北师大版七年级数学下册全部知识点归纳(新)
新北师大版七年级数学知识点汇总
新北师大版七年级数学知识点汇总算数和代数1. 整数•正整数、负整数、零•相反数•绝对值及其性质•定义和判断整数的大小关系•整数的加减法、乘法、除法及其混合运算•分数与整数的乘除运算2. 分数•分数的定义及其表示法•分数与整数的互化(化分数为整数,化整数为分数)•分数的简化与约分•分数的加减法、乘法、除法及其混合运算•分数的比较3. 小数•小数的定义•小数和分数的互化•小数的加减乘除及其混合运算•小数的比较•有理数和无理数4. 代数式•代数式的定义及其基本运算(加、减、乘、除)•代数式的合并同类项及其应用•代数式的提公因式及其应用5. 一元一次方程式•一元一次方程式的基本概念,如:方程式、未知数、系数、常数项•一元一次方程式的解法,如:等式两边加减同一数、等式两边乘除同一数、移项变号等•一元一次方程式的解的判定几何1. 图形的分类与性质•点、线、线段、射线、角、平面及其相互关系•平行、垂直、重合、相交、夹角等概念•三角形、四边形、圆等几何图形的定义及其性质2. 三角形•三角形的定义、分类及其性质•三角形内角和定理及其推论•相似三角形及其性质3. 三角形的运用•已知三边或两边及夹角求第三边•已知一边及与其相邻的两个角求另外两边和角•判断三角形的形状和大小•利用相似三角形解决实际问题4. 圆的运用•圆的定义及其性质•圆的相交关系和判定方法•垂直线段的性质及其应用•利用圆解决实际问题统计与概率1. 数据的收集和整理•调查数据的收集方式和数据来源•频数和频数分布表•分组数据的制作及其分析2. 数据的描述和应用•中心倾向的度量,如:平均数、中位数、众数•数据的离散程度度量,如:极差、方差、标准差•相关性分析3. 简单概率•随机事件和样本空间•概率及其性质,如:互斥事件、独立事件、全概率公式、贝叶斯公式•组合数及其计算方法以上是新北师大版七年级数学知识点的汇总,希望对你的学习有所帮助。
北师大版七年级数学下册全部知识点归纳(新)
第一章:整式的运算单项式整 式多项式同底数幂的乘法 幂的乘方 积的乘方幂运算 同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
整式 的 运算24、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤: (1)代数式化简。
七年级下册数学北师大版知识点总结
七年级下册数学北师大版知识点总结
一、数与式
1、按数轴给出区间,在区间内求有限个数的等差数列和等比数列和中项;
2、利用已知条件解动态系统;
3、两倍求和公式——全部求和公式,并应用;
4、等比数列求和公式的应用;
5、能够把多项式的标准根式换成指数表达式,指数表达式换成标准根式;
6、求多项式根;
二、几何
1、三角形的等份,三角形两边和夹角关系;
2、求J类锐角三角形的角平分线,斜边中点到另两边的距离;
3、极点、极角、极径的概念,求给出三角形的极点和极角;
4、旋转:比喻法、直线点式、方程式;
5、点是否在椭圆内,求椭圆外一点到椭圆上的切线;
6、判断两圆的关系;
7、求给定的圆的切线方程,由两点式求第三点的坐标;
三、弧与面
1、求三角形的外接圆;
2、求圆弧上一点的切线与覆盖圆内一点的切线;
3、球面、圆台面、球磨比较;
4、求圆锥、圆柱的体积;
四、统计
1、求分类数据的众数、比例;
2、求统计量:最大值、最小值、中位数、平均数;
3、应用统计量求特定分类数据及误差;
4、直方图及其应用;
5、图表中图例的意义;
五、概率
1、区间的概念;
2、十架统一概念;
3、概率的概念,求统一概念的概率;
4、随机变量的概念;
5、概率分布的概念及特点;
6、正态分布的概念和应用;。
2024年初一下册数学知识点总结北师(4篇)
2024年初一下册数学知识点总结北师第一单元:自然数与整数1. 自然数:0、1、2、3、4、5……,它们可以用来表示物体的数量。
2. 整数:自然数及其相反数与零的集合,包括正整数、负整数和零。
3. 整数的加法:同号相加得更大的数,异号相加得正数减去绝对值较大的数。
4. 整数的减法:a-(-b) = a + b,a-(-b) = a-b。
5. 整数的乘法:正数相乘为正数,负数相乘为负数,0与任何数相乘为0。
6. 整数的除法:除数不为0时,两正数相除为正数,两负数相除为正数,正数除以负数为负数。
7. 素数与合数:只有两个相异因数1和自身的整数是素数,可以被除了1和自身外的其他数整除的整数是合数。
第二单元:有理数1. 有理数:可以表示成两整数之比的数,包括整数、分数和小数。
2. 分数的加法与减法:分母相同,分子相加(减);分母不同,通分后分子相加(减)。
3. 分数的乘法与除法:分子相乘(除),分母相乘(除)。
4. 有理数的相反数与数轴:任何有理数与其相反数的和为0,数轴上,正数在右侧,负数在左侧。
5. 有理数的比较与排序:将有理数转化为分数后比较其大小。
第三单元:代数的基本概念1. 代数:利用字母(变量)表示数的运算。
2. 代数式:由字母、数字和运算符号组成的式子。
3. 项与系数:含有加减号的代数式可以分解成若干项,每一项中字母的指数与系数的乘积称为项的系数。
4. 等式:左右两边的值相等的代数式称为等式。
5. 解方程:通过变换等式的形式找到使等式成立的未知数的值。
第四单元:一次方程与消元法1. 一次方程:未知数的最高次数为1的方程。
2. 解一元一次方程:通过变换等式的形式找到使等式成立的未知数的值。
3. 消元法:通过两个方程的相加、相减或相乘消除其中一个未知数,以求解另一个未知数。
第五单元:图形的认识与运用1. 平面图形:点、线段、直线、射线、角、三角形、矩形、正方形、平行四边形、菱形、梯形、圆等。
2. 两条直线的位置关系:平行、相交、重合。
七年级下册数学各章知识点总结
北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式 整 式 多项式同底数幂的乘法 幂的乘方 积的乘方幂运算 同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式1、多项式、多项式的次数、项 几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质: 1、同底数幂的乘法:a m﹒a n =am+n(m,n 都是正整数);2、幂的乘方:(am)n=amn(m,n 都是正整数); 3、积的乘方:(ab )n=a n bn(n 都是正整数);4、同底数幂的除法:am÷a n=am-n(m,n 都是正整数,a ≠0) ;整 式 的 运算六、零指数幂和负整数指数幂: 1、零指数幂:a=1(a ≠0);2、负整数指数幂:p 是正整数。
七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
北师大版七年级数学下册知识点梳理
北师大版七年级数学下册知识点梳理七年级数学(下)重要知识点总结第一章:整式的运算一、概念1.代数式是由数字、字母及其乘积、和、差、积、商等符号组成的式子。
2.单项式是由数字与字母的乘积组成的代数式,不含加减运算,分母中不含字母。
3.多项式是由几个单项式相加(减)组成的代数式,含加减运算。
4.整式是单项式和多项式的统称。
二、公式、法则:1.同底数幂的乘法法则:a的m次方乘以a的n次方等于a的m+n次方。
逆用:a的m+n次方等于a的m次方乘以a的n次方。
2.同底数幂的除法法则:a的m次方除以a的n次方等于a的m-n次方(a≠0)。
逆用:a的m-n次方等于a的m次方除以a的n次方(a≠0)。
3.幂的乘方法则:a的m次方的n次方等于a的mn次方。
逆用:a的mn次方等于a的m次方的n次方。
4.积的乘方法则:ab的n次方等于a的n次方乘以b的n次方。
逆用:a的n次方乘以b的n次方等于ab的n次方(当ab=1或-1时常逆用)。
5.零指数幂:任何数的0次方等于1(注意考虑底数范围,底数a≠0)。
6.负指数幂:任何数的负整数次幂等于该数的倒数的正整数次幂(底数a≠0)。
7.单项式与多项式相乘:单项式m乘以多项式(a+b+c)等于ma+mb+mc。
8.多项式与多项式相乘:多项式(m+n)乘以多项式(a+b)等于ma+mb+na+nb。
9.平方差公式:(a+b)乘以(a-b)等于a的平方减去b的平方。
推广:有一项完全相同,另一项只有符号不同,结果等于相同。
连用变化。
10.完全平方公式:a+b)的平方等于a的平方加上2ab加上b的平方。
a-b)的平方等于a的平方减去2ab加上b的平方。
逆用:a的平方加上2ab加上b的平方等于(a+b)的平方。
a的平方减去2ab加上b的平方等于(a-b)的平方。
完全平方公式变形:a的平方加上b的平方等于(a-b)的平方加上2ab。
2a的平方加上b的平方等于(a+b)的平方减去2ab等于(a-b)的平方加上2ab等于1.完全平方和公式中间项等于完全平方差公式中间项的相反数,等于完全平方公式中间项的一半。
2024年北师大版初一数学知识点总结(二篇)
2024年北师大版初一数学知识点总结一、集合与运算1. 集合的概念与表示- 集合的概念:具有某种特定性质的事物的总称。
- 集合的表示:列举法、描述法、集合关系式。
2. 集合的基本运算- 交集:属于同时属于两个集合的元素所组成的新集合。
- 并集:属于两个集合中至少一个的元素所组成的新集合。
- 差集:属于一个集合而不属于另一个集合的元素所组成的新集合。
- 互斥事件:两个事件不可能同时发生的事件。
- 逆事件:一个事件不发生的事件。
- 交换律、结合律、分配律、对偶律。
二、数与运算1. 自然数与整数- 自然数:正整数及零的集合,用N表示。
- 整数:正整数、负整数和零的集合,用Z表示。
2. 有理数- 有理数:可以表示为两个整数之比的数,有限小数、无限循环小数和无限不循环小数的集合,用Q表示。
- 有理数的运算:加法、减法、乘法、除法。
- 有理数的性质:相等性、大小关系、绝对值。
3. 小数与分数- 小数:有限小数、无限循环小数、无限不循环小数。
- 分数:整数和真分数。
- 分数的化简、比较大小、加法、减法、乘法、除法。
4. 实数- 实数:有理数和无理数的集合,用R表示。
- 实数的性质:有序性、稠密性。
5. 整数的除法- 整数除法的概念与性质。
- 余数与商的关系。
三、代数式与方程式1. 代数式与代数式的值- 代数式:由数和变量以及运算符号组成的式子。
- 代数式的值:当变量取某一确定的值时,代入代数式中计算得到的值。
2. 方程与方程的解- 方程:含有一个或多个未知数的等式。
- 方程的解:是使方程成立的未知数的值。
- 方程与方程组的思想与模型应用。
四、几何图形1. 平面与空间几何- 点、线、面和体。
2. 几何图形与基本图形的性质- 几何图形:点、线和面的集合。
- 基本图形:三角形、四边形、五边形、六边形、圆等。
- 基本图形的性质与分类。
3. 直线与角- 直线:直径、相交、垂直、平行等性质。
- 角:角的概念、角的度量、角的分类。
北师大版七年级下册数学知识点总结(最新最全)
北师大版数学七年级下册知识点总结第一章 整式的乘除1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
注意:底数可以是多项式或单项式。
如:532)()()(b a b a b a +=+•+5、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==6、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。
如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-7、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。
如:3334)()()(b a ab ab ab ==÷8、零指数和负指数;10=a ,(ɑ≠0)即任何不等于零的数的零次方等于1。
pp a a 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。
9、科学记数法:如:0.00000721=6-1021.7⨯(第一个非零数字前零的个数)10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
北师大版初一下册数学知识点总结
七年级数学下册全部知识点归纳第一章:整式的运算单项式式多项式同底数幂的乘法幂的乘方积的乘方同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配律。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:(1)代数式化简。
(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
北师大版七年级数学下全部知识点归纳
北师大版七年级数学下册全部知识点归纳第一章:整式的运算 单项式: 。
整 式 多项式: 。
同底数幂的乘法:幂的乘方:积的乘方:幂的运算 同底数幂的除法: 零指数幂: 负指数幂: 整式的加减单项式与单项式相乘整式运算单项式与多项式相乘: 整式的乘法 多项式与多项式相乘:平方差公式: 完全平方公式:单项式除以单项式整式的除法 多项式除以单项式:完全平方公式的变形公式:(1)22222212()2()2[()()]a b a b ab a b ab a b a b +=+-=-+=++-(2)22()()4a b a b ab +=-+ (3)2214[()()]ab a b a b =+-- 第二章 平行线与相交线平行线: 。
对顶角的性质:垂线的性质:性质1:过一点有 。
性质2:连接直线外一点 。
平行线的性质:1、平行公里:过 性质2:平行于 平行。
整 式 的 运算余角:余角和补角 补角:邻补角:两线相交 对顶角:同位角三线八角 内错角同旁内角平行线的判定:平行线平行线的性质:尺规作图:第三章 变量之间的关系自变量变量的概念 因变量变量之间的关系 表格法关系式法变量的表达方法 图象法第四章 三角形三角形概念: 称为三角形。
三角形按内角的大小可分为三类:直角三角形的性质: ;直角三角形的两直角边为a 、b ,斜边为c ,斜边上的高为h,则h= 。
任意三角形都有三条角平分线,并且它们相交于三角形内一点。
这个点叫三角形的 任意三角形都有三条中线,它们相交于三角形内一点。
这个点叫三角形的 任意三角形都有三条高线,它们所在的直线相交于一点。
这个点叫三角形的平行线与相交线三角形都有三条高线:区 别相 同中 线 平分对边 三条中线交于三角形内部 (1)都是线段 (2)都从顶点画出 (3)所在直线相交于一点 角平分线 平分内角三条角平分线交于三角形内部高 线 垂直于对边(或其延长线)锐角三角形:三条高线交于直角三角形:三条高线交于钝角三角形:三条高线交于三角形三边关系:三角形 三角形内角和定理:角平分线三条重要线段 中线高线三角形 全等图形的概念: 全等三角形的性质:SSSSAS全等三角形 全等三角形的判定 ASAAASHL (适用于Rt Δ)全等三角形的应用 利用全等三角形测距离作三角形第五章 生活中的轴对称: 轴对称图形于轴对称: 轴对称图形轴对称区别是一个图形自身的对称特性 是两个图形之间的对称关系 对称轴可能不止一条对称轴只有一条共同点沿某条直线对折后都能够互相重合如果轴对称的两个图形看作一个整体,那么它就是一个轴对称图形;如果把轴对称图形分成两部分(两个图形),那么这两部分关于这条对称轴成轴对称。
北师大版七年级数学下册全部知识点归纳(新)
北师大版七年级数学下册全部知识点归纳
第一章有理数
•有理数的概念
•有理数的比较
•有理数的四则运算
•有理数的拓展
第二章代数式
•代数式的概念
•代数式的基本性质
•代数式的加减法
•代数式的乘法
•代数式的应用
第三章一次方程与不等式
•一次方程的解法
•一元一次方程的应用
•不等式的概念
•不等式的解法
•不等式组的解法
•不等式的应用
第四章图形的认识
•图形的基本概念
•直线和角的性质
•三角形的性质
•四边形的性质
•圆的性质
第五章数系的拓展
•无理数的概念
•无理数的运算
•实数的概念和性质
•实数的有理数部分和无理数部分
•实数的换底公式
第六章平面几何
•平面几何基本概念
•平面内角和定理
•同位角、同旁内角、同旁外角
•平行线及其性质
•相交线和同位角
第七章运算的性质
•乘法分配律
•加法逆元和乘法逆元
•加法交换律和结合律
•乘法交换律和结合律
•分配律和合并同类项
第八章统计与概率
•统计的基本概念
•统计图形
•数据分析和统计应用
•概率的基本概念
•事件与概率
第九章空间几何
•空间几何基本概念
•空间几何中点和距离
•空间几何连线
•空间几何角与面
第十章函数与方程
•函数的概念
•同解方程组
•二元一次方程组
•一元二次方程
•解法及应用
以上是北师大版七年级数学下册全部知识点的归纳,希望能够对参加中考或者其他考试的同学有所帮助。
北师大版七年级数学下册知识点总结
北师大版七年级数学下册知识点总结一、整式的乘除。
1. 同底数幂的乘法。
- 法则:同底数幂相乘,底数不变,指数相加。
即a^m· a^n = a^m + n(m、n 为正整数)。
- 例如:2^3×2^4=2^3 + 4=2^7。
2. 幂的乘方。
- 法则:幂的乘方,底数不变,指数相乘。
即(a^m)^n=a^mn(m、n为正整数)。
- 例如:(3^2)^3 = 3^2×3=3^6。
3. 积的乘方。
- 法则:积的乘方等于乘方的积。
即(ab)^n=a^n b^n(n为正整数)。
- 例如:(2×3)^2=2^2×3^2 = 4×9 = 36。
4. 同底数幂的除法。
- 法则:同底数幂相除,底数不变,指数相减。
即a^m÷ a^n=a^m - n(a≠0,m、n为正整数且m>n)。
- 例如:5^5÷5^3 = 5^5 - 3=5^2。
5. 零指数幂。
- 规定:a^0 = 1(a≠0)。
6. 负整数指数幂。
- 规定:a^-p=(1)/(a^p)(a≠0,p为正整数)。
- 例如:2^-3=(1)/(2^3)=(1)/(8)。
7. 整式的乘法。
- 单项式乘以单项式:系数相乘,同底数幂相乘。
例如:3x^2·2x^3=(3×2)(x^2+3) = 6x^5。
- 单项式乘以多项式:用单项式去乘多项式的每一项,再把所得的积相加。
例如:2x(x + 3)=2x^2+6x。
- 多项式乘以多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如:(x + 2)(x+3)=x^2+3x+2x + 6=x^2+5x+6。
8. 整式的除法。
- 单项式除以单项式:系数相除,同底数幂相除。
例如:6x^5÷2x^3=(6÷2)(x^5 - 3)=3x^2。
- 多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加。
七年级数学北师大版下册思维导图及知识点汇总
七年级数学北师大版下册思维导图及知识点汇总北师大版七年级下册数学知识点总结第一章=整式的乘除i 多项式「同底数皋的乘法ST 的乘方积的乘方同底数臬的除法零指数磊1员指数幕{整式的加减单项式与单项式相乘 单项式与多项式相乘 多项式与多项式相乘 平方差公式完全平方公式 单项式除以单项式'整式的除法多项式除以.虽】页式lx 都是数字与字母的乘积的代数式叫做里项式。
单项式的数字因数叫俶单项式的系数。
队单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一"J 字母也是单项式®趴只含有字母因式的电项式的系数是1或一"6.单独的一个数字是单项式,它的系数是它本身■>J 单独的一个非零常数的次数是%馭单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
沢单项式的系数包括它前面的符号。
10>单项式的系数罡带分数时,应化成假分数桝Us 单项式的系数是1或一丄时,通常省略数字G 叫12.单项式的灰数仅与字母有关,与单项式的系数无关。
幕运算_, 」整式的乘法二多顶式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的;欠数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式帥减1、整式加减的理论根据是:去括号法则,合并同类项法则,臥及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(I”列出代数式;用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
初中七年级数学北师大版下册思维导图及知识点汇总
七年级数学北师大版下册思维导图及知识点汇总北师大版七年级下册数学知识点总结第一章:整式的乘除整式)的运算f单项式尸整式-I多项式{同底数幕的乘法幕的乘方积的乘方皋运算同底数旱的除法零指数幕[负指数幕(整式的加减,,整式的乘法5式运置'整式的除法H 单项式与单项式相乘单项式与多项式相乘多项式与多项式相乘平方差公式完全平方公式单项式除以单项式多项式除以单项式—、式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或一1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号•<>10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或一1时,通常省略数字“1"。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫他常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的祗念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、我1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
北师大版七年级数学下册全部知识点归纳
北师大版七年级数学下册全部知识点归纳如下:一、比例与比例关系1.比例的概念及表示方法2.比例的性质:比例恒定、比例的交叉相等、比例中项的乘积等于其他项的乘积3.比例的应用:物体的相似性、航空地图的比例尺等二、利用比例解决问题1.比例数值法:已知两个比例相等,求其中一个比例的值2.比例线段法:利用线段的比例关系解决问题3.比例面积法:利用面积的比例关系解决问题三、数的四则运算1.加法与减法2.乘法与除法3.括号的运算顺序4.分数的加法与减法四、图形的认识与变换1.平面图形的基本要素:点、线、线段、射线、角、平行线、垂直线、四边形等2.平面图形的分类及特点:三角形、四边形、正方形、矩形、平行四边形、菱形、梯形等3.图形的移动:平移、旋转、翻转4.图形的轴对称与中心对称五、数与式1.代数表达式的定义与基本运算:合并同类项、提取公因式、乘法公式、分配律等2.正数、负数与零的概念与表示方法3.数轴的概念与使用方法4.方程的概念与解的方法六、面积与体积1.平面图形的面积:矩形、三角形、平行四边形、正方形等2.立体图形的体积:长方体、正方体、棱柱、棱锥等3.圆的面积与周长七、统计与概率1.数据的整理与分析:频数表、直方图、折线图等2.概率的基本概念与计算方法:可能性、事件、概率的计算公式等3.点阵图与统计问题的探究八、函数与方程1.函数的概念与表示方法:自变量、因变量、函数值等2.函数的图象与性质3.一次函数与一元一次方程九、三角形与三角函数1.三角形的面积与三角形的性质:直角三角形、等腰三角形、等边三角形等2.三角函数的引入与基本概念:正弦、余弦、正切等3.利用三角函数解决实际问题以上是北师大版七年级数学下册的全部知识点。
不同章节的知识点内容可能会有所不同,如有遗漏请谅解。
希望以上内容对您有所帮助!。
2024年北师大版七年级数学下册知识点总结(二篇)
2024年北师大版七年级数学下册知识点总结第一章:方程与不等式1.方程的概念:包含未知数的等式称为方程。
方程的解是使得方程成立的数。
2.解方程:通过变量的运算和移项,求出方程的解。
3.解一元一次方程:如ax+b=0,解得x=-b/a。
4.方程的证明:通过逆向思维,将给定的解代入方程,验证等式是否成立。
5.不等式的概念:含有不等于号的等式称为不等式,如ax>b。
6.解不等式:通过移项,求出不等式的解的范围。
7.不等式的证明:将给定的解代入不等式,验证不等式是否成立。
第二章:数据的收集和整理1.数据的表示:通过表格、图表和线段、折线图等图示进行数据的表示,便于观察和分析。
2.数据的整理:对收集到的数据进行整理,包括分类、排序、求最大值、最小值、众数、中位数等。
3.统计的总体与样本:通过抽取一部分数据作为样本,对总体数据进行概括和判断。
第三章:图形的认识1.点、线、面的概念:几何图形由点、线、面组成。
2.平行线与垂直线:平行线的特点是永不相交,垂直线的特点是相交成直角。
3.多边形:具有多个边的几何图形称为多边形,如三角形、四边形、五边形等。
4.正多边形:具有相等边长和相等内角的多边形。
5.对称图形:具有对称性的图形,可以通过某一条线进行折叠重合。
6.图形的相似性:具有相等比例关系的图形称为相似图形。
7.平移、旋转和翻折:运用平移、旋转和翻折等操作,使得图形位置和形态发生变化。
第四章:四边形1.四边形的概念:具有四个边的图形称为四边形,包括梯形、平行四边形、矩形、菱形、正方形等。
2.梯形:有两个底边,两个腰。
3.平行四边形:具有相对边平行的四边形。
4.矩形:具有四个直角的四边形,对角线相等。
5.菱形:具有四个相等边的四边形,对角线互相垂直。
6.正方形:具有四个相等边且具有对称性的四边形。
第五章:比例与相似1.比例的概念:比例是指两个或多个量之间的比值关系。
比值相等时称为成比例。
2.比例的性质:比例的性质包括交换律、放大和缩小、分配律等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章:整式的运算单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤: (1)代数式化简。
(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
五、同底数幂的乘法1、n 个相同因式(或因数)a 相乘,记作a n ,读作a 的n 次方(幂),其中a 为底数,n 为指数,a n的结果叫做幂。
2、底数相同的幂叫做同底数幂。
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。
即:a m ﹒a n =a m+n。
4、此法则也可以逆用,即:a m+n = a m ﹒a n。
5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
六、幂的乘方1、幂的乘方是指几个相同的幂相乘。
(a m )n 表示n 个a m相乘。
2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。
(a m )n =a mn。
3、此法则也可以逆用,即:a mn =(a m )n =(a n )m。
七、积的乘方1、积的乘方是指底数是乘积形式的乘方。
2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。
即(ab )n =a n b n。
3、此法则也可以逆用,即:a n b n =(ab )n。
八、三种“幂的运算法则”异同点 1、共同点:(1)法则中的底数不变,只对指数做运算。
(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。
(3)对于含有3个或3个以上的运算,法则仍然成立。
2、不同点:(1)同底数幂相乘是指数相加。
(2)幂的乘方是指数相乘。
(3)积的乘方是每个因式分别乘方,再将结果相乘。
九、同底数幂的除法1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:a m ÷a n =a m-n(a ≠0)。
2、此法则也可以逆用,即:a m-n = a m ÷a n(a ≠0)。
十、零指数幂1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a 0=1(a ≠0)。
十一、负指数幂1、任何不等于零的数的―p 次幂,等于这个数的p 次幂的倒数,即:1(0)p p a a a -=≠注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。
十二、整式的乘法(一)单项式与单项式相乘1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
2、系数相乘时,注意符号。
3、相同字母的幂相乘时,底数不变,指数相加。
4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。
5、单项式乘以单项式的结果仍是单项式。
6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
(二)单项式与多项式相乘1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。
即:m(a+b+c)=ma+mb+mc 。
2、运算时注意积的符号,多项式的每一项都包括它前面的符号。
3、积是一个多项式,其项数与多项式的项数相同。
4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。
(三)多项式与多项式相乘1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
即:(m+n)(a+b)=ma+mb+na+nb 。
2、多项式与多项式相乘,必须做到不重不漏。
相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。
在未合并同类项之前,积的项数等于两个多项式项数的积。
3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。
4、运算结果中有同类项的要合并同类项。
5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x 2+(a+b)x+ab 。
十三、平方差公式1、(a+b )(a-b)=a 2-b 2,即:两数和与这两数差的积,等于它们的平方之差。
2、平方差公式中的a 、b 可以是单项式,也可以是多项式。
3、平方差公式可以逆用,即:a 2-b 2=(a+b )(a-b)。
4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成(a+b )•(a-b)的形式,然后看a 2与b 2是否容易计算。
十四、完全平方公式1、222222()2,()2,a b a ab b a b a ab b +=++-=-+即:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
2、公式中的a ,b 可以是单项式,也可以是多项式。
3、掌握理解完全平方公式的变形公式:(1)22222212()2()2[()()]a b a b ab a b ab a b a b +=+-=-+=++- (2)22()()4a b a b ab +=-+(3)2214[()()]ab a b a b =+--4、完全平方式:我们把形如:22222,2,a ab b a ab b ++-+的二次三项式称作完全平方式。
5、当计算较大数的平方时,利用完全平方公式可以简化数的运算。
6、完全平方公式可以逆用,即:2222222(),2().a ab b a b a ab b a b ++=+-+=-十五、整式的除法(一)单项式除以单项式的法则1、单项式除以单项式的法则:一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
2、根据法则可知,单项式相除与单项式相乘计算方法类似,也是分成系数、相同字母与不相同字母三部分分别进行考虑。
(二)多项式除以单项式的法则1、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
用字母表示为:().a b c m a m b m c m ++÷=÷+÷+÷2、多项式除以单项式,注意多项式各项都包括前面的符号。
第四章 三角形三角形三边关系三角形 三角形内角和定理角平分线 三条重要线段 中线 高线 全等图形的概念 全等三角形的性质SSS 三角形 SAS 全等三角形 全等三角形的判定 ASA AASHL (适用于Rt Δ)全等三角形的应用 利用全等三角形测距离作三角形一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示。
2、顶点是A 、B 、C 的三角形,记作“ΔABC ”,读作“三角形ABC ”。
3、组成三角形的三条线段叫做三角形的边,即边AB 、BC 、AC ,有时也用a ,b ,c 来表示,顶点A 所对的边BC 用a 表示,边AC 、AB 分别用b ,c 来表示;4、∠A 、∠B 、∠C 为ΔABC 的三个内角。
二、三角形中三边的关系1、三边关系: 三角形任意两边之和大于第三边,任意两边之差小于第三边。
用字母可表示为a+b>c,a+c>b,b+c>a ;a-b<c,a-c<b,b-c<a 。
2、判断三条线段a,b,c 能否组成三角形:(1)当a+b>c,a+c>b,b+c>a 同时成立时,能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形。
3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即-<<+.a b c a b三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。
2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C 所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。
注:直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形,即有一个内角是钝角的三角形。
3、判定一个三角形的形状主要看三角形中最大角的度数。
4、直角三角形的面积等于两直角边乘积的一半。
5、任意一个三角形都具备六个元素,即三条边和三个内角。
都具有三边关系和三内角之和为1800的性质。
6、三角形内角和定理包含一个等式,它是我们列出有关角的方程的重要等量关系。
四、三角形的三条重要线段1、三角形的三条重要线段是指三角形的角平分线、中线和高线。
2、三角形的角平分线:(1)三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
(2)任意三角形都有三条角平分线,并且它们相交于三角形内一点。
3、三角形的中线:(1)在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。