小学数学-数阵图
小学四年级逻辑思维学习—数阵图与幻方
小学四年级逻辑思维学习—数阵图与幻方”知识定位一、什么是数阵图?在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察上面两个图:右图(1)中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右图(2)就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从如何来填好数阵图开始。
如何填好数阵图?数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这一类问题可以按以下步骤解决问题:第一步:区分数阵图中的普通点(或方格),和交叉点(方格)第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算各个点与该点被重复计算次数之积的和的代数式,即数阵图关系线(关系区域)上和的总和,这个和是关系线(关系区域)的个数的整数倍.第三步:判断少数关键点上可以填入的数的余数性质,并得出相应的数阵图关系线(关系区域)和.第四步:运用已经得到的信息进行尝试:数阵图还有一类题型比较少见,解决这一类问题需要理清数阵中数与数之间的相关关系,找出问题关键.【授课批注】数阵图问题千变万化,一般没有特定的解法,往往需要综合运用掌握的各种数学知识来解决问题. 本讲出了要讲授填数阵图的主要技巧,还有以下注意点:1.引导学生从整体到局部对问题进行观察和判断;2.教授巧妙利用容斥原理、余数的性质、整除性质的数学方法;3.锻炼学生利用已知信息枚举,尝试的能力;4.培养学生综合运用各种数学知识,分析问题,找问题关键,解决问题的能力.二、什么是幻方?同学们是否知道我国古代有关“洛书”的神话传说?传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:三、如何解决幻方问题?幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的3×3的数阵称作三阶幻方,4×4的数阵称作四阶幻方,5×5的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,三阶幻方的中心位置上的数等于所有所填数的平均数,也等于横行、竖列、对角线上数和的三分之一.解决数表类问题中,首先要找出数填写的规律,再从规律中找到数表的数量关系,从而找出解决问题的关键.知识梳理987653421987654321(一)封闭型数阵问题(二)辐射型数阵(三)其它类型的数阵图(四)幻方例题精讲【试题来源】【题目】将1~6填入左下图的六个○中,使三角形每条边上的三个数之和都等于k,请指出k的取值范围.k=9 k=10 k=11 k=12【题目】小猴聪聪有一天捡到像左下图的模具,它试着将1~10分别填入图中,使得每个小三角形3个顶点上的数字之和为图中所表示的数值,你能做到吗?【题目】图中的6条线分别连接着9个圆圈,其中一个圆圈里的数是6.请你选9个连续自然数(包括6在内)填人圆圈内,使每条线上各数的和都等于23.6543216543216543216543216【题目】小兔子在森林玩耍,遇到一个画着奇怪图形的树桩,上面写着:把10至20这11个数分别填入下图的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法,请写出所有可能的填法,小兔子发了愁,你能帮它吗?【题目】海豚是很聪明的动物,它能将1~9填入右下图的九个○内,并且使得每个圆周和每条直线上的三数之和都相等,并且7,8,9依次位于小、中、大圆周上,你能做到吗?【题目】在下图中的10个○内填入0~9这10个数字,使得循环式成立:【题目】请在图中的每个圆圈内填入不同的自然数,使得图中每个圆圈中所填的数都是上一行与它相邻的两个圆圈中所填数的和,最下面的数是20.+=====----20【题目】请你将2~10这九个自然数填入图中的空格内每行、每列、每条对角线上的三数之和相等.【题目】请你将1~25这二十五个自然数填入图中的空格内每行、每列、每条对角线上的五数之和相等.【题目】将九个数填入左下图的九个空格中,使得任一行、任一列以及两条对角线上的三个数之和都等于定数k,则中心方格中的数必为k÷3【题目】在下图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21.【题目】将前9个自然数填入右图的9个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,并且相邻的两个自然数在图中的位置也相邻.【题目】将1、2、3、4、5、6、7、8、9这九个数字,分别填入3×3阵列中的九个方格,使第二行组成的三位数是第一行组成的三位数的2倍,第三行组成的三位数是第一行组成的三位数的3倍.【题目】在一个3×3的网格中填入9个数使得每一横行、竖行、对角线上三个数的乘积相等.习题演练【题目】将1~7这七个数分别填入图中的○里,使每条直线上的三个数之和都等于12。
66666小学奥数专题之数阵图练习题例
小学奥数专题之——————数阵图数阵是由幻方演化出来的另一种数字图。
幻方一般均为正方形。
图中纵、横、对角线数字和相等。
数阵则不仅有正方形、长方形,还有三角形、圆、多边形、星形、花瓣形、十字形,甚至多种图形的组合。
变幻多姿,奇趣迷人。
一般按数字的组合形式,将其分为三类,即辐射型数阵、封闭型数阵、复合型数阵。
数阵的特点是:每一条直线段或由若干线段组成的封闭线上的数字和相等。
它的表达形式多为给出一定数量的数字,要求填入指定的图中,使其具备数阵的特点。
解数阵问题的一般思路是:1.求出条件中若干已知数字的和。
2.根据“和相等”,列出关系式,找出关键数——重复使用的数。
3.确定重复用数后,对照“和相等”的条件,用尝试的方法,求出其他各数。
有时,因数字存在不同的组合方法,答案往往不是唯一的。
\1.10.5.2辐射型数阵例1 将1~5五个数字,分别填入下图的五个○中,使横、竖线上的三个数字和都是10。
解:已给出的五个数字和是:1+2+3+4+5=15题中要求横、竖每条线上数字和都是10,两条线合起来便是20了。
20-15=5,怎样才能增加5呢?因为中心的一个数是个重复使用数。
只有5连加两次才能使五个数字的和增加5,关键找到了,中心数必须填5。
确定中心数后,按余下的1、2、3、4,分别填在横、竖线的两端,使每条线上数的和是10便可。
例2将1~7七个数字,分别填入图中的各个○内,使每条线上的三个数和相等。
:解:图中共有3条线,若每条线数字和相等,三条线的数字总和必为3的倍数。
设中心数为a,则a被重复使用了2次。
即,1+2+3+4+5+6+7+2a=28+2a,28+2a应能被3整除。
(28+2a)÷3=28÷3+2a÷3其中28÷3=9…余1,所以2a÷3应余2。
由此,便可推得a只能是1、4、7三数。
当a=1时,28+2a=30 30÷3=10,其他两数的和是10-1=9,只要把余下的2、3、4、5、6、7,按和为9分成三组填入两端即可。
小学数学《数阵图》ppt
① 确定所填数字的和A;
②按题目要求用直线上各数的和乘以直线 条数,求出整个图形的和B(包含重复计 算的数);
③确定重复计算的位置的数字的和B-A;
④看这个和B-A可能有哪几种组成情况; ⑤再分别试填,确定重复计算的位置的数字; ⑥根据要求确定其它位置的数字。
对于开放型数阵图要看重复使 用的数字重复计算了几次。
变式练习
将1~6这六个数分别填在下图的六个圆圈中,使 每条边上的三个圆圈内的数的和都等于10。
1
6
4
3
2
5
河边的苹果
一位老和尚,他身边聚拢着一帮虔诚的弟子。这 一天,他嘱咐弟子每人去南山打一担柴回来。弟子们 匆匆行至离山不远的河边,人人目瞪口呆。只见洪水 从山上奔泻而下,无论如何也休想渡河打柴了。无功 而返,弟子们都有些垂头丧气。唯独一个小和尚与师 傅坦然相对。师傅问其故,小和尚从怀中掏出一个苹 果,递给师傅说,过不了河,打不了柴,见河边有棵 苹果树,我就顺手把树上唯一的一个苹果摘来了。后 来,这位小和尚成了师傅的衣钵传人。
数阵图的解题方法关键是确 定重复使用的数字。
解:
1
6
5
2
4
3
小结: ➢ 像这样把一些数字按照一定的要求排成各种 各样的图形,这类问题就叫做数阵图。
➢ 因为这些数字组成的是一个三角形,所以顶 点的三个数字改变位置不会影响其结果。
➢ 解答数阵图的步骤是: ①确定所填数字的和A; ②按题目要求用直线上各数的和乘以直线条数,求出
整个图形的和B(包含重复计算的数); ③确定重复计算的位置的数字的和B-A; ④看这个和B-A可能有哪几种组成情况; ⑤再分别试填,确定重复计算的位置的数字; ⑥根据要求确定其它位置的数字。
小学三年级奥数--数阵图
数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从几个简单的例子开始。
例1把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。
下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。
分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。
重叠数求出来了,其余各数就好填了(见右上图)。
试一试:练习与思考第1题。
例2把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。
所以,必须先求出这个“和”。
根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10。
小学数学思维方法:幻方与数阵图
幻方与数阵图【知识要点】 一、幻方在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵行及对角线的几个数之和都相等,具有这种性质的图表,称为“幻方”。
我国古代称为“河图”、“洛书”,又叫“纵横图”。
三阶幻方的性质:1.中心位置上的数等于幻和除以3;2.角上得数等于和它不相邻的两条边上的数的平均数;3.中心数两头的数之和等于中心数的2倍。
二、数阵图数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这类问题可以按以下步骤解决问题:第一步:从整体考虑,将要求满足相等的几个数字和全部相加,一般为n ×s 的形式。
第二步:从个体考虑,分别计算每一个位置数字相加的次数,将比较特殊的(多加或少加几次)位置数字用未知数表示,全部相加,一般为题目所给全部数字和×一般位置数字相加次数±特殊位置数字和×多加或少加次数的形式。
第三步:格局整体与个体的关系,列出等式即n ×s=题目所给全部数字和×一般位置数字相加次数±特殊位置数字和×多加或少加次数。
第四步:根据数论植树即整除性确定特殊位置数的取值即相对应的S 值。
第四步:根据确定的特殊位置数字及S 值进行数字分组及尝试。
【典型例题】 一、幻方例1:如下图,将1—9填入3×3的方格表中,使得每行每列以及两条对角线上的三个数字之和都相等,你一共可以得到多少种填法?分析:首先,我们思考要填出一个三阶幻方,什么量的求出是最重要的?立刻我们就知道,那个所谓的“幻和”,即每行、每列、每条对角线三个数的和是最重要的量。
它是多少呢?如果我们按照行(按照列也一样)把幻方中的九个数加起来,那么它们的总和不就是3倍的“幻和”吗?而另一方面,我们也知道,由于1到9这九个数字都只各用了一次,所以3倍的的“幻和”第1题就等于1+2+3+4+5+6+7+8+9=45。
小学数学 《数阵图》练习题(含答案)
小学数学《数阵图》练习题(含答案)数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这一类问题可以按以下步骤解决问题:第一步:区分数阵图中的普通点(或方格),和交叉点(方格)第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算各个点与该点被重复计算次数之积的和的代数式,即数阵图关系线(关系区域)上和的总和,这个和是关系线(关系区域)的个数的整数倍.第三步:判断少数关键点上可以填入的数的余数性质,并得出相应的数阵图关系线(关系区域)和.第四步:运用已经得到的信息进行尝试:数阵图还有一类题型比较少见,解决这一类问题需要理清数阵中数与数之间的相关关系,找出问题关键.(一)封闭型数阵问题【例1】(★★★)小青蛙不小心爬到一个正方形数阵图中,必须把1,2,3,4,5,6,7,8八个数字填入下图中的○内,使正方形每条边上三个数的和都等于13才能通过这个数阵图,你能帮它吗?【例2】(★★★)小乌龟被困在五个圆里面(如下图),五圆相连,每个位置的数字都是按一定规律填写的,它必须找出规律,并求出x所代表的数才能脱困,你知道该怎么办吗?24273028262218 1720x【例3】(★★★)1~9分别填入小三角形内(每个小三角形内只填一个数),要求靠近大三角形三条边的每五个数相加和相等.想一想,怎样填这些数才能使五个数的和尽可能大一些?【例4】(★★★)能否将数0,1,2,…,9分别填人下图的各个圆圈内,使得各阴影三角形的3个顶点上的数之和相等?【例5】(★★★),小熊和妈妈去外婆家要过一条河,必须要按照下面的要求填数才可以顺利通过,要求如下:20以内共有10个奇数,去掉9和15还剩八个奇数,将这八个奇数填入右图的八个○中(其中3已经填好),使得图中用箭头连接起来的四个数之和都相等.3(二)辐射型数阵【例6】(★★★)将1~7这七个数字,分别填人图中各个○内,使每条线段上的三个○内数的和相等.【例7】 (★★★)把10至20这11个数分别填入下图的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法.请写出所有可能的填法.【例8】 (★★★)左图中有三个正三角形,将1~9填入它们顶点处的九个○中,要求每个正三角形顶点的三数之和都相等,并且通过四个○的每条直线上的四数之和也相等.【例9】 (★★★)在下图的七个圆圈内各填上一个数,要求每条线上的三个数中,当中的数是两边两个数的平均数,现在已填好两个数,求x 是多少?(三)其它类型的数阵图【例10】 (★★★)在下图中的10个○内填入0~9这10个数字,使得按顺时针循环式成立:【例11】 (★★★★)将1~8这八个自然数填入左下图的空格内,使四边形组成的四个等式都成立:【例12】 (★★★★)下图包括6个加法算式,要在圆圈里填上不同的自然数,使6个算式都成立.那么最右边的圆圈中的数最少是多少?+=====----===×÷+=-+=+=1.请分别将1,2,4,6这4个数填在下图的各空白区域内,使得每个圆圈里4个数的和都等于15.2.把1~5这五个数填入下图中的○里,使每条直线上的三个数之和相等.3.把1至6分别填入下图的各方格中,使得横行3个数的和与竖列4个数的和相等.4.将1~7七个数字填入左下图的七个○内,使每个圆周和每条直线上的三个数之和都相等.5.将1~8八个数分别填入右上图的八个○内,使得图中的六个等式都成立.△代表几?37 5=== =+++++(一)封闭型数阵问题【例13】 (★★★)小青蛙不小心爬到一个正方形数阵图中,必须把1,2,3,4,5,6,7,8八个数字填入下图中的○内,使正方形每条边上三个数的和都等于13才能通过这个数阵图,你能帮它吗?75623841或84362571分析:因为每边上的和为13,那么四条边上的数字之和为13×4=52,而1+2+…+7+8=36,所以四个角上的四个数之和等于52-36=16.在1~8中选四个数,四数之和等于16,且其中相邻两个的和与任意三个的和不等于13的只有:16=1+2+6+7=1+2+5+8=1+4+5+6.经试验,只有右上图的两种填法.亮点设计:(1)求数阵问题的关键是找到关键数,也就是重复数,教会学生学会找关键数的方法是最重要的.(2)设计问题:正方形每条边之和是13,13×4=52,但是所有数的和是:1+2+…+7+8=36,为什么会出现结果不同的问题呢?仔细观察这个数阵,四条边上所有数相加的过程中四个角上的数都被重复加了一次,也就是四个角上的数是重复数,52-36=16即为这四个重复数的和. (3)强调分组法与试验法:知道了四个数的和之后,下一步就要先确定这四个数,采用分组法和试验法.分组法是将这个和根据要求拆成四个数,例如本题中要求其中相邻两个的和与任意三个的和不等于13,根据要求将16分成4个数的和:16=1+2+6+7=1+2+5+8=1+4+5+6,但是未必每一组都是合适的,这就需要采用试验法,将它们一一进行试验.(4)小结:对于封闭型的数阵,重复数基本上都是两条线相交的点,这在后面的例题中有大量体现.[前铺]将1~6六个自然数分别填入下图的○内,使三角形每边上的三数之和都等于11.614532分析:因为每边上的和为11,那么三条边上的数字之和为11×3=33,而1+2+…+5+6=21,所以三个角的三个数之和等于33-21=12,在1~6中选3个和为12的数,且其中任意两个的和不等于11,这样的组合有:12=2+4+6=3+4+5,经试验,填法见右上图.[拓展]将1~6填入左下图的六个○中,使三角形每条边上的三个数之和都等于k ,请指出k 的取值范围.654321654321654321654321k=9 k=10 k=11 k=12分析:设三角形三个顶点的数字之和为s.因为每个顶点属于两条边公有,所以把三条边的数字和加起来,等于将1至6加一遍,同时将三个顶点数字多加一遍.于是有(1+2+3+4+5+6)+s=3k,化简后为s+21=3k.由于s是三个数之和,故最小为1+2+3=6,最大为4+5+6=15,由此求出9≤k≤12.s和k有四组取值:通过试验,每组取值都对应一种填数方法(见右上图).【例14】(★★★)小乌龟被困在五个圆里面(如下图),五圆相连,每个位置的数字都是按一定规律填写的,它必须找出规律,并求出x所代表的数才能脱困,你知道该怎么办吗?242730282622181720x分析:经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的和的一半.比如:(26+18)÷2=22.(30+26)÷2=28.(24+30)÷2=27.所以x+18=17×2,x=16.经检验,16和24相加除以2,也恰好等于20.[拓展]找规律求xx24123082616186452分析:经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的差的2倍.比如:(26-18)×2=16.(30-26)×2=8.(30-24)×2=12.因为52÷2=26>24,所以x=26+24=50.经检验,(50--18)×2=64.【例15】(★★★)1~9分别填入小三角形内(每个小三角形内只填一个数),要求靠近大三角形三条边的每五个数相加和相等.想一想,怎样填这些数才能使五个数的和尽可能大一些?分析:1+2+3+4+5+6+7+8+9=45,用s表示靠近大三角形三条边的五个数的和.因为有三个小三角形所填的数在求和时只用了一次(用a,b,c来表示这三个数),其余均用了两次.于是,45×2-(a+b+c)=3 s.要使s尽可能大,只要a+b+c尽可能小.所以a+b+c=1+2+3=6,于是90-6=3 s,s=28.剩下的六个数分成三组,并且每组中两数的和是三个连续自然数,那么:4+8=12;6+7=13;5 +9=14.经过调配可得到几十种填法,右上图是填法之一.[拓展一]如图是奥林匹克的五环标志,其中a,b,c,d,e,f,g,h,i处分别填入整数1至9,如果每一个圆环内所填的各数之和都相等,那么这个相等的和最大是多少,最小是多少?ihgfedcba分析:计算五个圈内各数之和的和,其中b,d,f,h被计算了两遍,所以这个和是1+2+3+4+5+6+7+8+9+b+d+f+h,而这个和一定能被5整除,所以b,d,f,h中填入大数时能使这个和取得最大值,最大是6、7、8、9,各圆圈内的和也取得15,由于15=6+9=7+8,所以满足条件的所有数无法配成15,当和为14时可以找出满足条件的填法,所以和最大为14,当b,d,f,h取1、2、3、4时这个和取得最小值,各圆圈内的和也取得最小值11.[拓展二]有10个连续的自然数,9是其中第三大的数.现在把这10个数填到下图的10个方格中,每格内填一个数,要求图中3个2×2的正方形中的4个数之和相等.那么,这个和数的最小值是多少?分析:9是其中第三大的数,所以这10个连续自然数是2、3、4、5……9、10、11,计算三个正方形中的和的和,这个和能被3整除,其中a和b被重复计算了两次,所以2+3+……11+a+b=65+a+b=3s,当a+b=1,4,7……时,65+a+b可以被3整除,因为要取最小值,所以a+b的值越小越好,但是不可能取1与4,所以,a+b=7时,这个和取得最小值,每个正方形中的和也取得最小值(65+7)÷3=24.【例16】(★★★)能否将数0,1,2,…,9分别填人下图的各个圆圈内,使得各阴影三角形5619372481528763049分析:0+…+9=45,45-中心数=3个阴影三角形的3个顶点上的数字之和,所以中心数必须是3的倍数,只能是0,3,6,9.枚举法实验,中心数只能是3,6,答案如右上图.[拓展一]将1~10分别填入图中,使得每个小三角形3个顶点上的数字之和为图中所表示的数值.分析:先确定中间5个重复数,它们的和为(20+16+12+13+10)-(1+2+…+10)=16,所以中间5个重复数只能是1,2,3,4,6的组合.又因为有1个和为20,相应三角形上的三个数只能是4,6,10,逐一试验,答案如右上图.[拓展二]图中有大、中、小3个正方形,组成了8个三角形.现在先把1,2,3,4分别填在大正方形的4个顶点上,再把1,2,3,4分别填在中正方形的4个顶点上,最后把1,2,3,4分别填在小正方形的4个顶点上.(1)能否使8个三角形顶点上数字之和都相等?如果能,请给出填数方法;如果不能,请说明理由. (2)能否使8个三角形顶点上数字之和各不相同?如果能,给出填数方法;如果不能,请说明理由.344341222311分析:(1)不能,如果能,则8个三角形顶点和的总和应该是8的倍数,但是这个总和有三组1、2、3、4组成,其中一组数被重复计算三次,一组数被重复计算两次,一组数仅被计算一次,因此该总和的值为6×(1+2+3+4)=60,不是8的倍数,产生矛盾,因此没有任何填法使8个三角形顶点上数字之和都相等. (2)能,见右上图.【例17】 (★★★),小熊和妈妈去外婆家要过一条河,必须要按照下面的要求填数才可以顺利通过,要求如下:20以内共有个○中(其中3已经填好),使得图中用箭头连接起来的四个数之和都相等.分析:3组数都包括左右两端的数,所以每组数的中间两数之和必然相等.现在还有1、5、7、11、13、17、19七个数供选择,两两之和相等的有1+19=7+13,只有两组,淘汰这一组;还有1+17=5+13+7+11,于是得到右上图的填法.(二)辐射型数阵【例18】 (★★★)将1~7这七个数字,分别填人图中各个○内,使每条线段上的三个○内数的和相等.635412762534175243716(1) (2) (3)分析:设中心○内填a ,由于三条线上的数字和相加应是3的倍数,其中a 一共加了3次,所以1+2+3+4+5+6+7+2a=28+2a 一定是3的倍数.而28÷3—9余1,那么2a ÷3的余数应该是2,因此,a=1,4或7.(1)当a=1时,28+2=30,30÷3=10,10-1=9,除中心外,其他两数的和应是9,只要把2,3,4,5,6,7六个数按“和”是9分成三组填入相应的○内就可以了.填法如图(1) (2)当a=4时,28+8=36,36÷3=12.填法如图(2)(3)当a=7时,28+14=42,42÷3=14.填法如图(3).亮点设计:(1)建议教师首先让学生进行试做,并让学生尝试多种填法。
小学数学-数阵图讲解学习
第一题图
第二题图
第三题图
例题3(书例2):
将1-9九个数字分别填在下图 圆圈内,使三角形 每条边上四个数的和是17.
1+2+3+……+9=45
每条边上的和是17,共有3条
17
17
边那么总和是17×3=51.
每个角上的数都被用了两次也 就是每个角上的数都加了一次。
17
51-45=6 6=1+2+3
17—1—2=14 14=5+9
3、(选做)把1--8这八个自然数分别填入图 中,使每个正方形四个角及每个对角线上四 个数的和均是18。(P17综3)
(书例4)把1--7七个数分别填入下图,使每条 线上三个数之和等于12
先看竖着的三条线,有一个公用数 12x3=36,1+2+3+4+5+6+7+8=28 36-28=8,公用数用了两次8÷2=4
三组数都用到了最中间的数,那么每组都减去 中间的那个数剩下的两个数的和相等
1 2 34567
7
1
4
23
6
5
1 1+7=2+6=3+5 2 2+7=3+6=4+5 3 1+6=2+5=3+4
7
2
1
43
5
6
1
6
7 45
3221来自54376
2 3
5 1 4 76
2
1 4
7
3
6
5
1. P16综1 2. P17能1 3. P16基1
不论是辐射型数阵阵、封闭型数还是复合型 数阵解题的要点都是先确定公共部分的数。
小学数学《数阵图》
例2 把1~7这七个数分别填入下图七个圆圈中, 使每条线段上三个圆圈内数的和是12。
解: 3
5
小结:
4
7
6
1
2
➢ 这里的关键是要分清楚哪个位置的数字重复使用了, 而且必须清楚重复使用了几次。
➢ 数阵图的解题方法关键是确定重复使用的数字。
一、快速抢答:
1、把一只鸡和一只鹅同时放进冰箱里,答案:企鹅嘛。 为什么鸡死了鹅没有死?
2、什么人生病从来不看医生? 答案:盲人。 3、哪一年哪月有二十八号? 答案:每个月都有二十八号。
4、用铁锤锤鸡蛋为什么锤不破? 答案:铁锤当然不会破了。
5、冬瓜、黄瓜、西瓜、南瓜都
能吃,什么瓜不能吃?
答案:傻瓜。
把洛书里面的点数用数字来代替, 大家看发现了什么?
++ ++ ++
= 15 = 15
把每个横排的三个数相 加,你发现了什么?
你还能发现哪些特点? 请给大家说一说。
= 15
幻方的规律
①.每行,每列,每条对角线的和都是15,即幻和 都是15,而且幻方正中间的那个数都是5,即 中心数为5,我们可以看到:幻和=中心数×3。
④看这个和B-A可能有哪几种组成情况; ⑤再分别试填,确定重复计算的位置的数字; ⑥根据要求确定其它位置的数字。
对于开放型数阵图要看重复使 用的数字重复计算了几次。
数阵图的解题方法关键是确 定重复使用的数字。
把1、2、3、4、5、6、7、8、9这9个数填入下图中, 使得每一横行、每一竖行、每一斜行的3个数加起来的 和都相等。
世上有走不完的路,也有过不了的河。过不了的 河掉头而回,也是一种智慧。但真正的智慧还要在河 边做一件事情:放飞思想的风筝,摘下一个“苹果”。 即原定的目标不能达成,我也要有所收获,不能付出 努力之后却空手而回。历览古今,抱定这样一种生活 信念的人,最终都实现了人生的突围和超越。
小学数学 数阵图 PPT带答案带作业
三个区域内的和都相等 (0+5)×6÷2=15 每个区域的和:15÷3=5 5=0+5=1+4=2+3
0
2
53
4
1
练习4
请将1,2,3,4,5,6,7,8 八个数字填入下图中的八块区域内,使得 每一个圆圈与它相邻的区域内的数之和都相等。
红、蓝两个区域内的和分别相等 (1+8)×8÷2=36 每个区域的和:36÷2=18 不妨再特殊一点,令同一区域内两部分和也相等 18÷2=9 9=1+8=2+7=3+6=4+5
课后作业:
作业1:
已知下图中横行四个数与竖列三个数之和都等于11,请将下图补充完整。
6 1 235 4
11-4-6=1 11-1-2-3=5
作业2:
请在下图中的三个圆圈内填入三个数,使得每条线上的两个数之和都等于7。
7
0
0
7
7-0=7 7-7=0
作业3:
已知七个互不相同的自然数之和是36,把它们分为和相等的两组,那么每组 数之和必须是多少?如果七个自然数之和是35,那么是否可以将这些数分为 和相等的两组?
5
7
6
练习2
请在下图中的三个圆圈内填入三个不同的自然数,使得图中每条线上三 个数的和都相等。
3+8-7=4 一条线的和:4+8+9=21 21-4-7=10 21-8-7=6
6
10
4
例题3
请将1 至11 填入下图中的11 个圆圈内,使得每条横线上的三个数之和 都相等。
2
分析:排除哪个数其他数可以平均分为5组?
4 5
小学数学《数阵图》练习题(含答案) (1)
小学数学《数阵图》练习题(含答案)课前复习1.在下面的○里填上适当的数,使每条线上的三个数之和都是16.【答案】【答案】2.在空格内填入适当的数,使得每行、每列和两条对角线上的三个数的和都为18.【答案】3. 在空格内填上适当的数,使得图中每行、每列及两对角线上四个数的和都是64.【答案】在神奇的数学王国里,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷.它就是数阵.到底什么是数阵呢?我们先观察下面2个图:在空格内填上适当的数,使得图中每行、每列及两条对角线上三个数的和都是15.认真观察,你发现每个图中的数字有什么特点?左上图有两条直线,每条直线上都有3个数字,它们的和都分别等于15;而右上图,将l~9九个数字排成三行、三列,每一行、每一列、每一斜行上的3个数字的和都等于15.数阵就是用数(一般指自然数)按一定的要求和规律,组成特定的形状或布成特定的阵势.它一般分为辐射型(左上图)和封闭型(右上图).要把一些数字按一定的规则填入图形中,有没有巧妙的方法来填呢?今天这节课我们就一起来学习.辐射型数阵图【例1】把1,2,3,4,5这5个数分别填入图中的圆圈内,使得横行3个数的和与竖列3个数的和都等于10.【分析】横行的三个数之和加上竖列的三个数之和,只有重叠数a被加了两次,即重叠了一次,其余各数均被加了一次.因为横行的三个数之和与竖列的三个数之和都等于10,所以(1+2+3+4+5)+a=10×2,a=5.剩下4个数中每两个数之和应该等于5,,1+4=2+3。
【例2】把4~8这五个数填入图中(已填入6),使两条直线上的三个数之和相等.【分析】方法一:把6除外,还剩4,5,7,8,这四个数,在这四个数中4+8=5+7,这样可以填出答案。
方法二:与例1不同之处是已知“重叠数”为6,而不知道两条直线上的三个数之和都等于什么数.可以先求出这个“和k”.(4+5+6+7+8)+6=k×2.K=18。
(完整版)小学三年级奥数--数阵图
数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右上图就更有意思了,1~9 九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从几个简单的例子开始。
例1 把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。
下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。
分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3 。
重叠数求出来了,其余各数就好填了(见右上图)。
试一试:练习与思考第1 题。
例2 把1~5 这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
分析与解:与例1 不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。
所以,必须先求出这个“和”。
根据例1 的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5] ÷2=10。
数阵图知识点五年级
数阵图知识点五年级数阵图是一种数学游戏,它通过在特定的格子中填入数字来完成游戏。
在小学五年级的数学课程中,数阵图通常被用来培养学生的逻辑思维和数学推理能力。
以下是关于数阵图的一些知识点,适合五年级学生学习。
数阵图是一种有趣的数学活动,它要求我们在给定的格子中填入数字,满足一定的条件。
这些条件可能包括数字的总和、数字的排列顺序,或者是数字之间的特定关系。
通过解决数阵图,我们不仅可以锻炼自己的数学能力,还能提高解决问题的能力。
数阵图的类型数阵图有多种类型,包括但不限于:1. 和数阵图:要求每行、每列的数字之和等于一个特定的值。
2. 乘积数阵图:要求每行或每列的数字乘积等于一个特定的值。
3. 数字限制数阵图:在某些格子中,数字有特定的限制,比如不能出现重复的数字。
4. 逻辑数阵图:需要根据给定的逻辑规则来确定数字的放置。
解决数阵图的策略1. 观察和分析:在开始解决数阵图之前,先观察给定的数字和条件,尝试找出可能的规律。
2. 逐步填充:从容易确定的数字开始,逐步填充数阵图,注意保持每行每列的和或乘积符合要求。
3. 回溯法:如果发现某个数字的放置导致后续无法满足条件,需要回溯到上一步,重新选择数字。
4. 试错法:在没有明确线索的情况下,可以尝试不同的数字组合,通过试错来找到正确的答案。
数阵图的教育意义数阵图不仅是一个数学游戏,它还能够帮助学生:- 提高逻辑思维能力:通过解决数阵图,学生需要运用逻辑推理来确定数字的放置。
- 培养耐心和细心:数阵图的解决往往需要反复尝试和调整,这有助于培养学生的耐心和细心。
- 增强数学兴趣:数阵图将数学问题以游戏的形式呈现,能够激发学生的学习兴趣。
数阵图的实践应用数阵图的概念也可以应用于实际生活中,比如在解决资源分配问题、规划问题时,数阵图可以帮助我们更直观地理解问题,并找到解决方案。
通过数阵图的学习,五年级的学生们不仅能够提升自己的数学技能,还能在乐趣中学习到解决问题的方法。
小学奥数:数阵图(一).专项练习及答案解析
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格); 第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。
【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】学而思杯,3年级,第6题 【解析】例题精讲知识点拨教学目标5-1-3-1.数阵图【答案】【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?(1)【考点】封闭型数阵图 【难度】2星 【题型】填空 【解析】 为了叙述方便,先在各圆圈内填上字母,如下图(2).由条件得出以下四个算式:(2)h gf ed c baa+b+c=14(1) c+d+e=14 (2) e+f+g=14 (3)a+h+g=14 (4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h )-(d+h )=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8, 又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h 与b+f 只能有2+6和3+5两种填法. 又由对称性,不妨设b=2,f=6,d=3,h=5. a ,c ,e ,g 可取到1,4,7,8若a=1,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=1,则a=14-(1+2)=11,不行.若e=1,则c=14-(1+3)=10,不行.若g=1,则a=8,c=4,e=7.说明:例题为封闭型数阵,由它的分析思考过程可以看出,确定各边顶点所应填的数为封闭型数阵的解题突破口.【答案】【例 3】在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A、B、C的和为18,则三个顶点上的三个数的和是。
小学数学数阵图
解题过程
边和X3 = a+b+c+d+e+f+g+2c 14X3 = 1+2+3+4+5+6+7+2c 42 = 28+2c 14 = 2c c= 7
2020/12/9
例1 (★★)
将1~7这七 个数字, 分别填入 2 图中各个 ○内,使 每条线段 上的三个 ○内数的 和都等于 14。
1
6
7
5
4
3
先填入边和,直线上微调,满足圆圈。
【超常大挑战】(★★★★★)
a ,b ,c ,d ,e, f, g ,h ,I ,处分别填入1至9, 如果每个圆环所填的数的和都相等, 那么这个相等的和最大是多少?最少是多少?
a+e+i+c+g+2(b+d+f+h)=和×5 45+b+d+f+h=和×5 b+d+f+h最大时为6,7,8,9 此时和为15 b+d+f+h最小时为1,2,3,4 和为11 当和为15时无解,和为14有解 最大为14,最小为11
行 业 PPT模 板 : /hangye/ PPT素 材 下 载 : /sucai/ PPT图 表 下 载 : /tubiao/ PPT教 程 : /powerpoint/ Excel教 程 : /excel/ PPT课 件 下 载 : /kejian/ 试 卷 下 载 : /shiti/
圈和X2=数字和+a+b 圈和X2=36+a+b 圈和等于21 a+b=6 则a 和b有两种可能1,5和2,4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2 34567
7
1
4
23
6
5
1 1+7=2+6=3+5 2 2+7=3+6=4+5 3 1+6=2+5=3+4
7
2
1
43
5
6
1
6
7 45
3
2
2
1 5
4
3
76
2 3
5 1 4 76
2
1 4
7
3
6
5
1. P16综1 2. P17能1 3. P16基1
每条线上和为12,所以另外两个数凑 8.(1,7)(2,6)(3,5)
根据横向和12调整
4
4
1 7
23
调整横向和12
1
6
5
7
23
6
5
1、将1--6填入下图中,要求四条直线上的数之和都 等于10。(基4)
2、把1--8这八个数分别填入图内,使小 正方形四个顶点之和等于大正方形四个顶 点之和(综4)
3、(选做)把1--8这八个自然数分别填入图 中,使每个正方形四个角及每个对角线上四 个数的和均是18。(P17综3)
(书例4)把1--7七个数分别填入下图,使每条 线上三个数之和等于12
先看竖着的三条线,有一个公用数 12x3=36,1+2+3+4+5+6+7+8=28 36-28=8,公用数用了两次8÷2=4
并且每条线上的3个数的和都相等。数字精灵们 分别应该站在哪个圆圈中?
思考:你觉得先填哪 个圆圈最重要?
辐射图,有技巧。 中间数,填中间, 首尾成双面对面。
真棒!
你还有不同 的填法吗?
思考:想一想,要使每条线上3个数的和相等, 你还有别的填法吗?请你试着填一填。
辐射图,有技巧。 首位数,填中间, 剩余成双面对面。
3、请你把1--8八个数分别填到下图中, 使每个圆周上的数相加的和等于21。 (能4)
不论是辐射型数阵阵、封闭型数还是复合型 数阵解题的要点都是先确定公共部分的数。
七嘴八舌
说说你的收获!
数阵是由幻方演化出来的另一种数字图。 一般按数的组合形式,将其分为三类, 即辐射型数阵、封闭型数阵、复合型数 阵
公元前2000多年,我国部分地区 洪水泛滥,有个名叫禹的人负责 治理水灾的事(历史上称他为夏禹)。 传说一次在洛水里浮起一只大乌龟, 背上有一幅奇特的图案。这就是著 名的“洛书”。你发现了什么?
492 357 816
思考:每行、每列的和是多少?
例1铺垫(辐射型数阵图) 数字精灵1、3、5、7、9分别要站在圆圈中,
17—1—3=13 13=6+7
17—2—3=12 12=4+8
求角上几个数之和的方法: ①先求出题中几个已知数的和 ②再求出所有行总和:每行之和×行数 ③求差:“所有行的总和—已的三个数的和等于10
2、P16基2 3、P17综2 4、P17能2(选做)
(书例3)请把1—7添入下图,使每行三个数的 和相等,并且圆上三个数的和也等于每行的和。
2
7
1
64
3
5
3
5
4
61
2
7
6
1
7
24
5
3
1、请把1—7添入图中,使图中每个圆和每条 直线上的三个数之和都相等。(P17能3)
2、请把1—13添入下图,使每边三个 数的和相等,并且圆上五个数的和相 等。(P16基3)
第一题图
第二题图
第三题图
例题3(书例2):
将1-9九个数字分别填在下图 圆圈内,使三角形 每条边上四个数的和是17.
1+2+3+……+9=45
每条边上的和是17,共有3条
17
17
边那么总和是17×3=51.
每个角上的数都被用了两次也 就是每个角上的数都加了一次。
17
51-45=6 6=1+2+3
17—1—2=14 14=5+9
辐射图,有技巧。 末位数,填中间, 剩余成双面对面。
这类是辐射型数阵图,解题关键是找准中间数。中 间数通常是一组有序数列中的首项、中间项或末项, 再把剩下的数按照“大小配”分成几组,分别填入。
将3—9填入下图中,使每行3个数的和相等, 有几种填法?
例1 、用1——7填入下图,使每行三个数的和相等。
例2(补充): 将1—7填入图中,使每行三个数的和都是14
“公用数”的求法: ①先求出几个已知数的和 ②再求出所有行总和:每行的和×行数 ③求差:“所有行的总和—已知数的和” ④差÷(行数—1)=中间数
1、将1—9填入图中,使每行的和都等于12 2、将1—11填入图中,使每行的和都等于18 3、将1—7填入图中,使每行的和都等于12