随机过程罗斯第三章答案
应用随机过程第3章习题简答

iu
Yk
k
n
) (Y1 (u )) n
所以特征泛函:
Z (t ) (u ) E[ E (eiuZ (t ) | N (t ))] E[(Y (u )) N (t ) ] (Y (u )) k m(t )k m ( t )(Y1 ( u ) 1) 。 e k!
进而在时刻 s,t 的协方差函数:
Z ( s, t ) RZ ( s, t ) Z ( s) Z (t ) E ( N ( s))Var (Y1 ) Var (Y1 ) (u)du, ( s t )
0
s
由于: E (e
iuZ ( t )
| N (t ) n) E (e
(1)E (T ) (t R) f S1 (t )dt ( s W ) f S1 (t )dt = (W R 1/ )e s ( R 1/ ) 。
0 s
s
d ( E (T )) (W R 1/ )e s ds d ( E (T )) 当 W < 1/λ+ R 时, 0 ,平均到家时间是 s 的增函数,所以(1)的 ds 期望时间在 s=0 时最小; d ( E (T )) 当 W > 1/λ+ R 时, 0 ,平均到家时间是 s 的减函数,所以(1)的 ds
(1) P{ X (3) 5} e 3
(3 )5 ; 5!
P{ X (2) 5, X (3) X (2) 0} P{ X (3) 5} e2 (2 )5 e 2 5! ( )5 ; 5 (3 ) 3 e3 5!
( 3 ) P{ X (2) 5 | X (3) 5}
0 s1 s2 s3 。 other
(优选)随机过程第三章

性质3.1 若随机过程X(t)是 m s 连续的,则
它的数学期望也必定连续,即:
lim E[X (t t)] E[X (t)]
t 0
证 设 Y X (t t) X (t) 是一个随机变量
D [Y ] E [Y 2] E2[Y ]
E [Y 2 ] D [Y ] E2[Y ] E2[Y ]
RX (t t,t t) RX (t t,t) RX (t,t t) RX (t,t)
∴有
lim
t 0
E
X
0
RX
(t
t
,
t
t
)
RX
(t
t
,
t
)
RX
(t,
t
t
)
RX
(t
,
t
)
对于右边极限式,自相关函数 t1,t2 是的函数。
欲使右边极限为零,则需 RX (t1,t2) 中,t1 t2 t ,才能 保证随机过程均方连续。
§3.2 随机过程的连续性
定义:若随机过程X(t)满足lim E [ | X (t t) X (t) |2] = 0, t 0
则称随机过程X(t)于t时刻在均方意义下连续(简称
m s 连续)。
另一方面,由定义知
E
X
(t
t)
X
(t)
2
E X (t t)X (t t) X (t t)X (t) X (t)X (t t) X (t)X (t)
n,m
xn xm 2 0
则必然存在一个随机变量x,使得
。
xn m s x
洛夫准则(又称均方收敛准则):随机变量
序列 {xn, n 0,1,2,L }均方收敛于x的充要条件是
第3章 随机过程及答案

互相关函数 R (t1 , t 2 ) E[ (t1 )(t 2 )]
式中 (t) 和 (t) 分别表示两个随机过程。 R(t1, t2)又称为自相关函数。
10
3.2 平稳随机过程 3.2.1 平稳随机过程的定义
12
数字特征:
E (t ) x1 f1 ( x1 )dx1 a
R( t1 , t 2 ) E[ ( t1 ) ( t1 )]
x1 x2 f 2 ( x1 , x2 ; )dx1dx2 R( )
可见,(1)其均值与t 无关,为常数a ; (2)自相关函数只与时间间隔 有关。
P ( f ) 0
P ( f ) P ( f )
这与R()的实偶性相对应。
23
例题
[例3-2] 求随机相位余弦波(t) = Acos(ct + )的功率谱密度。 [解] 在[例3-1]中,我们已经考察随机相位余弦波是一个平稳 过程,并且求出其相关函数为
1 (t ) 2 (t )
n (t )
0
t
3
角度2:随机过程是随机变量概念的延伸。
在一个固定时刻t1上,不同样本的取值{i (t1), i = 1, 2, …, n} 是一个随机变量,记为 (t1)。
样本空间
随机过程是在时间进程中处于不同时刻的随机变量的集合。
S1 x1(t)
t
T /2
T / 2
x( t ) x( t )dt
aa R( ) R( )
(解答)《随机过程》第三章习题

(1)试求随机过程{Z (t); t 0}的均值函数 E{Z (t)}和二阶矩 E{Z 2 (t)} ;
(2)试证明: pn (t)u n exp{(1 2 )t } exp{1ut 2u 1t }。 n
P{X (s) i}
P{N (s) 2(i 1)}
P{N (s) 2(i 1)}P{N (t s) 2( j i)} [(t s)]2( ji) e(ts) ; ( j i, t s)
P{N (s) 2(i 1)}
[2( j i)]!
lim
h0
Pt
2
h 2
S2
t2
h 2 ,t5 h2
h 2
S5
t5
h
2
5 2
t2 (t5
t2 )2 et5
,
0 t2 t5
(2)由于{N (t) 1} {S1 t} ,由泊松过程与指数分布的关系可知,在{S1 t} 条件 下, S1 的分布密度函数为
(3)由于{N (t) 1} {S1 t S2} ,令: 0 t1 t t2 ,取充分小的 h1, h2 0 ,
使得: t1 h1 t1 t t2 h2 t2 ,由
t1 h1 S1 t1, t2 h2 S2 t2 N t1 h1 0, N t1 N t1 h1 1,
3、 设{N1 (t); t 0}和{N 2 (t); t 0} 是相互独立的 Poisson过程,其参数分别为 1 和 2 .若 N0 (t) N1 (t) N 2 (t) ,问: (1) {N0 (t); t 0} 是否为 Poisson 过程,请说明理由; (2) {N0 (t); t 0} 是否为平稳过程,请说明理由。 解:(1)由于 N 0 (t) 的状态空间为 S {,1, 0,1,} ,因此 N 0 (t) 不是计数过程,更
随机过程-习题-第3章

随机过程习题第3章3-1 3.1 设有一泊松过程{}0,)(³t t N P ,若有两个时刻s 、t ,且s<t ,试证明{}k n k t s t s k n n t N k s N P -÷øöçèæ-÷øöçèæ÷÷øöççèæ===1)(/)(其中,n k ,,2,1,0 =。
证明:依条件概率定义和泊松过程为独立增量过程的性质可得{}{}{}kn k tn s t k n s k t s t s k n n e t k n e s t k e s n t N P k n s N t N k s N P n t N k s N P ------÷øöçèæ-÷øöçèæ÷÷øöççèæ=--==-=-====1!)()!()]([!)()()()(,)()(/)()(l l l l l l 从另一个角度考虑,泊松事件到达时间分布是[0,t ]内的均匀分布。
定义事件A 为一个泊松事件出现在[t ,s ]内,事件A 发生的概率为t s,不发生的概率为ts -1。
于是{}kn k t s t s k nk P n t N k s N P -÷øöçèæ-÷øöçèæ÷øöçèæ====1}{A )(/)(次事件发生3.2设顾客以泊松分布抵达银行,其到达速率为l 。
随机过程第三、五章测验题答案(2010)

随机过程测试题二答案1.以1T 表示泊松过程}0),({≥t t N 中事件首次发生的时刻,则对于t s ≤,求条件概率}1)(|{1=≤t N s T P解: ==≤}1)(|{1t N s T P ts .(细节请查书) (5分) 2.设{N (t ), t ≥0}是强度为λ的泊松过程,N (t )表示到时刻t 为止事件A 发生的次数,则对任意t s <≤0,求),(),(t DN t EN )).(),(cov(s N t N解:t t DN t EN λ==)()(; (5分) .))(),(cov())(),(-)(cov())(),(cov(s s N s N s N s N t N s N t N λ=+= (5分)3.设某公交车站从早晨5时至晚上21时有车发出.从5时至8时乘客的平均到达率呈现性增加,5时乘客的平均到达率为200人/小时,8时乘客的平均到达率为1400人/小时;8时至18时乘客的平均到达率不变;18时至21时乘客的平均到达率线性减少,到21时为200人/小时.假定在不相重叠的时间间隔内到达车站的乘客数相互独立.求(1)12时至14时恰有2000名乘客到车站的概率;(2)这两小时内到车站的乘客平均数.解:以N (t )表示0时到t 时到达的乘客数,则211818885),18(4001400,1400),5(400200)(≤≤<<≤≤⎪⎩⎪⎨⎧---+=t t t t t t λ,(1)).21400(~)12()14(⨯-P N N==-}2000)12()14({N N P !2000280020002800⋅-e ; (5分) (2)2800)]12()14([=-N N E . (5分)4.假定某天文台观测到的流星流是一个泊松过程,据以往资料统计为每小时平均观察到3颗流星. 试求(1)在上午8点到12点期间,该天文台没有观察到流星的概率.(2)下午(12点以后)该天文台观察到第一颗流星的时间的分布函数.解:(1)设早晨8时为0时刻,以N (t )表示0时到t 时观测到的流星数,则N (t )是强度为3(颗/小时)的泊松过程.).43(~)0()4(⨯-P N N==-}0)0()4({N N P 12-e ; (5分)(2)记下午(12点以后)该天文台观察到第一颗流星的时间为1T ,则其密度函数为.0,3)(3≥=-t e t f t相应的分布函数为⎩⎨⎧<≥-=-0,00,1)(3t t e t F t . (5分) 5.保险公司接到的索赔次数是一个泊松过程{N (t ),t ≥0}, 每次的赔付金额{Y n }是一族独立随机变量序列,且有相同分布F ,索赔数额与它发生的时刻无关.则在(0,t ]时间内保险公司赔付的总金额可表示为∑=)(1t N i i Y (5分);若保险公司以平均每月两次的速率接到索赔要求,每次赔付为均值是2000元的正态分布,则它的年平均赔付金额为48000元(5分).解:2000元×2×12=48000元6. 设到某电影院的观众服从强度为λ的泊松流,如果电影在时刻t 开演,求在(0,t ]时间内到达电影院的观众等待开演的时间总和的均值.解:假设以强度为λ的泊松过程{N (t ),t ≥0}来到某电影院,火车在时刻t 启程. 计算在(0,t ]时间内到达的乘客的等待时间的总和的期望值.解1:以T n 记第n 位观众的来到时刻,则所求为∑=-)(1)(t N i i T t E.22])(|[])(|)([)(1)(1nt nt nt n t N T E nt n t N T t E t N i i t N i i =-==-==-∑∑== (5分) ∑∑∑+∞=====-=-0)(1)(1})({])(|)([)(n t N i i t N i i n t N P n t N T t E T t E.2)!1()(2!)(221120t e n t t e n t nt n t n n t nλλλλλλ=-==∑∑+∞=--+∞=- (5分) 7.某商场为调查顾客到来的客源情况,考察了男女顾客来商场的人数。
随机过程第三章

随机过程的概率密度函数
概率密度函数
对于连续随机过程,其概率密度函数描述了随机过程在各个时间点或位置上的取值的可能性密度。
联合概率密度函数
对于多个连续随机过程的组合,其联合概率密度函数描述了这些随机过程在各个时间点或位置上的取 值的联合可能性密度。
03
随机过程的数字特征
均值函数
总结词
描述随机过程中心趋势的数字特征
泊松过程
定义
泊松过程是一种随机过程,其中事件的 发生是相互独立的,且以恒定的平均速
率在时间上均匀地发生。
应用
在物理学、工程学、生物学等领域都 有应用,如放射性衰变、电话呼叫等。
性质
泊松过程具有无记忆性,即两次事件 发生的时间间隔与它们是否同时发生 无关。
扩展
泊松过程可以推广为更复杂的过程, 如非齐次泊松过程和条件泊松过程。
随机过程第三章
目录
• 随机过程的基本概念 • 随机过程的概率分布 • 随机过程的数字特征 • 随机过程的平稳性和遍历性 • 马尔科夫链和泊松过程 • 随机过程的应用
01
随机过程的基本概念
随机过程的定义
01
随机过程:一个随机过程是一个定义在概率空间上的
参数集的集合,这个集合的元素是随机变量。
02
马尔科夫链和泊松过程的比较
关联性
马尔科夫链和泊松过程都是随机过程,但它们的 性质和应用场景有所不同。
时间连续性
马尔科夫链可以适用于连续时间,而泊松过程通 常适用于离散时间。
ABCD
状态转移
马尔科夫链关注的是状态之间的转移,而泊松过 程关注的是事件的发生。
应用领域
马尔科夫链在社会科学和生物科学中应用广泛, 而泊松过程在物理学和工程学中更为常见。
(完整版)随机过程习题答案

(完整版)随机过程习题答案随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的⼀维概率密度、均值和相关函数。
解因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的⼀维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的⼀维概率密度及),(),(21t t R t EX X 。
解对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的⼀维概率密度xtt x f t x f Y 1)ln ();(-=,0>t)(][)]([)(dy y f e eE t X E t m yt tY X相关函数+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X 2.3 若从0=t 开始每隔21秒抛掷⼀枚均匀的硬币做实验,定义随机过程=时刻抛得反⾯时刻抛得正⾯t t t t t X ,2),cos()(π试求:(1))(t X 的⼀维分布函数),1(),21(x F x F 和;(2))(t X 的⼆维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,⽅差 )1(),(22X Xt σσ。
随机过程第三章作业答案

Yk-1 ]] ≤ b ⋅ ∑ E[I{T ≥ k} ]
k =0
= b ⋅ ∑ P(T ≥ k) = b(1 + E[T]) < ∞,即E[W] < ∞
10证明:利用停时定理2 由已知P(T<∞)=1,得条件1已满足。
2 2 又∀n ≥ 1,E[X T ∧ n ]=E[|X T ∧ n | ] ≤ c;
利用柯西-施瓦茨不等式(E[XY])2 ≤ E[X 2 ]E[Y 2 ]: 令Y=1,(E[|X T ∧ n |])2 ≤ E[|X T ∧ n |2 ]E[12 ] ≤ c ∴ E[|X T ∧ n |] ≤ c,进而有E[ sup|X T ∧ n |] ≤ c < ∞,
第三章习题解答
3-(1) ∵{ X n , n ≥ 0}是鞅, ∴ E[X 0 ] = E[X n ] = 0,且有 E[Yk ]=E[X k -X k-1 ]=0;Var(Yk )=E[Yk2 ];Var(X n )=E[X 2 n ];
2 E[Yk2 ]=E[(X k -X k-1 )2 ]=E[X k +X 2 k-1 -2X k X k-1 ] 2 =E[X k ]+E[X 2 其中 k-1 ]-2E[X k X k-1 ],
9 (一)常规证明: 右侧不等号: E[X T ∧ n ]=E[X T ∧ n ⋅ I{T ≥ n} ]+E[X T ∧ n ⋅ I{T<n} ]=E[X n ⋅ I{T ≥ n} ]+E[X T ⋅ I{T<n} ] =E[X n ⋅ I{T ≥ n} ]+E[∑ X k ⋅ I{T=k} ]
k =0 n-1
E[X k X k-1 ]=E[E[X k X k-1|X 0 X1 =E[X k-1E[X k |X 0 X1
随机过程答案

第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 10(())x p p e x dx ∞--Γ=⎰ (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设ln (),()(k Z F X E Z k =并求是常数)。
通信原理第三章随机过程

4、平稳随机过程通过线性系统
4、平稳随机过程通过线性系统
5、窄带随机过程(1)
PX (
f
)
1 4PXL( Nhomakorabeaf
fc ) PXL ( f
fc )
5、窄带随机过程(2)
注意窄带过程为平稳随机过程!
XL (t) Z(t)e j2 fct
Xc t Xˆ s t ?
5、窄带随机过程(3)
试证明
5、窄带随机过程(4)
广义平稳序列,均值为ma,g(t)在一个周 期T内有值,周期平均值为mg。易证这是 一个(非周期)广义平稳的随机过程。
7 循环平稳随机过程
均值 E X t E an E g t nT mamg
n
自相关 Rg Rg t,t
1 T
k
Ra
k
kT
Rg
均和第一种形式的周期平稳随机信号在一个周期内的平均相等。
1 T
k
Ra
k
g* u g u
kT du
1 T
k
Ra
k
Rg
kT
1 T
k
Ra
k
kT
Rg
PX
f
1 T
Eg
f
Pa
f
1 T
G
f
2
Ra
k
k exp
jk 2
fT
7 循环平稳随机过程
对于基带过程
X t ang t nT ② n
其中α是[0,T]上均匀分布的RV。an序列为
功率谱密度
PX
f
1 T
Eg
f
Pa
f
1 T
G
f
2
随机过程第三章

3. 物理可实现的系统 稳定系统条件: h(t ) dt 因果系统条件: t 0, h(t ) 0
5
3.2 随机信号通过连续时间系统的分析
在给定系统的条件下,输出信号的某个统计特性 只取决于输入信号的相应的统计特性。 根据输入随机信号的均值、相关函数和功率谱密 度,再加上已知线性系统单位冲激响应或传递函 数,就可以求出输出随机信号相应的均值、相关 函数和功率谱密度 分析方法:时域分析法 ;频域分析法。
24
3.3 希尔伯特变换和解析过程
一、希尔伯特变换
25
希尔伯特变换相当于一个正交滤波器
1 ˆ (t ) x(t ) * x t
H ( )
+j 0 -j
j 0 H ( ) j 0
26
h(t ) 1/ t
| H ( ) |
2 ( ) 2
14
结论1:若输入是 X(t) 宽平稳的,则系统输出Y(t) 也是宽平稳的,且输入与输出联合宽平稳。
若输入X(t)为宽平稳随机过程,则有: mX (t ) mX 常数 RX (t1 , t2 ) RX ( ) =t 2 t1
RX (0) E[ X 2 (t )]
mY mX h( )d
6
3.2.1 时域分析法 1、输出表达式(零状态响应,因果系统) 2、输出的均值 3、系统输入与输出之间的互相关函数 4、系统输出的自相关函数 5、系统输出的高阶距
7
3.2.1 时域分析法 1、输出表达式(零状态响应,因果系统) 2、输出的均值 3、系统输入与输出之间的互相关函数 4、系统输出的自相关函数 一个确定性函数 5、系统输出的高阶距
y(t t0 ) L[ x(t t0 )]
随机过程答案

随机过程第三章与第四章习题解答3.1 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
4030(30)((1)40)!k k P N e k -=≤=∑。
3.2 解:法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。
1N T 表示1()N t =1N 的发生时刻,2N T 表示2()N t =2N 的发生时刻。
1111111111()exp()(1)!N NN T f t t t N λλ-=-- 2221222222()exp()(1)!N NN T f t t t N λλ-=--1212121221112,12|12211122212(,)(|)()exp()exp()(1)!(1)!N N N N N NNN N T T T T T f t t f t t f t t t t t N N λλλλ--==---- 12212121112211122210012()exp()exp()(1)!(1)!NNt N N N N P T T dt t t t t dt N N λλλλ∞--<=----⎰⎰(2)当1N =2N 、1λ=2λ时,12121()()2N N N N P T T P T T <=>=法二:(1)乘车到来的人数可以看作参数为1λ+2λ的泊松过程。
令1Z 、2Z 分别表示乘坐公共汽车1、2的相邻两乘客间到来的时间间隔。
则1Z 、2Z 分别服从参数为1λ、2λ的指数分布,现在来求当一个乘客乘坐1路汽车后,下一位乘客还是乘坐1路汽车的概率。
212211122210()exp()exp()z p P Z Z dz z z dz λλλλ∞=<=--⎰⎰112λλλ=+。
故当一个乘客乘坐1路汽车后,下一位乘客乘坐2路汽车的概率为1-p 212λλλ=+上面的概率可以理解为:在乘客到来的人数为强度1λ+2λ的泊松过程时,乘客分别以112λλλ+概率乘坐公共汽车1,以212λλλ+的概率乘坐公共汽车2。
随机过程2016quiz及答案3

• Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit. Do not write in the table to the right.
Stochastic Processes
Quizz 3: The Poisson Award - Page 4 of 9
14/12/16
3. (20 points) A coin with probability p of Heads is flipped repeatedly. For (a) and (b), suppose that p is a known constant, with 0 < p < 1. (a) (5 points) What is the expected number of flips until the pattern HT is observed? (b) (5 points) What is the expected number of flips until the pattern HH is observed? (c) (10 points) Now suppose that p is unknown, and that we use a Beta(a, b) prior to reflect our uncertainty about p (where a and b are known constants and are greater than 2). In terms of a and b, find the corresponding answers to (a) and (b) in this setting.
随机信号与系统课第三章习题部分答案

第三章 习题3-1 设某一随机过程的样本为{x 1,x 2,…,x k },设k 时刻的样本均值和方差分别为21111(),(1)1kkk ik i k i i x x s x x k k k ====-≠-∑∑和 假定新的观测值为x k+1,试推导样本均值x k+1和样本方差s k+1的更新公式。
解:111k k k kx x x k +++=+. ∵ 121111()k k i k i s x x k +++==-∑,而211()1k k i k i s x x k ==--∑,所以 112211111222111111122112211()()111211 ()()()()11111 0()()(1)(1) k k k k k k k i i k i i k k k k k k k k k i k i k k i i i k k k k kkx x x x s x x x k k k k x x x x kx x x x x x x k k k k k k k k k s x x x x k k k +++++==++++===+++-=-=--++--+=---++-+++-=-+-+-++∑∑∑∑∑2111 ().1k k k k s x x k k +-=+-+∴ 更新公式为11111k k k k x x x k k ++=+++, 21111()1k k k k k s s x x k k ++-=+-+.3-2 设某一随机过程样本由x k =a+bk+v k 描述,其中,v k ~N (0,σ2);a 和b 是待定的未知参数。
试求估计量a ˆ,b ˆ的CR 下界。
解:未知参数向量为θ=[a ,b ]T 。
首先计算Fisher 信息矩阵,即222222ln (|)ln (|)[][]()ln (|)ln (|)[][]p x p x E E a a b p x p x E E b a b ⎡⎤∂∂--⎢⎥∂∂∂⎢⎥=⎢⎥∂∂⎢⎥--⎢⎥∂∂∂⎣⎦θθI θθθ (3.1.31) 依题意,似然函数可写成22/22111(|)exp[()](2π)2NkN k p x xa bk σσ==---∑θ对上式等号两边取自然对数,并分别对A 和B 求偏导,得到21ln (|)1()Nkk p x xa bk a σ=∂=--∂∑θ21ln (|)1()Nkk p x xa bk kb σ=∂=--∂∑θ容易验证,以上二式的数学期望为零,满足正则条件(3.1.25)。
随机过程习题及部分解答(共享).docx

随机过程习题及部分解答习题一1.若随机过程X(/)为X(0 = A?,-oo<r<+oo,式中4为(0, 1)上均匀分布的随机变量,求X(/)的一维概率密度Px(x;t)。
2.设随机过程X(/) = 4cos(初+ 其中振幅A及角频率①均为常数,相位&是在[-兀,刃上服从均匀分布的随机变量,求X(/)的一维分布。
习题二1.若随机过程X(/)为X(t)=At -00 < r < +00 ,式中4为(0,1)上均匀分布的随机变量,求E[xa)],7?xa』2)2.给定一随机过程X(/)和常数Q,试以X(/)的相关函数表示随机过程y(0 = X(/ + a) —X(/)的自相关函数。
3.已知随机过程X(/)的均值阪⑴和协方差函数Cx (爪© , 0(/)是普通函数,试求随机过程丫⑴=X(/) + 0(/)是普通函数,试求随机过程丫⑴=X(/) + 0(/)的均值和协方差函数。
4.设X(t) = A cos at + B sin at,其中A, B是相互独立且服从同一高斯(正态)分布N(0Q2)的随机变量,a为常数,试求X(/)的值与相关函数。
习题三1.试证3.1节均方收敛的性质。
2.证明:若X(t),twT;Y(t),twT均方可微,a0为任意常数,则aX(t) + bY(t) 也是均方可微,且有[aX (?) + b Y(/)]' = aX'(/) + b Y'(/)3.证明:若X⑴,twT均方可微,/X/)是普通的可微函数,则f(Z)X(Z)均方可微且[f(ox(or-/w(o+/(ox,(o4.证明:设X⑴在[a,b]上均方可微,且X0)在[a,切上均方连续,则有X'⑴ dt = X(b) — X(a)J a5•证明,设X(t\t eT =[a,b];Y{t\t eT = [a,b]为两个随机过程,且在T上均方可积,a和0为常数,则有(*b (*b (*bf [aX(/) + 0Y(/)M = a [ Xit)dt + /3\ Y⑴ dtJ a J a J aeb rc rbaX (t)dt = X (t)dt + XQ) dt,aWcWbJ a J a Jc6.求随机微分方程X'(/) + aX ⑴二丫⑴ze[0,+oo]'X(0) = 0的X(t)数学期望E [X(0]。
随机过程作业和答案第三章

随机过程作业和答案第三章第三章马尔科夫过程1、将⼀颗筛⼦扔多次。
记X n 为第n 次扔正⾯出现的点数,问{X(n) , n=1,2,3,···}是马尔科夫链吗?如果是,试写出⼀步转移概率矩阵。
⼜记Y n 为前n 次扔出正⾯出现点数的总和,问{Y(n) , n=1,2,3,···}是马尔科夫链吗?如果是,试写出⼀步转移概率矩阵。
解:1)由已知可得,每次扔筛⼦正⾯出现的点数与以前的状态⽆关。
故X(n)是马尔科夫链。
E={1,2,3,4,5,6} ,其⼀步转移概率为:P ij = P ij =P{X(n+1)=j ∣X(n)=i }=1/6 (i=1,2,…,6,j=1,2,…,6) ∴转移矩阵为2)由已知可得,每前n 次扔正⾯出现点数的总和是相互独⽴的。
即每次n 次扔正⾯出现点数的总和与以前状态⽆关,故Y(n)为马尔科夫链。
其⼀步转移概率为其中2、⼀个质点在直线上做随机游动,⼀步向右的概率为p , (0解:由已知可得, 其⼀步转移概率如下:故⼀步转移概率为3、做⼀系列独⽴的贝努⾥试验,其中每⼀次出现“成功”的概率为p ( 0解:由已知得:故为马尔科夫链,其⼀步转移概率为616161616161616161616161616161616161P6,,2,1,6/1,,8,7,,0)1,( i i i j i j i i i j ij n n P 或)1(6,,2,1;6,,2,1, n n n j n n n n i ,,2,1,0 E )(0,1;)0(0,1)1,1(0,,1,,2,1101,1, j P P j P P i i j P q P P P x j j ij i i i i ⽽时,当 1000000 0000000001Pp q p q p qm m m m m m i n X l n X i n X i n X i n X l n X P )(0)()(,,)(,)(0)(2211mm m m m m in X k l n X i n X i n X i n X k l n X P )()()(,,)(,)()(22114、在⼀个罐⼦中放⼊50个红球和50个蓝球。
通原第三章随机过程课后题答案

第三章 随机过程错误!未定义书签。
.设()()()cos 2c Y t X t f t πθ=+,其中()X t 与θ统计独立,()X t 为0均值的平稳随机过程,自相关函数与功率谱密度分别为()X R τ,()X P f 。
(1)若θ在()0,2π均匀分布,求()Y t 的均值、自相关函数和功率谱密度(2)若θ为常数,求()Y t 的均值、自相关函数和功率谱密度 解:无论是(1)还是(2),都有()()()cos 20c E Y t E X t E f t πθ=+=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()()()()()()()()()()()()()()()()cos 2cos 22cos 2cos 221cos 2cos 422211cos 2cos 42222Y c c c c c c X c c c X c X c c R E Y t Y t E X t f t X t f t f E X t X t E f t f t f R E f f t f R f R E f t f ττπθτπθπττπθπθπττπτπθπττπττπθπτ=+⎡⎤⎣⎦=++++⎡⎤⎣⎦=++++⎡⎤⎡⎤⎣⎦⎣⎦=+++⎡⎤⎣⎦=+++⎡⎤⎣⎦在(1)的条件下,θ的概率密度函数为[)10,2()2 0 else p θπθπ⎧∈⎪=⎨⎪⎩于是()()201cos 422cos 42202c c c c E f t f f t f d ππθπτπθπτθπ++=++=⎡⎤⎣⎦⎰因此()()1cos 22Y X c R R f ττπτ=()()()()()22cos 224X c j f j f Y Y X c X c R f P f R e d e d P f f P f f πτπττπττττ∞∞---∞-∞==-++=⎰⎰在(2)的条件下()()()()11cos 2cos 42222Y X c X c c R R f R f t f ττπττπθπτ=+++表明()Y t 是循环平稳过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E[time of cycle]
2
Stochastic Process
1nÙSK
4&& 2120502082
Assume that any relevant function is directly Riemann integrable. Proof:
g = h + g ∗ F.
Either iterate the above or use Laplace transforms to show that a renewal-type equation has the
solution
t
g(t) = h(t) + h(t − x)dm(x),
0
where m(x) =
0
t
∞
g(t − s)dF (s) + tdF (s)
0
0
t
g(t − s)dF (s) + tF¯(s).
0
Therefore,
lim g(t) =
t→∞
=
∞ 0
tF¯
(t)dt
=
∞ 0
t
∞ 0
dF
(s)dt
µ
µ
∞ 0
t 0
tdtdF (s)
=
∞ 0
s2dF
(s)
=
E [X 2 ] .
µ
2µ
2E [X ]
P (t) = P (on at t)
t
= P (on at t|X1 > t) · F¯(t) + P (on at t|SN(t) = s)dFSN(t) (s)
0
t
= P (on at t|X1 > t) · F¯(t) + P (on at t|X > t − s)F¯(t − s)dm(s)
lim
t→∞
E
[RN
(t)+1]
=
∞ 0
E[R1|X1
=
x]dF (x)
EX
= E[R1 · X1] EX
When the cycle reward is defined to equal the cycle length, the above yields
lim
t→∞
E [XN (t)+1 ]
=
∞ 0
(a) Prove that
t
mD(t) = G(t) + m(t − x)dG(x),
0
where m(t) =
∞ n=1
Fn(t).
(b) Let AD(t) denote the age at time t. Show that if F is nonlattice with
tG¯(t) → 0 as t → 0, then
1
Stochastic Process
1nÙSK
4&& 2120502082
2 Ex3.18
Consider a delayed renewal process {ND(t), t ≥ 0} whose first interarrival has distribution G and the others have distribution F . Let mD(t) = E[ND(t)].
0
Let h(t) = P (on at t|X1 > t) · F¯(t), then
t
P (t) = h(t) + h(t − s)dm(s).
0
Thus, (b)
1∞
lim P (t) =
h(t)dt =
E[Zn] .
t→∞
µF 0
E[Zn] + E[Yn]
g(t) = = =
∞
E[A(t)|X1 = s]dF (s)
E [X 2 ]
lim
t→∞
E [XN (t)+1 ]
=
, E [X ]
which is always greater than E[X] except when X is constant with probability 1. (Why?) Proof:
t
E[RN(t)+1] = E[RN(t)+1|SN(t) = 0]F¯(t) + E[RN(t)+1|SN(t) = s]F¯(t − s)dm(s)
20
t∞
P (In(t) = 1|X1 = y)dG(y)
20 t∞
P (In(t) = 1|X1 = y)dG(y)
02 t∞
Fn(t − y)dG(y)
01 t
m(t − x)dG(x)
0
3 Ex3.19
Prove Blackwell’s theorem for renewal reward processes. That is, assuming that the cycle distribution is not lattice, show that, as t → ∞,
(a) P (t),the probability an alternating renewal process is on at time t;
(b) g(t) = E[A(t)],the expected age of a renewal process at t.
Apply the key renewal theorem to obtain the limiting values in (a) and (b). Solution: (a)
Stochastic Process
1nÙSK
4&& 2120502082
1 Ex3.14
An equation of the form
t
g(t) = h(t) + g(t − x)dF (x)
0
is called a renewal-type equation. In convolution notation the above states that
∞ n=1
Fn(x).
If
h
is
directly
Riemann
integrable
and
F
nonlattice
with
finite
mean,
one
can then apply the key renewal theorem to obtain
lim g(t) =
t→∞
∞ 0
h(t)dt
∞ 0
F¯
(t)dt
0
t
= E[R1|X1 > t]F¯(t) + E[Rn|Xn > t − s]F¯(t − s)dm(s)
0
Let h(t) = E[R1|X1 > t]F¯(t). ThenE[RN(t)+1] = h + h ∗ m. It is easily to know that h(t) is directly Riemann integrable. According to the key renewal theorem,
E [AD (t)]
→
2
∞ 0
x2dF
(x)
∞ 0
xdF
(x)
.
(c) Show that if G has a finite mean, then tG¯(t) → 0 as t → ∞.
x2dF (x) < ∞ and
Proof: (a) Let
Thus,ND(t) =
1, the n-th renewal occurs in[0,t]
E[R1|X1
=
x]dF (x)
=
E [X 2 ] .
EX
Ee V ar(X) = E[X2] − (E[X])2 ≥ 0, i.e.E[X2] ≥ (E[X])2 and therefore
E [X 2 ]
lim
t→∞
E [XN (t)+1 ]
=
E [X ]
≥ E[X].
Renewal-type equations for g(t) are obtained by conditioning on the time at which the process probabilistically starts over. Obtain a renewal-type equation for:
Except when X is constant with probability 1, E[X2] = (E[X])2 and therefore
E [X 2 ]
lim
t→∞
E [XN (t)+1 ]
=
E [X ]
= E[X]
3
4 Ex3.20
For a renewal reward process show that
lim
t→∞
E
[RN
(t)+1
]
=
E[R1 · X1] , E[X1]
Assume the distribution of Xi is nonlattice and that any relevant function is directly Riemann integrable. When the cycle reward is defined to equal the cycle length, the above yields