, ab称为正数 a,b 的几何平均数.
2
(3)其中
1 a 2+b2 2ab, a,b R
(当且仅当 a= b时取等号 )
2
a+b
的最小值为_______.
xy
a2 1
的最小值为_______.
ab
x2 3y
的最小值为_______.
xy
[题组训练]
(�+1)(2�+1)
1. (2019 天津,13,5 分)设 x>0,y>0,x+2y=5,则
��
的最小值为
.
1 a
2.设a 0, b >0, 且a b 1, 则 的最小值为_______.
1 1
2.若 2m+n=1 上,且 m,n 为正数,则 + 的最小值为________.
m n
1
4
3.已知正数 x,y 满足 x+y=1,则�+1+�的最小值为________.

完整版)基本不等式知识点和基本题型

完整版)基本不等式知识点和基本题型

完整版)基本不等式知识点和基本题型基本不等式专题辅导一、知识点总结1.基本不等式原始形式若a,b∈R,则a+b≥2ab若a,b∈R,则ab≤(a^2+b^2)/22.均值不等式若a,b∈R,则a+b/2≥√(ab)3.基本不等式的两个重要变形若a,b∈R,则(a+b)/2≥√(ab)若a,b∈R,则ab≤(a+b)^2/4特别说明:以上不等式中,当且仅当a=b时取“=”4.求最值的条件:“一正,二定,三相等”5.常用结论1.x+1/x≥2 (当且仅当x=1时取“=”)2.x+1/x≤-2 (当且仅当x=-1时取“=”)3.若ab>0,则(a/b+b/a)/2≥2 (当且仅当a=b时取“=”)4.若a,b∈R,则ab≤(a^2+b^2)/2≤(a+b)^2/2特别说明:以上不等式中,当且仅当a=b时取“=”6.柯西不等式若a,b∈R,则(a^2+b^2)(1+1)≥(a+b)^2二、题型分析题型一:利用基本不等式证明不等式1.设a,b均为正数,证明不等式:ab≥(a+b)^2/42.已知a,b,c为两两不相等的实数,求证:a^2/(b-c)^2+b^2/(c-a)^2+c^2/(a-b)^2≥23.已知a+b+c=1,求证:a^2+b^2+c^2+3(ab+bc+ca)≥4/34.已知a,b,c∈R,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc5.已知a,b,c∈R,且a+b+c=1,求证:|a-b|+|b-c|+|c-a|≥4√2/3题型二:利用不等式求最值1.已知a+b=1,求证:a^3+b^3≥1/42.已知a,b,c>0,且abc=1,求证:a/b+b/c+c/a≥a+b+c3.已知a,b,c>0,且a+b+c=1,求证:a/b+b/c+c/a≥34.已知a,b,c>0,求证:(a^2+b^2)/(a+b)+(b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)≥(3/2)(a+b+c)5.已知a,b,c>0,求证:(a+b+c)(1/a+1/b+1/c)≥9基本不等式专题辅导一、知识点总结1.基本不等式原始形式若a,b∈R,则a+b≥2ab若a,b∈R,则ab≤(a²+b²)/22.均值不等式若a,b∈R,则a+b/2≥√(ab)3.基本不等式的两个重要变形若a,b∈R,则(a+b)/2≥√(ab)若a,b∈R,则ab≤(a+b)²/4特别说明:以上不等式中,当且仅当a=b时取“=”4.求最值的条件:“一正,二定,三相等”5.常用结论1.x+1/x≥2 (当且仅当x=1时取“=”)2.x+1/x≤-2 (当且仅当x=-1时取“=”)3.若ab>0,则(a/b+b/a)/2≥2 (当且仅当a=b时取“=”)4.若a,b∈R,则ab≤(a²+b²)/2≤(a+b)²/2特别说明:以上不等式中,当且仅当a=b时取“=”6.柯西不等式若a,b∈R,则(a²+b²)(1+1)≥(a+b)²二、题型分析题型一:利用基本不等式证明不等式1.设a,b均为正数,证明不等式:ab≥(a+b)²/42.已知a,b,c为两两不相等的实数,求证:a²/(b-c)²+b²/(c-a)²+c²/(a-b)²≥23.已知a+b+c=1,求证:a²+b²+c²+3(ab+bc+ca)≥4/34.已知a,b,c∈R,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc5.已知a,b,c∈R,且a+b+c=1,求证:|a-b|+|b-c|+|c-a|≥4√2/3题型二:利用不等式求最值1.已知a+b=1,求证:a³+b³≥1/42.已知a,b,c>0,且abc=1,求证:a/b+b/c+c/a≥a+b+c3.已知a,b,c>0,且a+b+c=1,求证:a/b+b/c+c/a≥34.已知a,b,c>0,求证:(a²+b²)/(a+b)+(b²+c²)/(b+c)+(c²+a²)/(c+a)≥(3/2)(a+b+c)5.已知a,b,c>0,求证:(a+b+c)(1/a+1/b+1/c)≥9选修4-5:不等式选讲1.设a,b,c均为正数,且a+b+c=1,证明:Ⅰ) ab+bc+ca≤1/3;Ⅱ) a^2b+b^2c+c^2a≥1/9.2.已知a≥b>0,求证:2a-b≥2ab-b^2.3.求下列函数的值域:1) y=3x+2;2) y=x(4-x);3) y=x+(x>2);4) y=x+(x<2)。

高中数学基本不等式题型总结:

高中数学基本不等式题型总结:

高中数学基本不等式题型总结:
一、一元一次不等式
1. 原理:在一元一次不等式中,如果两个不等式的不等号方向
相同,且两个不等式的等号两边都乘以同一个正数或同一个负数,
那么不等式保持不变。

2. 解法:
a. 将不等式化简为标准形式:ax + b > 0 或 ax + b < 0,其中 a
和 b 均为实数,且a ≠ 0。

b. 对不等式进行相同操作后得到的不等式,得到不等式的解集。

二、一元二次不等式
1. 原理:在一元二次不等式中,解不等式的关键是确定二次函
数的凹凸性和零点情况。

2. 解法:
a. 将不等式化简为标准形式:ax^2 + bx + c > 0 或 ax^2 + bx + c < 0,其中 a、b 和 c 均为实数,且a ≠ 0。

b. 利用一元二次函数的凹凸性和零点情况进行分析,得到不等
式的解集。

三、绝对值不等式
1. 原理:对于绝对值不等式,根据绝对值的定义可分为绝对值大于等于零和绝对值小于等于零两种情况。

2. 解法:
a. 将不等式化简为标准形式:|ax + b| > c、|ax + b| < c 或 |ax + b| ≥ c、|ax + b| ≤ c,其中 a、b 和 c 均为实数,且a ≠ 0。

b. 根据绝对值的定义和不等式方向进行分析,得到不等式的解集。

四、其他常见不等式
1. 根据题目要求和不等式的特点,灵活运用数学运算符和基本不等式的性质,确定不等式的解集。

以上是高中数学中基本的不等式题型总结,希望能对你的研究有所帮助。

《基本不等式》知识点及题型总结

《基本不等式》知识点及题型总结

基本不等式 一、考点、热点回顾 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +a b≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22 (a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ).以上不等式等号成立的条件均为a =b .3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大) 知识拓展不等式的恒成立、能成立、恰成立问题(1)恒成立问题:若f (x )在区间D 上存在最小值,则不等式f (x )>A 在区间D 上恒成立⇔f (x )min >A (x ∈D ); 若f (x )在区间D 上存在最大值,则不等式f (x )<B 在区间D 上恒成立⇔f (x )max <B (x ∈D ).(2)能成立问题:若f (x )在区间D 上存在最大值,则在区间D 上存在实数x 使不等式f (x )>A 成立⇔f (x )max >A (x ∈D ); 若f (x )在区间D 上存在最小值,则在区间D 上存在实数x 使不等式f (x )<B 成立⇔f (x )min <B (x ∈D ).(3)恰成立问题:不等式f (x )>A 恰在区间D 上成立⇔f (x )>A 的解集为D ;不等式f (x )<B 恰在区间D 上成立⇔f (x )<B 的解集为D .二、典型例题例1、设0a b ,则下列不等式中正确的是( )A .a <b << B. a <<<bC .a <<b < D .<a <<b变式训练1、已知等比数列的各项均为正数,公比0<q <1,设392a a P +=,Q =,则a 3,a 9,P 与Q 的大小关系是( )A .a 3>P >Q >a 9 B. a 3>Q >P >a 9C .a 9>P >a 3>QD .P >Q >a 3>a 9考点二、利用基本不等式求最值例2、(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________.(2)函数y =x 2+2x -1(x >1)的最小值为________. (3)设a >0,b >0,且21a b +=,则11a b+的最小值为 。

不等式知识点总结及题型归纳

不等式知识点总结及题型归纳

不等式知识点总结及题型归纳一、解不等式1、一元二次不等式的解法一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表: 0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x < 有两相等实根ab x x 221-==无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax{}21x x xx <<∅∅2、简单的一元高次不等式的解法: 标根法:其步骤是:1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。

()()()如:x x x +--<1120233、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。

解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。

()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <二、线性规划1、用二元一次不等式(组)表示平面区域二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点) 3、线性规划的有关概念:①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件. ②线性目标函数:关于x 、y 的一次式z =a x +b y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解:满足线性约束条件的解(x ,y )叫可行解. 由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 4、求线性目标函数在线性约束条件下的最优解的步骤: 1)寻找线性约束条件,列出线性目标函数; 2)由二元一次不等式表示的平面区域做出可行域;3)依据线性目标函数作参照直线a x +b y =0,在可行域内平移参照直线求目标函数的最优解.三、基本不等式2a bab +≤1、若a,b ∈R ,则a 2+b 2≥2ab ,当且仅当a=b 时取等号.2、如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba 变形: 有:a+b ≥ab 2;ab ≤22⎪⎭⎫⎝⎛+b a ,当且仅当a=b 时取等号.3、如果a,b ∈R+,a·b=P (定值),当且仅当a=b 时,a+b 有最小值P 2;如果a,b ∈R+,且a+b=S (定值),当且仅当a=b 时,ab 有最大值42S .注:1)当两个正数的积为定值时,可以求它们和的最小值,当两个正数的和为定值时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. 2)求最值的重要条件“一正,二定,三取等” 4、常用不等式有:12211a b a b+≥≥≥+(根据目标不等式左右的运算结构选用) ; 2)a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); 3)若0,0a b m >>>,则b b ma a m+<+(糖水的浓度问题)。

基本不等式(很全面)

基本不等式(很全面)

基本不等式(很全面).(精选)知识框架】1、基本不等式原始形式若a,b∈R,则a2+b2≥2ab2)若a,b∈R,则ab≤(a+b)2/42、基本不等式一般形式(均值不等式)若a,b∈R*,则a+b≥2ab3、基本不等式的两个重要变形1)若a,b∈R*,则a+b/2≥√(ab)2)若a,b∈R,则ab≤(a2+b2)/2总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。

特别说明:以上不等式中,当且仅当a=b时取“=”4、求最值的条件:“一正,二定,三相等”5、常用结论1)若x>1,则x+1/x≥2(当且仅当x=1时取“=”)2)若x<1,则x+1/x≤-2(当且仅当x=-1时取“=”)3)若ab>0,则a+b/2≥√(ab)(当且仅当a=b时取“=”)4)若a,b∈R,则ab≤(a2+b2)/25)若a,b∈R*,则a+b/2≤√(ab)≤(a+b)/2≤√(a2+b2)/26、柯西不等式1)若a,b,c,d∈R,则(a2+b2)(c2+d2)≥(ac+bd)22)若a1,a2,a3,b1,b2,b3∈R,则有:(a12+a22+a32)(b12+b22+b32)≥(a1b1+a2b2+a3b3)23)设a1,a2,…,an与b1,b2,…,bn是两组实数,则有(a12+a22+…+an2)(b12+b22+…+bn2)≥(a1b1+a2b2+…+anbn)2题型归纳】题型一:利用基本不等式证明不等式题目1、设a,b均为正数,证明不等式:ab≥(a+b)2/4题目2、已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca题目3、已知a+b+c=1,求证:a2+b2+c2≥1/3题目4、已知a,b,c∈R+,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc题目5、已知a,b,c∈R+,且a+b+c=1,求证:(1-a)(1-b)(1-c)≤abc/8题目6:设$a,b,c$均为正数,且$a+b+c=1$,证明:frac{1}{a^2b^2c^2}\geq\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\geq \frac{1}{3abc}$$ 题型二:利用不等式求函数值域题目1:求下列函数的值域1)$y=3x^2+\frac{1}{2x^2}$2)$y=x(4-x)$3)$y=x+\frac{11}{x}$,其中$x>0$4)$y=x+\frac{1}{x}$,其中$x\neq 0$题型三:利用不等式求最值(一)(凑项)1、已知$x>2$,求函数$y=2x-4+\frac{4}{x}$的最小值;变式1:已知$x>2$,求函数$y=2x+\frac{4}{x}$的最小值;变式2:已知$x<2$,求函数$y=2x+\frac{4}{x}$的最大值;变式3:已知$x<2$,求函数$y=2x+\frac{4x}{2-x}$的最大值;练:1、已知$x>\frac{5}{4}$,求函数$y=4x-2+\frac{4}{4x-5}$的最小值;题目2、已知$x<\frac{5}{4}$,求函数$y=4x-2+\frac{4}{4x-5}$的最大值;题型四:利用不等式求最值(二)(凑系数)题目1:当$0<x<4$时,求$y=x(8-2x)$的最大值;变式1:当$0<x<4$时,求$y=4x(8-2x)$的最大值;变式2:设$0<x<\frac{3}{2}$,求函数$y=4x(3-2x)$的最大值。

基本不等式典型常见题型

基本不等式典型常见题型

基本不等式典型常见题型基本不等式典型常见题型不等式是数学中的一种重要关系式,它可以描述数字之间的大小关系。

考察不等式的题目在各类数学考试中都是常见的。

下面我们将介绍一些基本的不等式题型,并给出解题方法和技巧。

一、一次不等式一次不等式是由一次多项式构成的不等关系。

它的一般形式为ax + b > 0(或<0)或ax + b ≥ 0(或≤0)。

其中,a和b是常数,x是未知数。

解一次不等式的关键是找到x的取值范围。

我们可以通过变形和移项来求解。

例题1:解不等式3x + 7 > 4。

解法:首先,我们可以通过移项得到3x > 4 - 7,即3x > -3。

然后,除以3得到x > -1。

所以,不等式的解集为x > -1。

例题2:解不等式2x + 5 ≤ 9。

解法:首先,我们可以通过移项得到2x ≤ 9 - 5,即2x ≤ 4。

然后,除以2得到x ≤ 2。

所以,不等式的解集为x ≤ 2。

二、绝对值不等式绝对值不等式是含有绝对值符号的不等式。

它的一般形式为|ax + b| > c或|ax + b| ≥ c。

其中,a、b和c是常数,x是未知数。

解绝对值不等式的关键是考虑x的取值范围,并分情况讨论。

例题3:解不等式|2x - 3| > 4。

解法:我们可以分两种情况讨论:情况1:当2x - 3 > 0时,不等式化为2x - 3 > 4,即2x > 7。

解得x > 7/2。

情况2:当2x - 3 < 0时,不等式化为-(2x - 3) > 4,即-2x + 3 > 4,解得x < -1/2。

综上所述,不等式的解集为x < -1/2或x > 7/2。

三、二次不等式二次不等式是含有二次多项式的不等关系。

它的一般形式为ax² + bx + c > 0(或< 0)或ax² +bx + c ≥ 0(或≤ 0)。

基本不等式20种题型

基本不等式20种题型

基本不等式20种题型一、基本不等式简介基本不等式是高中数学中的一个重要内容,它是指两个正数的平均数不小于它们的几何平均数,两个数的算术平均数不大于它们的几何平均数。

基本不等式在解决一些最值问题时非常有用,包括求和、积、方差的最值,求三角形的边长问题等。

二、20种题型1. 证明型题型:通过基本不等式证明一些不等式,例如,用基本不等式证明一个数的平方大于另一个数的平方。

2. 求最值题型:用基本不等式求和、积、方差的最值,求三角形的边长问题等。

3. 构造型题型:通过构造一个等式,利用基本不等式构造另一个等式,进而解决问题。

4. 拆分型题型:将一个数拆分成两个数的和或差,利用基本不等式进行求解。

5. 参数型题型:在基本不等式中引入参数,利用基本不等式求解参数的取值范围或最值问题。

6. 反证型题型:通过反证法,利用基本不等式证明一些不等式的正确性。

7. 优化型题型:利用基本不等式优化一些算法或求解过程。

8. 覆盖型题型:用基本不等式覆盖一些其他类型的题目,如解三角形问题等。

9. 扩展型题型:将基本不等式进行扩展,利用扩展后的不等式解决问题。

10. 分段型题型:对于一些分段函数,利用基本不等式分段求解。

三、解题步骤1. 确定使用基本不等式的条件:在应用基本不等式之前,需要保证所使用的不等式是成立的。

如果不能保证,需要先证明不等式的正确性。

2. 确定正数的个数:在应用基本不等式时,需要保证所使用的正数不超过两个。

如果不能保证,需要重新考虑问题的解法。

3. 确定平均数和几何平均数:根据题目中的数据,确定使用哪个平均数和几何平均数。

4. 计算并比较大小:根据题目中的数据,利用基本不等式计算出结果的大小,并与题目中的要求进行比较。

5. 验证结果的正确性:在得到结果后,需要验证结果的正确性,确保结果的合理性。

四、例题解析【例1】求函数f(x) = x(10-x)的最小值。

解:根据题意,可以知道f(x)是一个积的形式,可以使用基本不等式求解最小值。

基本不等式题型20种

基本不等式题型20种

基本不等式题型20种基本不等式是初等数学中的重要内容,涉及到多种类型的问题。

以下是一些常见的基本不等式题型:1. 一元一次不等式,例如 2x + 3 > 7。

2. 一元二次不等式,例如 x^2 4x + 3 > 0。

3. 绝对值不等式,例如 |2x 1| < 5。

4. 有理不等式,例如 (x-1)/(x+2) > 0。

5. 混合不等式,例如 2x + 3 < 5 或 3x 2 > 7。

6. 复合不等式,例如 2 < x < 5。

7. 线性不等式组,例如 {2x + y > 3, x y < 1}。

8. 二元二次不等式,例如 x^2 + y^2 < 25。

9. 分式不等式,例如 (x+1)/(x-2) > 0。

10. 绝对值分式不等式,例如 |(x-1)/(x+2)| < 1。

11. 参数不等式,例如若 a > 0, 则 ax < 5。

12. 根式不等式,例如√(x+1) > 2。

13. 指数不等式,例如 2^x > 16。

14. 对数不等式,例如 log(x) < 3。

15. 三角不等式,例如 sin(x) < 1。

16. 求最值问题,例如求函数 f(x) = x^2 4x + 3 的最小值。

17. 区间问题,例如求不等式 2 < x < 5 的解集。

18. 图形法解不等式,例如用图形法解不等式 2x + 3 < 7。

19. 实际问题,例如某商品的售价要高于成本价的 20%。

20. 复杂不等式的综合运用,例如将多种不等式类型结合运用解决问题。

这些是基本不等式的一些常见题型,涵盖了初等数学中常见的不等式问题。

希望这些例子可以帮助您更好地理解基本不等式。

高一基本不等式题型归纳

高一基本不等式题型归纳

高一基本不等式题型归纳一、利用基本不等式求最值1. 积定和最小- 例1:已知x>0,y>0,且xy = 16,求x + y的最小值。

- 解析:根据基本不等式a + b≥slant2√(ab)(当且仅当a = b时取等号),这里a=x,b = y,已知xy=16。

- 则x + y≥slant2√(xy)=2√(16)=8。

- 当且仅当x=y时取等号,又因为xy = 16,所以x=y = 4时,x + y取得最小值8。

2. 和定积最大- 例2:已知x>0,y>0,x + y=8,求xy的最大值。

- 解析:由基本不等式xy≤slant((a + b)/(2))^2(当且仅当a = b时取等号),这里a=x,b = y,已知x + y = 8。

- 则xy≤slant((x + y)/(2))^2=((8)/(2))^2 = 16。

- 当且仅当x=y时取等号,又因为x + y = 8,所以x=y = 4时,xy取得最大值16。

二、基本不等式的变形应用1. 配凑法求最值- 例3:已知x> - 1,求y=frac{x^2+7x + 10}{x + 1}的最小值。

- 解析:- 因为x> - 1,则x+1>0。

- 对y=frac{x^2+7x + 10}{x + 1}进行变形,y=frac{(x + 1)^2+5(x + 1)+4}{x + 1}=(x + 1)+(4)/(x + 1)+5。

- 根据基本不等式a+b≥slant2√(ab),这里a=x + 1,b=(4)/(x + 1)。

- 则y=(x + 1)+(4)/(x + 1)+5≥slant2√((x + 1)×frac{4){x + 1}}+5=2×2 +5=9。

- 当且仅当x + 1=(4)/(x + 1),即(x + 1)^2=4,因为x> - 1,所以x + 1 = 2,x=1时取等号,y的最小值为9。

基本不等式总结题型

基本不等式总结题型

基本不等式总结题型一、基本不等式的概念基本不等式呢,就是那个超有用的不等式啦,对于正数a、b,有(a + b)/2 ≥ √(ab)。

这就像是数学世界里的一个小宝藏,在好多题型里都会用到哦。

二、基本不等式总结题型1. 求最值题型比如给你一个式子y = x+1/x(x>0),要求这个式子的最小值。

这时候就可以用基本不等式啦。

因为x和1/x都是正数,根据基本不等式(a + b)/2 ≥ √(ab),这里 a = x,b = 1/x,那么y=x + 1/x≥2√(x×1/x)=2,所以y的最小值就是2啦。

还有像已知2x + 3y = 6,求xy的最大值这种题。

我们可以把2x和3y看作基本不等式里的a和b,由2x+3y = 6可得y=(6 - 2x)/3,那么xy=x×(6 - 2x)/3=-2/3x² + 2x。

再根据基本不等式变形可得2x+3y≥2√(6xy),6≥2√(6xy),解这个不等式就可以求出xy的最大值。

2. 证明不等式题型比如说要证明(a² + b²)/2≥ab。

我们可以从基本不等式出发,因为(a - b)²≥0,展开得到a² - 2ab + b²≥0,移项就得到a² + b²≥2ab,两边同时除以2,就得到(a² + b²)/2≥ab啦。

再比如证明1/(a + b)+1/(b + c)+1/(c + a)≥9/(2(a + b + c))(a,b,c都是正数)。

这种题就需要巧妙地构造基本不等式的形式,把式子进行变形然后利用基本不等式来证明。

3. 比较大小题型例如比较(a + b)/2和√((a² + b²)/2)的大小(a,b都是正数)。

我们可以采用作差法,把(a + b)/2 - √((a² + b²)/2)进行化简,然后根据基本不等式的性质来判断这个差是大于0、小于0还是等于0,从而得出两个式子的大小关系。

基本不等式题型总结

基本不等式题型总结

基本不等式题型总结基本不等式是数学中的重要概念,其中包括很多不等式题型。

下面将对基本不等式的常见题型进行总结,并提供一些解题思路和方法。

1. 一次不等式:一次不等式是最简单的不等式形式,通常是形如 ax + b > 0 的形式。

解这类不等式时,可以将不等式转化为等式,求出等式的解集,然后根据不等号的方向确定不等式的解集。

2. 二次不等式:二次不等式是一次不等式的推广,形如 ax^2 + bx + c > 0 的形式。

解这类不等式时,可以利用二次函数的性质,首先求出二次函数的零点,然后根据二次函数的图像确定不等式的解集。

3. 绝对值不等式:绝对值不等式是一种常见的不等式形式,形如 |ax + b| > c 的形式。

解这类不等式时,可以根据绝对值的定义,分别考虑 ax + b > c 和 ax + b < -c 两种情况,然后求出每种情况下的解集。

4. 分式不等式:分式不等式是包含有分式的不等式,形如p(x)/q(x) > 0 的形式。

解这类不等式时,可以找出分式的零点,然后根据分式的正负性确定不等式的解集。

5. 根式不等式:根式不等式是带有根号的不等式,形如√(ax +b) > c 的形式。

解这类不等式时,可以根据根式的定义,将不等式平方后再进行求解。

6. 微分不等式:微分不等式是用微分的方法解决的不等式,通常涉及函数的导数。

解这类不等式时,可以求出函数的导数,然后根据导数的正负性确定函数在不同区间上的增减性以及函数的极值点,从而确定不等式的解集。

7. 参数不等式:参数不等式是含有参数的不等式,通常涉及参数的范围和取值。

解这类不等式时,可以根据参数的取值范围,分析不等式在不同情况下的解集,并给出参数的取值条件。

8. 不等式组:不等式组是由多个不等式组成的集合,通常需要在平面上找出满足所有不等式条件的解集。

解这类不等式组时,可以利用图像解法、代数解法或线性规划等方法,确定不等式组的解集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档