中考数学专题复习 四点共圆模型 含答案

合集下载

专题26 四点共圆模型(学生版)

专题26 四点共圆模型(学生版)

专题26四点共圆模型【模型】如图26-1,已知在由点A 、B 、C 、D 构成的四边形中,︒=∠=∠90ADB ACB ⇒(1)点A 、B 、C 、D 四点在同一个圆上,且AB 为圆O 的直径。

(2)圆内接四边形的对角互补。

【模型变式】如图26-2,已知AB 为ABC ∆和ABD ∆的公共边,点C 、D 在AB 的同侧,且D C ∠=∠。

⇒点A 、B 、C 、D 四点在同一个圆上,且AB 为圆O 的直径。

【例1】如图,四边形ABCD 内接于O ,AB CD =,A 为BD 中点,60BDC ∠=︒,则ADB ∠等于()A .40︒B .50︒C .60︒D .70︒【例2】如图,四边形ABCD 是⊙O 的内接四边形,若⊙O 半径为4,且∠C =2∠A ,则BD 的长为__.【例3】如图,已知Rt ABC 和Rt CDE △,90ACB CDE ∠=∠=︒,CAB CED ∠=∠,8AC =,6BC =,点D 在边AB 上,射线CE 交射线BA 于点F .(1)如图,当点F 在边AB 上时,联结AE .①求证:AE BC ∥;②若12EF CF =,求BD 的长;(2)设直线AE 与直线CD 交于点P ,若PCE 为等腰三角形,求BF 的长.一、单选题1.如图,Rt △ABC 中,AB =BC ,∠ABC =90°,O 为AC 的中点,K 为BC 上一点,NC ⊥BC ,且NC =BK ,AK 分别交BN 、OB 于M 、F ,AC 交BN 于E ,连接OM ,下列结论:①AK ⊥BN ;②OE =OF ;③∠OMN =45°;④若∠OAF =∠BAF ,则1=2OM AF .其中正确结论的个数有()A .1个B .2个C .3个D .4个2.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =4,将△ABC 绕点A 沿顺时针方向旋转后得到△ADE ,直线BD 、CE 相交于点O ,连接AO .则下列结论中:①△ABD ∽△ACE ;②∠COD =135°;③AO ⊥BD ;④△AOC 面积的最大值为8,其中正确的有()A .1个B .2个C .3个D .4个3.如图,圆上有A 、B 、C 、D 四点,其中80BAD ∠=︒,若弧ABC 、弧ADC 的长度分别为7π、11π,则弧BAD 的长度为()A .4πB .8πC .10πD .15π二、填空题4.在综合实践课上,老师要求同学用正方形纸片剪出正三角形且正三角形的顶点都在正方形边上.小红利用两张边长为2的正方形纸片,按要求剪出了一个面积最大的正三角形和一个面积最小的正三角形.则这两个正三角形的边长分别是______.5.如图,已知在扇形AOB 中,120AOB ∠=︒,半径8OA OB ==.P 为弧AB 上的动点,过点P 作PM OA ⊥于点M ,PN OB ⊥于点N ,点M ,N 分别在半径,OA OB 上,连接MN .点D 是PMN 的外心,则点D 运动的路径长为________.6.如图,将ABC 绕点A 顺时针旋转25°得到AEF ,EF 交BC 于点N ,连接AN ,若57C ∠=︒,则ANB ∠=__________.三、解答题7.在等边ABC 中,D 是边AC 上一动点,连接BD ,将BD 绕点D 顺时针旋转120°,得到DE ,连接CE .(1)如图1,当B 、A 、E 三点共线时,连接AE ,若2AB =,求CE 的长;(2)如图2,取CE 的中点F ,连接DF ,猜想AD 与DF 存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接BE 、AF 交于G 点.若GF DF =,请直接写出CD AB BE+的值.8.在平面直角坐标系中,抛物线y =3ax 2﹣10ax +c 分别交x 轴于点A 、B (A 左B 右)、交y 轴于点C ,且OB =OC =6.(1)如图1,求抛物线的解析式;(2)如图2,点P 在第一象限对称轴右侧抛物线上,其横坐标为t ,连接BC ,过点P 作BC 的垂线交x 轴于点D ,连接CD ,设△BCD 的面积为S ,求S 与t 的函数关系式(不要求写出t 的取值范围);(3)如图3,在(2)的条件下,线段CD 的垂直平分线交第二象限抛物线于点E ,连接EO 、EC 、ED ,且∠EOC =45°,点N 在第一象限内,连接DN ,DN EC ∥,点G 在DE 上,连接NG ,点M 在DN 上,NM =EG ,在NG 上截取NH =NM ,连接MH 并延长交CD 于点F ,过点H 作HK ⊥FM 交ED 于点K ,连接FK ,若∠FKG =∠HKD ,GK =2MN ,求点G 的坐标.9.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角.①若∠A =40°,直接写出∠E 的度数是;②求∠E 与∠A 的数量关系,并说明理由.(2)如图2,四边形ABCD 中,∠ABC =∠ADC =90°,点E 在BD 的延长线上,连CE ,若∠BEC 是△ABC 中∠BAC 的遥望角,求证:DA =DE .10.如图,在等腰Rt ABC 中,90BAC ∠=︒,AD BC ⊥,垂足为D ,点E 为AC 边上一点,连接ED 并延长至F ,使ED FD =,以EF 为底边作等腰Rt EGF .(1)如图1,若30ADE ∠=︒,4AE =,求CE 的长;(2)如图2,连接BF ,DG ,点M 为BF 的中点,连接DM ,过D 作DH AC ⊥,垂足为H ,连接AG 交DH 于点N ,求证:=DM NG ;(3)如图3,点K 为平面内不与点D 重合的任意一点,连接KD ,将KD 绕点D 顺时针旋转90︒得到K D ',连接K A ',KB ,直线K A '与直线KB 交于点P ,D ¢为直线BC 上一动点,连接AD '并在AD '的右侧作C D AD '''⊥且C D AD '''=,连接AC ',Q 为BC 边上一点,3CD CQ =,AB =,当QC C P ''+取到最小值时,直线C P '与直线BC 交于点S ,请直接写出BPS △的面积.11.直线y kx k =+与x 轴交于A ,与y 轴交于C 点,直线BC 的解析式为1y x k k=-+,与x 轴交于B .(1)如图1,求点A 的横坐标;(2)如图2,D 为BC 延长线上一点,过D 作x 轴垂线于点E ,连接CE ,若CD CA =,设ACE 的面积为S ,求S 与k 的函数关系式;(3)如图3,在(2)的条件下,连接OD 交AC 于点F ,将CDF 沿CF 翻折得到△FCG ,直线FG 交CE 于点K ,若345ACE CDO ∠-∠=︒,求点K 的坐标.12.如图(1),已知矩形ABCD 中,6cm AB BC ==,,点E 为对角线AC 上的动点.连接BE ,过E 作EB 的垂线交CD 于点F .(1)探索BE 与EF 的数量关系,并说明理由.(2)如图(2),过F 作AC 垂线交AC 于点G ,交EB 于点H ,连接CH .若点E 从A 出发沿AC 方向以23cm /s 的速度向终点C 运动,设E 的运动时间为s t .①是否存在t ,使得H 与B 重合?若存在,求出t 的值;若不存在,说明理由;②t 为何值时,CFH △是等腰三角形;③当CG GH =时,求CGH 的面积.13.如图,等腰Rt △ABC 中,∠ACB =90°,D 为BC 边上一点,连接AD .(1)如图1,作BE ⊥AD 延长线于E ,连接CE ,求证:∠AEC =45°;(2)如图2,P 为AD 上一点,且∠BPD =45°,连接CP .①若AP =2,求△APC 的面积;②若AP =2BP ,直接写出sin ∠ACP 的值为______.14.定义:有一个角是其对角一半的圆的内接四边形叫做圆美四边形,其中这个角叫做美角.已知四边形ABCD 是圆美四边形.(1)求美角A ∠的度数;(2)如图1,若O 的半径为5,求BD 的长;(3)如图2,若CA 平分BCD ∠,求证:BC CD AC +=.15.如图1,抛物线23y x bx c =++经过原点(0,0),(12,0)A 两点.(1)求b 的值;(2)如图2,点P 是第一象限内抛物线2y bx c =++上一点,连接PO ,若tan POA ∠=求点P 的坐标;(3)如图3,在(2)的条件下,过点P 的直线y m =+与x 轴交于点F ,作CF OF =,连接OC 交抛物线于点Q ,点B 在线段OF 上,连接CP 、CB 、PB ,PB 交CF 于点E ,若2PBA PCB ∠=∠,2BEF BCF ∠=∠,求点Q 的坐标.。

专题3.8 四点共圆(隐圆压轴五)(解析版)

专题3.8 四点共圆(隐圆压轴五)(解析版)

∴DG=CG﹣CD= = ,
在 Rt△ADG 中,由勾股定理得







故答案为:6,

【变式 1-5】如图,AB⊥BC,AB=5,点 E、F 分别是线段 AB、射线 BC 上的动 点,以 EF 为斜边向上作等腰 Rt△DEF,∠D=90°,连接 AD,则 AD 的最 小值为 .
【答案】 . 【解答】解:连接 BD 并延长,如图,
模型解读:
模型 1:对角互补型: 若∠A+∠C=180º或∠B+∠D=180º, 则 A、B、C、D 四点共圆 模型 2:同侧等角型 (1)若∠A=∠C, 则 A、B、C、D 四点共圆
(2)手拉手(双子型)中的四点共圆 条件:△OCD∽△OAB 结论:①△OAC∽△OBD ②AC 与 BD 交于点 E,必有∠AEB=∠AOB; ③点 E 在△OAB 的外接圆上,即 O、A、B、E 四点共圆.同理:ODCE 也四点共圆.
∴S△ABC=

=300 km2.
则当△ADC 的面积最大时,四边形 ABCD 的面积最大.
当 AD=CD 时,DF 最大,此时四边形 ABCD 的面积最大.
在 Rt△ACE 中,AC=
=10 km,AF= AC=5
km,
∵∠ADF=
=30°,
∴DF= AF=5 km,
∴S△ADC=
Hale Waihona Puke ==925 km2.
C.15
【答案】C
【解答】解:∵∠BAC=60°,∠BDC=120°,
∴A、E、D、F 四点共圆,
∵AD 平分∠BAC,
∴∠DAE=∠DAF,
∴DE=DF=6,

专题 四点共圆模型(老师版)

专题 四点共圆模型(老师版)

专题07四点共圆模型四点共圆是初中数学的常考知识点,近年来,特别是四点共圆判定的题目出现频率较高。

相对四点共圆性质的应用,四点共圆的判定往往难度较大,往往是填空题或选择题的压轴题,而计算题或选择中四点共圆模型的应用(特别是最值问题),通常能简化运算或证明的步骤,使问题变得简单。

本文主要介绍四点共圆的四种重要模型。

四点共圆:若在同一平面内,有四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

模型1、定点定长共圆模型(圆的定义)【模型解读】若四个点到一定点的距离相等,则这四个点共圆。

这也是圆的基本定义,到定点的距离等于定长点的集合。

条件:如图,平面内有五个点O、A、B、C、D,使得OA=OB=OC=OD,结论:A、B、C、D四点共圆(其中圆心为O)。

例1、(2023•连云港期中)如图,点O为线段BC的中点,点A、C、D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是.【分析】根据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.【详解】由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故答案为:140°.【点睛】此题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解本题的关键.例2.(2022·安徽合肥·校考一模)如图,O 是AB 的中点,点B ,C ,D 到点O 的距离相等,连接AC BD ,.下列结论不一定成立的是()A .12∠=∠B .3=4∠∠C .180ABC ADC ∠+∠=︒D .AC 平分BAD∠【答案】D 【分析】以点O 为圆心,OA 长为半径作圆.再根据圆内接四边形的性质,圆周角定理逐项判断即可.【详解】如图,以点O 为圆心,OA 长为半径作圆.由题意可知:OA OB OC OD ===.即点A 、B 、C 、D 都在圆O 上.A .∵AB AB =,∴12∠=∠,故A 不符合题意;B .∵BC BC =,∴3=4∠∠,故B 不符合题意;C .∵四边形ABCD 是O 的内接四边形,∴180ABC ADC ∠+∠=︒,故C 不符合题意;D .∵BC 和CD 不一定相等,∴BAC ∠和DAC ∠不一定相等,∴AC 不一定平分BAD ∠,故D 符合题意.故选:D .【点睛】本题考查圆周角定理及其推论,充分理解圆周角定理是解答本题的关键.例3.(2023·陕西·九年级期中)如图,已知AB=AC=AD ,∠CBD=2∠BDC ,∠BAC=44°,则∠CAD 的度数为()A .68°B .88°C .90°D .112°【答案】B 【详解】试题分析:本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.根据等腰三角形两底角相等求出∠ABC=∠ACB ,再求出∠CBD ,然后根据∠ABD=∠ABC ﹣∠CBD 计算即可得解.如图,∵AB=AC=AD ,∴点B 、C 、D 在以点A 为圆心,以AB 的长为半径的圆上;∵∠CBD=2∠BDC ,∠CAD=2∠CBD ,∠BAC=2∠BDC ,∴∠CAD=2∠BAC ,而∠BAC=44°,∴∠CAD=88°,例4.(2022·绵阳市4模型2、定边对双直角共圆模型同侧型异侧型1)定边对双直角模型(同侧型)条件:若平面上A 、B 、C 、D 四个点满足90ABD ACD ∠=∠=︒,结论:A 、B 、C 、D 四点共圆,其中AD 为直径。

24.24专题6:四点共圆问题

24.24专题6:四点共圆问题

24.24专题6:四点共圆一.【知识要点】 四点共圆模型:(1)若四个点到一个定点的距离相等,则这四个点共圆(如图1);(2)共斜边的两个直角三角形,四个顶点共圆(如图2,3);(3)对角互补的四边形四个顶点共圆(如图4);(4)共底边且在同侧的两个三角形顶角相等(如图5)。

二.【经典例题】1.已知OA=OB=OC=2,且∠ACB=45°,则AB 的长为( ) A.2 B.3 C.22 D.322.如图所示,矩形ABCD 的边AB=3,Rt △BEF 的直角顶点E 在对角线AC 上,另一顶点F 在边CD 上,若△BEF 的一个锐角为30°,则BC 的长是( ) A.3 B.33 C.333或 D.63.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在AB下方,∠BDC=45°,求证:AD⊥BD.4.如图,四边形ABCD是正方形,E是BC上一点,AE⊥EF交∠BCD的外角平分线于F,求证:AE=EF.5.如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限。

其斜边两端点A、B分别落在x轴、y轴上,且AB=12厘米,(1)若OB=6厘米,①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离. (2)点C与点O的距离的最大值是多少厘米?6.(绵阳2015年第25题本题满分14分)如图,在边长为2的正方形ABCD中,G是AD延长线时的一点,且DG = AD,动点M从A点出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A,G重合),设运动时间为t秒,连接BM并延长AG于N.(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN = HN;(3)过点M分别作AB,AD的垂线,垂足分别为E,F,矩形AEMF与△ACG重叠部分的面积为S,求S的最大值.7.如图,菱形ABCD中,两条对角线AC,BD相交于点O,点E和点F分别是BC和CD上一动点,且∠EOF+∠BCD=180°,∠ABC=60°,连接EF.(1)求△OEF是什么特殊的三角形?(2)若AB=2,求CE+CF的长;三.【题库】【A】1.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在AB下方,AD⊥BD,求∠BDC的度数.2.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在AB上方,AD⊥BD,求∠BDC的度数.3.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在AB上方,∠BDC=45°,求证:AD⊥BD.4.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在AB上方,∠ADC=135°,求证:AD⊥BD.5.在Rt△ABC中,∠ACB=90°,AC=BC,点E为△ABC外一点,且∠CEA=45°.求证:AE⊥BE.6.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A.B.C.D.【B】1.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M 在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=a﹣;③△ABM≌△NGF;=a2+b2;④S四边形AMFN⑤A,M,P,D四点共圆,其中正确的序号为.【C】1.将线段AB绕点A逆时针旋转60°得到线段AC,继续旋转α(0°<α<120°)得到线段AD,连接CD.(1)连接BD,①如图1,若α=80°,则∠BDC的度数为;②在第二次旋转过程中,请探究∠BDC的大小是否改变.若不变,求出∠BDC的度数;若改变,请说明理由.(2)如图2,以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE.若∠CED=90°,求α的值.【D】1.如图,C,D是以AB为直径的半圆上的两点,∠AOC=40°,P在直径AB上,且∠OCP=∠ODP=10°,则∠BOD的度数为().A.20°B.30°C.25°D.15°2.正方形ABCD 的中心为O ,面积为1989cm 2.P 为正方形内一点,且∠OPB =45°,P A :PB =5:14.则PB 的长为( ). A.42cm B.40cm C.35cm D.50cm3.如图,在△ABC 中,∠C =90°,点D 是BC 边上一动点,过点B 作BE ⊥AD 交AD 的延长线于E .若AC =6,BC =8,则的最大值为( )A .B .C. D .4.如图,在菱形ABCD 中,点P 是BC 边上一动点,P 和C 不重合,连接AP ,AP 的垂直平分线交BD 于点G ,交AP 于点E ,在P 点由B 点到C 点的运动过程中,∠APG 的大小变化情况是( )A .变大B .先变大后变小C .先变小后变大D .不变5. 如图,ABC ∆中,45B ∠=︒,75C ∠=︒,4AB =,D 为BC 上一动点,过点D 作DE AC ⊥于点E ,DF AB ⊥于点F ,连接EF ,则EF 的最小值为 ( ) A .3B .2C .5D .6。

专题11四点共圆模型-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(全国通用)(解析版)

专题11四点共圆模型-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(全国通用)(解析版)

【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题11四点共圆模型模型1:定点定长共圆模型若四个点到一个定点的距离相等,则这四个点共圆.如图,若OA =OB =OC =OD ,则A ,B ,C ,D 四点在以点O 为圆心、OA 为半径的圆上.模型2:对角互补共圆模型2.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆.如图,在四边形ABCD 中, 若∠A +∠C =180°(或∠B +∠D =180°)则A ,B ,C ,D 四点在同一个圆上.拓展:若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆.如图,在四边形ABCD 中,∠CDE 为外角,若∠B =∠CDE ,则A ,B ,C ,D 四点在同一个圆上.模型3:定弦定角共圆模型若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆如图,点A ,D 在线段BC 的同侧,若∠A =∠D ,则A ,B ,C ,D 四点在同一个圆上.DDD【例1】(2021·全国·九年级课时练习)在边长为12cm的正方形ABCD中,点E从点D出发,沿边DC以1cm/s的速度向点C运动,同时,点F从点C出发,沿边CB以1cm/s的速度向点B运动,当点E达到点C 时,两点同时停止运动,连接AE、DF交于点P,设点E. F运动时间为t秒.回答下列问题:(1)如图1,当t为多少时,EF的长等于(2)如图2,在点E、F运动过程中,①求证:点A、B、F、P在同一个圆(⊙O)上;②是否存在这样的t值,使得问题①中的⊙O与正方形ABCD的一边相切?若存在,求出t值;若不存在,请说明理由;③请直接写出问题①中,圆心O的运动的路径长为_________.(2)①由(1)可得AB=CD=BC=AD=12cm,∠C=∠B=∠ADC=∠DAB=90°,DE=CF=t,∴△ADE≌△DCF,∴∠CDF=∠DAE,∵∠CDF+∠PDA=90°,∴∠DAE+∠PDA=90°,∴∠ADP=∠APF=90°,∴∠APF+∠B=180°,由四边形APFB内角和为360°可得:∠PAB+∠PFB=180°,∴点A、B、F、P在同一个圆(⊙O)上;②由题意易得:当⊙O与正方形ABCD的一边相切时,只有两种情况;a、当⊙O与正方形ABCD的边AD相切时,如图所示:由题意可得AB为⊙O的直径,∴t=12;b、当⊙O与正方形ABCD的边DC相切于点G时,连接OG并延长交AB于点M,过点O作OH⊥BC交BC于点H,连接OF,如图所示:∴OG⊥DC,GM⊥AB,HF=HB,∴四边形OMBH、GOHC是矩形,∴OH=BM=GC,OG=HC,∴OP即为圆心的运动轨迹,即故答案为6cm.【点睛】本题主要考查圆的综合,熟练掌握圆的性质及切线定理解题的关键,注意运用分类讨论思想解决问题.【例2】(2022·吉林白山·八年级期末)(1)如图①,△OAB、△OCD的顶点O重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=______°;(直接写出结果)(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图②,如果∠AOB=110°,那么∠COD的度数为_______;(直接写出结果)②如图③,若∠AOD=∠BOC,AB与CD平行吗?为什么?【例3】(2020·四川眉山·一模)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D ,则D 为BC 的中点,∠BAD =12∠BAC =60°,于是BC AB =2BD AB =迁移应用:如图2,△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =120°,D ,E ,C 三点在同一条直线上,连接BD .①求证:△ADB≌△AEC ;②请直接写出线段AD,BD,CD 之间的等量关系式;拓展延伸:如图3,在菱形ABCD 中,∠ABC =120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF .①证明△CEF 是等边三角形;②若AE =5,CE =2,求BF 的长.【例4】(2022·全国·九年级课时练习)定义:有一个角是其对角一半的圆的内接四边形叫做圆美四边形,其中这个角叫做美角.已知四边形ABCD是圆美四边形.(1)求美角∠A的度数;(2)如图1,若⊙O的半径为5,求BD的长;(3)如图2,若CA平分∠BCD,求证:BC+CD=AC.∴∠E=∠A=60°由(1)可知:∠BAD=60°,∵CA平分∠BCD,∠BCD=60°∴∠BCA=∠DCA=12∴∠ABD=∠DCA=60°∴AF=AC ,∠F=∠DCA=60°∴∠FAC=180°-∠F -∠ACF=60°∴△ACF 为等边三角形∴CF=AC∴BC +BF=AC∴BC +CD=AC【点睛】此题考查的是新定义类问题、圆内接四边形的性质、圆周角定理及推论、锐角三角函数、等边三角形的判定及性质和全等三角形的判定及性质,掌握新定义、圆内接四边形的性质、圆周角定理及推论、锐角三角函数、等边三角形的判定及性质和全等三角形的判定及性质是解决此题的关键.一、解答题1.(2022·辽宁葫芦岛·一模)射线AB 与直线CD 交于点E ,∠AED =60°,点F 在直线CD 上运动,连接AF ,线段AF 绕点A 顺时针旋转60°得到AG ,连接FG ,EG ,过点G 作GH ⊥AB 于点H .(1)如图1,点F 和点G 都在射线AB 的同侧时,EG 与GH 的数量关系是______;(2)如图2,点F 和点G 在射线AB 的两侧时,线段EF ,AE ,GH 之间有怎么样的数量关系?并证明你的结论;(3)若点F和点G 都在射线AB的同侧,AE =1,EF =2,请直接写出HG 的长.(2)解:在射线ED上截取EN=AE,连接AN,如图3,∵∠AED=60°,∴△AEN是等边三角形,∴AE=AN,∠EAN=60°∵AF=AG,∠FAG=60°,(3)①当点F和点G都在射线AB的右侧时,在射线ED上取一点M,使得EM=EG,连接MG,如图4,∵线段AF绕点A顺时针旋转60°得到AG,∴∠GAF=60°,AG=AF,∴△GAF是等边三角形,∴∠AGF=∠AFG=∠FAG=60°,AG=AF=GF,∵∠AED=60°,∴∠AGF=∠AED,∴点A、E、G、F四点共圆,∴∠GEH=∠GFA=60°,∠GEF=∠GAF=60°,∵EM=EG,∴△GEM是等边三角形,∴EM=GM=EG,∠EGM=60°,∴∠EGM=∠EGA+∠MGA=60°=∠EGM=∠MGF+∠MGA,∴∠EGA=∠MGF,∴△EGA≌△MGF,∴MF=AE=1,∴GE=EM=EF−MF=2−1=1,∵GH⊥AB,【点睛】本题主要考查了特殊角的三角函数、全等三角形的判定和性质、等边三角形的判定及性质以及旋转图形的性质,熟练掌握这些性质和判定是解题的关键.2.(2022·上海宝山·九年级期末)如图,已知正方形ABCD,将AD绕点A逆时针方向旋转n°(0<n<90)到AP的位置,分别过点C、D作CE⊥BP,DF⊥BP,垂足分别为点E、F.(1)求证:CE=EF;(2)联结CF,如果DPCF =13,求∠ABP的正切值;(3)联结AF,如果AF,求n的值.(2)(3)解:∵0<n<90,【点睛】本题考查正方形的判定与性质,相似三角形的判定与性质,以及旋转的性质和解直角三角形等,3.(2022·重庆市育才中学九年级期末)在等边△ABC中,D是边AC上一动点,连接BD,将BD绕点D顺时针旋转120°,得到DE,连接CE.(1)如图1,当B、A、E三点共线时,连接AE,若AB=2,求CE的长;(2)如图2,取CE的中点F,连接DF,猜想AD与DF存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接BE、AF交于G点.若GF=DF,请直接写出CD AB的值.BE∵将BD绕点D顺时针旋转120°,得到DE∵△ABC是等边三角形AB=1∴∠ABC=60°,AB=AC,AH=12∵点F是CE的中点∴FE 又FK=DF∴四边形CDFK是平行四边形∴ED=KC,ED∥KC∴∠EDA=∠KCA∵将BD绕点D顺时针旋转120°,得到DE,∴B,D,F,G四点共圆由(2)可知AF⊥DF,∠FAD=30°4.(2022·黑龙江·哈尔滨工业大学附属中学校九年级期末)在平面直角坐标系中,抛物线y=3ax2﹣10ax+c分别交x轴于点A、B(A左B右)、交y轴于点C,且OB=OC=6.(1)如图1,求抛物线的解析式;(2)如图2,点P在第一象限对称轴右侧抛物线上,其横坐标为t,连接BC,过点P作BC的垂线交x轴于点D,连接CD,设△BCD的面积为S,求S与t的函数关系式(不要求写出t的取值范围);(3)如图3,在(2)的条件下,线段CD的垂直平分线交第二象限抛物线于点E,连接EO、EC、ED,且∠EOC=45°,点N在第一象限内,连接DN,DN∥EC,点G在DE上,连接NG,点M在DN上,NM=EG,在NG上截取NH=NM,连接MH并延长交CD于点F,过点H作HK⊥FM交ED于点K,连接FK,若∠FKG=∠HKD,GK=2MN,求点G的坐标.又FD=FD∴△FDM≌△FDK∴FK=FM,KD=MD∴MD+MR=DK+GK即GD=RD∴△KDM,△GDR是等腰直角三角形在四边形FKDM中,∠KDM=90°,∠FKD=FMD=180°−α∴∠KFM=360°−90°−2(180°−α)=2α−90°=2α−(α+β)=α−β在△FHK与△GDN中∵∠FHK=∠GDN=90°,∠FKH=∠GND=2β∴△FHK∽△GDN∴∠NGD=∠KHF=α−β∵∠HGK=∠HFK,HK=HK∴G,K,H,F四点共圆∵HK⊥FM∴∠FHK=90°∴∠FGK=90°∴∠GFK=90°−∠FKG=90°−α=β在△FRM与△FGK中MR=KG=2a∠FKG=∠FMR=αFM=FK∴△FRM≌△FGK∴∠RFM=∠GFK=β∴∠GFR=2β+∠KFM=2β+α−β=α+β=90°∴∠RFG=∠FGD=∠GDR=90°∴四边形FGDR是矩形又GD=DR∴四边形FGDR是正方形如图,延长DE至W,使EW=EG=a,则WK=2GK=4a5.(2021·广东·珠海市紫荆中学九年级期中)如图,△ABC中,∠BAC=90°,AB=AC=4,直角△ADE的边AE在线段AC上,AE=AD=2,将△ADE绕直角顶点A按顺时针旋转一定角度α,连接CD、BE,直线CD,BE交于点F,连接AF,过BC中点G作GM⊥CD,GN⊥AF.(1)求证:BE=CD;(2)求证:旋转过程中总有∠BFA=∠MGN;(仅对0°<α<90°时加以证明)(3)在AB上取一点Q,使得AQ=1,求FQ的最小值.6.(2021·湖北·武汉外国语学校(武汉实验外国语学校)九年级阶段练习)【问题背景】如图1,P是等边△ABC内一点,∠APB=150°,则PA2+PB2=PC2.小刚为了证明这个结论,将△PAB绕点A逆时针旋转60°,请帮助小刚完成辅助线的作图;【迁移应用】如图2,D是等边△ABC外一点,E为CD上一点,AD∥BE,∠BEC=120°,求证:△DBE是等边三角形;【拓展创新】如图3,EF=6,点C为EF的中点,边长为3的等边△ABC绕着点C在平面内旋转一周,直MC的最小值.线AE、BF交于点P,M为PG的中点,EF⊥FG于F,FG=(2)∵∠BEC=120°,∴∠BED=60°,∵AD∥DE,∴∠ADE=∠BED=60°,∵△ABC是等边三角形,∴∠BAC=∠ABC=∠ACB=60°,∴A、D、B、C共圆,如图2所示:∴∠ADB=120°,∵∠ADE=∠BED=60°,∴∠BDE=60°,∴△DBE是等边三角形;(3)7.(2022·全国·九年级课时练习)如图1,在正方形ABCD中,点F在边BC上,过点F作EF⊥BC,且FE=FC(CE<CB),连接CE、AE,点G是AE的中点,连接FG.(1)用等式表示线段BF与FG的数量关系:______;(2)将图1中的△CEF绕点C按逆时针旋转,使△CEF的顶点F恰好在正方形ABCD的对角线AC上,点G仍是AE的中点,连接FG、DF.①在图2中,依据题意补全图形;②用等式表示线段DF与FG的数量关系并证明.∵四边形ABCD为正方形,∴∠ABC=90°,∠ACB=45°,AB=②DF=2FG;理由如下:如图2,连接BF、BG,8.(2021·四川·成都实外九年级阶段练习)“数学建模”是中学数学的核心素养,平时学习过程中能归纳一些几何模型,解决几何问题就能起到事半功倍的作用.(1)如图1,正方形ABCD中,∠EAF=45°,且DE=BF,求证:EG=AG;(2)如图2,正方形ABCD中,∠EAF=45°,延长EF交AB的延长线于点G,(1)中的结论还成立吗?请说明理由;(3)如图3在(2)的条件下,作GQ⊥AE,垂足为点Q,交AF于点N,连结DN,求证:∠NDC=45°.【答案】(1)见解析;(2)结论依然成立,理由见解析;(3)见解析【分析】(1)根据半角旋转模型,把△ABF逆时针旋转90°,则AB与AD重合,设F对应的点为M,即可证明△AME≅△AFE,得到∠AEM=∠AEF,再结合∠AEM=∠EAG,可得∠AEM=∠AEF,可得EG=AG;(2)结论依然成立,证明方法与(1)一样;(3)又等腰三角形三线合一的性质可得GQ垂直平分EA,可得△ANE是等腰直角三角形,可得A、D、E、N四点共圆,根据圆周角∠NDC=∠EAN=45°【详解】(1)把△ABF逆时针旋转90°,则AB与AD重合,设F对应的点为M,∴△AMD≅△AFB∴∠MDA=∠FBA=90°,AM=AF,∠MAD=∠FAB∴M、D、C三点共线∵∠EAF=45°∴∠EAD+∠FAB=∠EAD+∠MAD=∠MAE=45°∴△AME≅△AFE(SAS)∴∠AEM=∠AEG∵AB∥CD∴∠AEM=∠EAG∴∠AEG=∠EAG∴EG=AG(2)结论依然成立,EG=AG把△ABF逆时针旋转90°,则AB与AD重合,设F对应的点为M,∴△AMD≅△AFB∴∠MDA=∠FBA=90°,AM=AF,∠MAD=∠FAB∴M、D、C三点共线∵∠EAF=45°∴∠EAD+∠FAB=∠EAD+∠MAD=∠MAE=45°∴△AME≅△AFE(SAS)∴∠AEM=∠AEG∵AB∥CD∴∠AEM=∠EAG∴∠AEG=∠EAG∴EG=AG(3)连接EN由(2)得EG=AG∵GQ⊥AE∴GQ垂直平分AE∴EN=AN∵∠EAF=45°∴∠ANE=90°=∠ADE∴A、D、E、N四点在以AE为直径的同一个圆上,∴∠NDC=∠EAN=45°.【点睛】本题考查半角旋转模型,熟练根据模型做出辅助线是解题的关键.第(3)问根据四点共圆证明是本题的难点.9.(2021·上海徐汇·九年级期中)如图,已知Rt△ABC和Rt△CDE,∠ACB=∠CDE=90°,∠CAB=∠CED,AC=8,BC=6,点D在边AB上,射线CE交射线BA于点F.(1)如图,当点F在边AB上时,联结AE.①求证:AE∥BC;CF,求BD的长;②若EF=12(2)设直线AE与直线CD交于点P,若△PCE为等腰三角形,求BF的长.10.(2022·全国·九年级专题练习)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角.①若∠A=40°,直接写出∠E的度数是;②求∠E与∠A的数量关系,并说明理由.(2)如图2,四边形ABCD中,∠ABC=∠ADC=90°,点E在BD的延长线上,连CE,若∠BEC是△ABC 中∠BAC的遥望角,求证:DA=DE.11.(2022·全国·九年级课时练习)在正方形ABCD中,M是BC边上一点,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP,DQ.(1)如图1,求证:BP=DQ;(2)如图2,若点P,B,D三点共线,求证:A,Q,P,D四点共圆;(3)若点P,Q,C三点共线,且AD=3,求BP的长.【答案】(1)见解析;(2)见解析;(3)BP=3【分析】(1)证明△AQD≌△APB即可得出答案;(2)根据全等三角形的性质以及圆内接四边形对角和为180°即可得出结论;(3)证明△PAQ为等腰直角三角形,得出∠APC=45°,然后得出∠ABC=2∠APC,根据圆周角定理可得点P在圆⊙B上,结论可得.【详解】解:(1)根据旋转的性质可得AP=AQ,∠PAQ=90°,∵∠BAD=90°,∴∠DAQ=∠BAP,∵AB=AD,∴△AQD≌△APB(SAS),∴BP=DQ;(2)∵△AQD≌△APB,∴∠Q=∠APB,∵点P,B,D三点共线,∴∠APD+∠APB=180°,∴∠Q+∠APD=180°,∴A,Q,P,D四点共圆;(3)∵AP=AQ,∠PAQ=90°,∴△PAQ为等腰直角三角形,∴∠APC=45°,以点B为圆心,BA为半径作⊙B,∵∠ABC=90°,∠APC=45°,∴∠ABC=2∠APC,∴点P在圆⊙B上,∴BP=BC=3.【点睛】本题考查了全等三角形的判定与性质,四点共圆,圆周角定理等知识,熟练掌握基础知识是解本题的关键.12.(2021·江苏·泗阳县实验初级中学九年级阶段练习)如图1,在正方形ABCD中,点E、F分别是BC、CD上的两个动点,且BE=CF,AE和BF相交于点P.(1)探究AE、BF的关系,并说明理由;(2)求证:A、D、F、P在同一个圆上;(3)如图2,若正方形ABCD的边AB在y轴上,点A、B的坐标分别为(0,−1+a)、(0,−1−a),点E、F 分别是BC、CD上的两个点,且BE=CF,AE和BF相交于点P,点M的坐标为(4,−4),当点P落在以M 为圆心1为半径的圆上.求a的取值范围.。

“四点共圆”模型(解析版)--初中数学专题训练

“四点共圆”模型(解析版)--初中数学专题训练

“四点共圆”模型1.识别几何模型。

2.利用“四点共圆”模型解决问题一.填空题(共3小题)1(2021秋•南京期中)如图,在⊙O的内接五边形ABCDE中,∠C=100°,BC=CD,则∠A+∠D =220°.【分析】连接BD,由∠C=100°,BC=CD得出∠CDB=40°,由四边形BAED内接于⊙O得出∠A +∠BDE=180°,即可求出答案.【解答】解:如图,连接BD,∵∠C=100°,BC=CD,∴∠CBD=∠CDB=40°,∵四边形BAED内接于⊙O,∴∠A+∠BDE=180°,∴∠A+∠CDE=∠A+∠BDE+∠CDB=180°+40°=220°,故答案为:220.【点评】本题考查了圆周角定理,掌握圆连接四边形的性质是解题的关键.2(2022•靖江市二模)如图,AB⊥BC,AB=5,点E、F分别是线段AB、射线BC上的动点,以EF 为斜边向上作等腰Rt△DEF,∠D=90°,连接AD,则AD的最小值为522.【分析】连接BD并延长,利用四点共圆的判定定理得到B,E,D,F四点共圆,再利用等腰直角三角形的性质和圆周角定理得到∠DBF=∠DEF=45°,得到点D的轨迹,最后利用垂线段最短和等腰直角三角形的性质解答即可得出结论.【解答】解:连接BD并延长,如图,∵AB⊥BC,∴∠ABC=90°,∠EDF=90°,∴∠ABC+∠EDF=180°,∴B,E,D,F四点共圆,∵△DEF为等腰直角三角形,∴∠DEF=∠DFE=45°,∴∠DBF=∠DEF=45°,∴∠DBF=∠DBE=45°,∴点D的轨迹为∠ABC的平分线上,∵垂线段最短,∴当AD⊥BD时,AD取最小值,∴AD的最小值为22AB=522,故答案为:522.【点评】本题主要考查了直角三角形的性质,等腰直角三角形的性质,四点共圆的判定圆周角定理,点的轨迹,垂线段的性质,利用已知条件求得点D 的轨迹是解题的关键.3(2022秋•大丰区期中)如图,△ABC 中,AD ⊥BC ,∠B =45°,∠C =30°.以AD 为弦的圆分别交AB 、AC 于E 、F 两点.点G 在AC 边上,且满足∠EDG =120°.若CD =4+22,则△DEG 的面积的最小值是 22+2 .【分析】连接EF ,利用四点共圆和同弧所对的圆周角相等证明EF ∥DG ,从而得到S △EDG =S △EDG ,当FG 最小时,△DFG 的面积就最小,作△DFG 的外接圆O ,过O 点作OH ⊥FG 交于点H ,连接OF 、OG ,DO +OH =(12+22)FG ,当DO +OH 最小时,FG 就最小,当D 、O 、H 三点共线时,DO +OH 最小,此时DH ⊥FG ,在Rt △FHO 中,(2FH )2=FH 2+(2+2-2FH )2,求出FH =2,可得FG 的最小值为22,再求S △DFG =22+2,即△DEG 的面积的最小值为22+2.【解答】解:连接EF ,AD ⊥BC ,∠B =45°,∠C =30°,∴∠B =45°,∠DAC =60°,∵∠BAC =105°,∵A 、E 、F 、D 四点共圆,∴∠EDF =75°,∵∠EDG =120°,∴∠FDG =45°,∵ED =ED,∴∠EFD =∠EAD =45°,∴∠EFD =∠FDG ,∴EF ∥DG ,∴S △EDG =S △EDG ,∵CD =4+22,∠C =30°,∴AC =833+463,AD =433+263,∴AC 边上的高=AD ⋅DC AC=2+2,∴当FG 最小时,△DFG 的面积就最小,作△DFG 的外接圆O ,过O 点作OH ⊥FG 交于点H ,连接OF 、OG ,∵∠FDG =45°,∴∠FOG =90°,∵OF =GO ,∴△FOG 是等腰直角三角形,∵∠FOH =12∠FOG =45°,∴△FOH 是等腰直角三角形,∴FH =OH =12FG ,FO =2FH ,∴DO +OH =22FG +12FG =(12+22)FG ,∴当DO +OH 最小时,FG 就最小,∵DO +OH ≥DH ,∴当D 、O 、H 三点共线时,DO +OH 最小,此时DH ⊥FG ,∴DH =2+2,在Rt △FHO 中,(2FH )2=FH 2+(2+2-2FH )2,解得FH =2或FH =4+32,∵OH =2+2=FH +FO ,∴FH =2,∴FG 的最小值为22,∴S △DFG =12×22×(2+2)=22+2,∴△DEG 的面积的最小值为22+2,故答案为:22+2.【点评】本题考查圆的综合应用,熟练掌握圆心角与圆周角的关系,四点共圆的性质,三角形外接圆的性质是解题的关键.二.解答题(共7小题)4(2022秋•宿城区期中)如图,BD ,CE 是△ABC 的高,BD ,CE 相交于点F ,M 是BC 的中点,⊙O 是△ABC 的外接圆.(1)点B ,C ,D ,E 是否在以点M 为圆心的同一个圆上?请说明理由.(2)若AB =8,CF =6,求△ABC 外接圆的半径长.【分析】(1)连接EM ,DM ,根据垂直定义可得∠BDC =∠BEC =90°,然后利用直角三角形斜边上的中线性质可得EM =BM =12BC ,DM =CM =12BC ,从而可得EM =BM =DM =CM ,即可解答;(2)连接AF 并延长交BC 于点G ,连接BO 并延长交⊙O 于点H ,连接AH ,CH ,根据三角形的高是交于一点的可得AG⊥BC,再根据直径所对的圆周角是直角可得∠BAH=∠BCH=90°,从而可得AG∥CH,AH∥CE,然后利用平行四边形的判定可得四边形AFCH是平行四边形,从而可得CF= AH=6,最后在Rt△BAH中,利用勾股定理进行计算即可解答.【解答】解:(1)点B,C,D,E在以点M为圆心的同一个圆上,理由:连接EM,DM,∵BD⊥AC,CE⊥AB,∴∠BDC=∠BEC=90°,∵M是BC的中点,∴EM=BM=12BC,DM=CM=12BC,∴EM=BM=DM=CM,∴点B,C,D,E在以点M为圆心的同一个圆上;(2)连接AF并延长交BC于点G,连接BO并延长交⊙O于点H,连接AH,CH,∵BD,CE是△ABC的高,BD,CE相交于点F,∴AG⊥BC,∵BH是⊙O的直径,∴∠BAH=∠BCH=90°,∴BA⊥AH,BC⊥CH,∴AG∥CH,∵CE⊥AB,∴AH∥CE,∴四边形AFCH是平行四边形,∴CF=AH=6,在Rt△BAH中,AB=8,∴BH=BA2+AH2=82+62=10,∴△ABC外接圆的半径长为5.【点评】本题考查了三角形的外接圆与外心,直角三角形斜边上的中线,点与圆的位置关系,确定圆的条件,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5(兴化市校级期中)已知:如图,在正方形ABCD中,E、F分别是AD、CD的中点.(1)线段AF与BE有何关系.说明理由;(2)延长AF、BC交于点H,则B、D、G、H这四个点是否在同一个圆上.说明理由.【分析】(1)证明△ABE≌△DAF,证据全等三角形的对应边相等,以及直角三角形的两锐角互余即可证明AF相等且互相垂直;(2)证明△ADF≌△HCF,依据直角三角形斜边上的中线等于斜边的一半,即可证得B,C,D,H四点到C的距离相等,即可证得四点共圆.【解答】解:(1)AF=BE且AF⊥BE.证明:∵E、F分别是AD、CD的中点,∴AE=12AD,DF=12CD∴AE=DF又∵∠BAD=∠D=90°,AB=AD∴△ABE≌△DAF∴AF=BE,∠AEB=∠AFD∵在直角△ADF中,∠DAF+∠AFD=90°∴∠DAF+∠AEB=90°∴∠AGE=90°∴AF⊥BE(2)连接CG.∵DF=CF,∠D=∠FCH=90°,∠AFD=∠HFC∴△ADF≌△HCF∴BC=AD=CH=CD,在直角△BGH中,BC=CH,∴GC=12BH∴CB=CG=CD=CH,∴B,G,D,H在以C为圆心、BC长为半径的圆上.【点评】本题考查了全等三角形的判定与性质,以及直角三角形的性质,证明三角形全等是解题的关键.6(2022秋•建湖县期中)如图,在⊙O的内接四边形ABCD中,DB=DC,∠DAE是四边形ABCD 的一个外角.(1)若∠DAE=75°,则∠DAC=75°;(2)过点D作DE⊥AB于E,判断AB、AE、AC之间的数量关系并证明;(3)若AB=6、AE=2,求BD2-AD2的值.【分析】(1)根据四边形外接圆的性质,同弧所对的圆周角相等,可得∠DCB=∠DBC=∠DAC= 75°;(2)过点D作DF⊥AC于点F,可证明△BDE≌△CDF(AAS),△ADE≌△ADF(AAS),则AC= AF+FC=AE+BE=AE+AE+AB=2AE+AB;(3)在Rt△BDE中,BD2=64+DE2,,在Rt△AED中,AD2=4+ED2,再求解即可.【解答】解:(1)∵四边形ABCD是圆O的内接四边形,∴∠BCD+∠BAD=180°,∵∠DAE是四边形ABCD的一个外角,∴∠DAE=∠BCD,∵BD=CD,∴∠CBD=∠DCB,∵弧CD所对的圆周角分别为∠CAD、∠CBD,∴∠CBD=∠CAD,∵∠DAE=75°,∴∠DCB=∠DBC=∠DAC=75°,故答案为;75;(2)过点D作DF⊥AC于点F,∵DE⊥AB,∴∠DEA=90°,∵∠ABD=∠ACD,BD=CD,∠E=∠DFC=90°,∴△BDE≌△CDF(AAS),∴DE=DF,AE=CF,∴∠ADE=∠ADF,又∵∠E=∠AFD,AD=AD,∴△ADE≌△ADF(AAS),∴AE=AF,∴AC=AF+FC=AE+BE=AE+AE+AB=2AE+AB,即AC=2AE+AB;(3)在Rt△BDE中,BD2=BE2+DE2,在Rt△AED中,AD2=AE2+ED2,∵AB=6,AE=2,∴BE=8,∴BD2=64+DE2,AD2=4+ED2,∴BD2-AD2=60.【点评】本题考查圆的综合应用,熟练掌握同弧所对的圆周角相等,四点共圆的性质,直角三角形勾股定理,三角形全等的判定及性质是解题的关键.7(2023•淮安区一模)综合与实践“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC同侧有两点B,D,连接AD,AB,BC,CD,如果∠B=∠D,那么A,B,C,D四点在同一个圆上.探究展示:如图2,作经过点A,C,D的⊙O,在劣弧AC上取一点E(不与A,C重合),连接AE,CE,则∠AEC+∠D=180°(依据1)∵∠B=∠D∴∠AEC+∠B=180°∴点A,B,C,E四点在同一个圆上(对角互补的四边形四个顶点共圆)∴点B,D在点A,C,E所确定的⊙O上(依据2)∴点A,B,C,D四点在同一个圆上反思归纳:(1)上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:圆内接四边形对角互补;依据2: 过不在同一直线上的三个点有且只有一个圆 .(2)如图3,在四边形ABCD中,∠1=∠2,∠3=45°,则∠4的度数为45°.拓展探究:(3)如图4,已知△ABC是等腰三角形,AB=AC,点D在BC上(不与BC的中点重合),连接AD.作点C关于AD的对称点E,连接EB并延长交AD的延长线于F,连接AE,DE.①求证:A,D,B,E四点共圆;②若AB=22,AD•AF的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.【分析】(1)根据圆内接四边形的性质、过三点的圆解答即可;(2)根据四点共圆、圆周角定理解答;(3)①根据轴对称的性质得到AE=AC,DE=DC,∠AEC=∠ACE,∠DEC=∠DCE,进而得到∠AED=∠ABC,证明结论;②连接CF,证明△ABD∽△AFB,根据相似三角形的性质列出比例式,计算即可.【解答】(1)解:依据1:圆内接四边形对角互补;依据2:过不在同一直线上的三个点有且只有一个圆,故答案为:圆内接四边形对角互补;过不在同一直线上的三个点有且只有一个圆;(2)解:∵∠1=∠2,∴点A,B,C,D四点在同一个圆上,∴∠3=∠4,∵∠3=45°,∴∠4=45°,故答案为:45°;(3)①证明:∵AB=AC,∴∠ABC=∠ACB,∵点E与点C关于AD的对称,∴AE=AC,DE=DC,∴∠AEC=∠ACE,∠DEC=∠DCE,∴∠AED=∠ACB,∴∠AED=∠ABC,∴A,D,B,E四点共圆;②解:AD•AF的值不会发生变化,理由如下:如图4,连接CF,∵点E与点C关于AD的对称,∴FE=FC,∴∠FEC=∠FCE,∴∠FED=∠FCD,∵A,D,B,E四点共圆,∴∠FED=∠BAF,∴∠BAF=∠FCD,∴A,B,F,C四点共圆,∴∠AFB=∠ACB=∠ABC,∵∠BAD=∠FAB,∴△ABD∽△AFB,∴AD AB =AB AF,∴AD•AF=AB2=8.【点评】本题考查的是四点共圆、相似三角形的判定和性质、轴对称的性质,正确理解四点共圆的条件是解题的关键.8(2022秋•靖江市期末)小明在学习了《圆周角定理及其推论》后,有这样的学习体会:在Rt△ABC 中,∠C=90°,当AB长度不变时,则点C在以AB为直径的圆上运动(不与A、B重合).[探索发现]小明继续探究,在Rt△ABC中,∠C=90°,AB长度不变.作∠A与∠B的角平分线交于点F,小明计算后发现∠AFB的度数为定值,小明猜想点F也在一个圆上运动.请你计算∠AFB的度数,并简要说明小明猜想的圆的特征.[拓展应用]在[探索发现]的条件下,若AB=23,求出△AFB面积的最大值.[灵活运用]在等边△ABC中,AB=23,点D、点E分别在BC和AC边上,且BD=CE,连接AD、BE交于点F,试求出△ABF周长的最大值.【分析】[探索发现]根据角平分线的定义,三角形内角和定理可求∠AFB=135°,再由已知结论可得F点在以AB为定弦,∠AFB为定角的圆上;[拓展应用]设F点在圆O上,连接OA、OB,则O与C点共圆;过点F作FH⊥AB交于点H,设AB的中点为D,当H点与D点重合时,FH的长度最大,此时△FBA的面积最大,△FAB是等腰三角形,求出FD的长再求三角形面积即可;[灵活运用]通过证明△ABD≌△BCE(SAS),可得∠AFB=120°,再由题干已知可知F点在以AB 为定弦,∠AFB为定角的圆上,设△ABF的外接圆为O,当△ABF的高经过圆心O时,△ABF的周长有最大值,此时△ABF是等腰三角形.【解答】解:[探索发现]∵∠ACB=90°,∴∠CAB+∠CBA=90°,∵AF是∠CAB的平分线,BF是∠CBA的平分线,∴∠FAB+∠FBA=45°,∴∠AFB=135°,∴F点在以AB为定弦,∠AFB为定角的圆上;[拓展应用]设F点在圆O上,连接OA、OB,∵∠AOB=90°,∵∠ACB+∠AOB=180°,∴O与C点共圆,过点F作FH⊥AB交于点H,设AB的中点为D,当H点与D点重合时,FH的长度最大,此时△FBA的面积最大,∵FH⊥AB,D是AB的中点,∴FA=FB,∵∠AFB=135°,∴∠FAB=∠FBA=22.5°,∴∠CAB=∠CBA=45°,∴△ABC是等腰直角三角形,连接CF,则C、F、D三点共线,过点F作FP⊥AC交于点P,∴FP=FD,AP=AD,∵AB=23,∴AC=6,AD=AP=3,∴CP=6-3,∵∠FCP=45°,∴CF=2CP=23-6,∴FD=3-(23-6)=6-3,×23×(6-3)=32-3,∴△AFB的面积=12∴△AFB面积的最大值为32-3;[灵活运用]∵△ABC是等边三角形,∴AB=BC,∠ACB=∠ABC=60°,∵BD=CE,∴△ABD≌△BCE(SAS),∴∠CBE=∠BAD,∴∠AFE=∠ABF+∠BAF=∠ABF+∠CBE=∠ABC=60°,∴∠AFB=120°,∵AB=23,∴F点在以AB为定弦,∠AFB为定角的圆上,设△ABF的外接圆为O,当△ABF的高经过圆心O时,△ABF的周长有最大值,连接AO、BO,∵∠AFB=120°,∴∠AOB=120°,∵OA=BO,∴∠OAB=30°,∵AB=23,∴AH=3,在Rt△AOH中,OH=AH•tan30°=1,OA=2OH=2,∴HF=OF-OH=1,∴AF=BF=2,∴△ABF周长的最大值为4+23.【点评】本题考查圆的综合应用,熟练掌握三角形全等的判定及性质,定角定弦的三角形与圆的关系是解题的关键.9(2022秋•鼓楼区期中)以下是“四点共圆”的几个结论,你能证明并运用它们吗?Ⅰ.若两个直角三角形有公共斜边,则这两个三角形的4个顶点共圆(图1、2);Ⅱ.若四边形的一组对角互补,则这个四边形的4个顶点共圆(图3);Ⅲ.若线段同侧两点与线段两端,点连线的夹角相等,则这两点和线段两端点共圆(图4).(1)在图1、2中,取AC的中点O,根据直角三角形斜边上的中线等于斜边的一半得OA=OB=OC =OD,即A,B,C,D共圆;(2)在图3中,画⊙O经过点A,B,D(图5).假设点C落在⊙O外,BC交⊙O于点E,连接DE,可得∠BED+∠A=180°,所以∠BED=180°-∠A,得出矛盾;同理点C也不会落在⊙O内,即A,B,C,D共圆.结论Ⅲ同理可证.(3)利用四点共圆证明锐角三角形的三条高交于一点.已知:如图6,锐角三角形ABC的高BD,CE相交于点H,射线AH交BC于点F.求证:AF是△ABC的高.(补全以下证明框图,并在图上作必要标注)(4)如图7,点P是△ABC外部一点,过P作直线AB,BC,CA的垂线,垂足分别为E,F,D,且点D,E,F在同一条直线上.求证:点P在△ABC的外接圆上.【分析】(1)根据直角三角形斜边中线的性质可得结论;(2)由圆周角的性质可得∠BED+∠A=180°,再结合题干条件,得出矛盾,由此可得出结论;(3)如图,连接DE,由点B、C、D、E四点共圆得∠BDE=∠ECB,由点A、D、H、E四点共圆得∠BDE=∠BAF,从而证明∠BAF+∠ABF=90°即可;(4)连接BP和CP,由点A,E,P,F四点共圆可得,∠BEF=∠BPF,由点C,P,D,F四点共圆可得∠CDF=∠CPF,再由外角的性质及角的和差可得∠BAC=∠BPC,由此可得点A,B,C,P四点共圆,即点P在△ABC的外接圆上.【解答】解:(1)在图1、2中,取AC的中点O,根据直角三角形斜边上的中线等于斜边的一半,得OA =OB=OC=OD,即A,B,C,D共圆;故答案为:直角三角形斜边上的中线等于斜边的一半;(2)在图3中,画⊙O经过点A,B,D(图5).假设点C落在⊙O外,BC交⊙O于点E,连接DE,可得∠BED+∠A=180°,∴∠BED=180°-∠A,得出矛盾;同理点C也不会落在⊙O内,即A,B,C,D共圆.结论Ⅲ同理可证.故答案为:∠BED+∠A;180°-∠A;(3)如图6,连接DE,由点B、C、D、E四点共圆得∠BDE=∠ECB,由点A、D、H、E四点共圆得∠BDE=∠BAF,∴∠ECB=∠BAF,∵∠BEC=90°,∴∠ECB+∠ABF=90°,∴∠BAF+∠ABF=90°,∴∠BFA=90°,∴AF为△ABC的边BC上的高.(4)如图7,连接BP和CP,由点A,E,P,F四点共圆可得∠BEF=∠BPF,由点C,P,D,F四点共圆可得∠CDF=∠CPF,∵∠ADE=∠CDF,∴∠ADE=∠CPF,∵∠BAC=∠BEF+∠ADE,∠BPC=∠BPF+∠CPF,∴∠BAC=∠BPC,∴点A,B,C,P四点共圆,即点P在△ABC的外接圆上.【点评】本题考查了圆的定义,直角三角形斜边上的中线等于斜边一半,圆内接四边形对角互补,圆周角定理,内心的定义.第(3)(4)题解题关键是选取适当的四点证明共圆,再利用圆周角定理证明角相等.10(2022秋•仪征市期中)【问题提出】苏科版九年级(上册)教材在探究圆内接四边形对角的数量关系时提出了两个问题:1.如图(1),在⊙O的内接四边形ABCD中,BD是⊙O的直径.∠A与∠C、∠ABC与∠ADC有怎样的数量关系?2.如图(2),若圆心O不在⊙O的内接四边形ABCD的对角线上,问题(1)中发现的结论是否仍然成立?(1)小明发现问题1中的∠A与∠C、∠ABC与∠ADC都满足互补关系,请帮助他完善问题1的证明:∵BD 是⊙O 的直径,∴∠A =∠C =90°,∴∠A +∠C =180°,∵四边形内角和等于360°,∴∠ABC +∠ADC =180°.(2)请回答问题2,并说明理由;【深入探究】如图(3),⊙O 的内接四边形ABCD 恰有一个内切圆⊙I ,切点分别是点E 、F 、G 、H ,连接GH ,EF .(3)直接写出四边形ABCD 边满足的数量关系AD +BC =AB +CD ;(4)探究EF 、GH 满足的位置关系;(5)如图(4),若∠C =90°,BC =3,CD =2,请直接写出图中阴影部分的面积.【分析】(1)根据直径所对的圆周角是直角,四边形的内角和定理进行求解即可;(2)连接AC 、BD ,根据同弧所对的圆周角相等,三角形的内角和定理进行求解即可;(3)连接AI 、BI 、CI 、DI ,根据切线长定理进行求解即可;(4)连接EH 、IH 、IG 、IF 、GF ,根据切线的性质,四点共圆的性质可得∠GIF =∠ADC ,再由同弧所对的圆周角相等,可得∠GFE =∠GHE ,根据三角形内角和定理,可得∠DEH =∠GFE ,则∠FEH +∠EHG =∠FEH +∠IEF +∠DEH =∠EID =90°,即可证明EF ⊥GH ;(5)连接BD ,可得BD 是圆O 的直径,连接IF 、IH ,先推导出∠BIF +∠DIH =90°,再证明四边形IHCF 是正方形,可得∠HIF =90°,即可知I 点在BD 上,根据已知求出S 四边形ABCD =3×2=6,通过证明△DHI ∽△IFB ,求出IH =65,可求S ⊙I =3625π,则阴影部分的面积=6-3625π.【解答】解:【问题提出】(1)∵BD 是⊙O 的直径,∴∠A =∠C =90°,∴∠A +∠C =180°,∵四边形内角和等于360°,∴∠ABC +∠ADC =180°;故答案为:∠A =∠C =90°,∠ABC +∠ADC =180°;(2)成立,理由如下:连接AC 、BD ,∵∠DAC =∠CBD ,∠ACD =∠ABD ,∴∠DAC +∠ACD =∠DBC +∠ABD =∠ABC ,∵∠DAC +∠ACD +∠ADC =180°,∴∠ABC +∠ADC =180°;同理,∠BAD +∠BCD =180°;【深入探究】(3)AD +BC =AB +CD ,理由如下:连接AI 、BI 、CI 、DI ,∵圆I 是四边形ABCD 的内切圆,∴AG =AE ,DE =DH ,CH =CF ,BF =BG ,∴AD +BC =AE +ED +BF +CF =AG +DH +BG +CH =AB +CD ,即AD +BC =AB +CD ,故答案为:AD +BC =AB +CD ;(4)EF ⊥GH ,理由如下:连接EH 、IH 、IG 、IF 、GF ,∵四边形ABCD 是圆O 的内接四边形,∴∠B +∠D =180°,∵BG ⊥IG ,IF ⊥BF ,∴∠BGI =∠IFB =90°,∴∠B +∠GIF =180°,∴∠GIF =∠D ,∵GI =IF ,∴∠GFI =90°-12∠GIF ,∵ED =DH ,∴∠DEH =90°-12∠D ,∴∠GFI =∠DEH ,∵GE =GE ,∴∠GFE =∠GHE ,∴∠GHE =∠GFI +∠IFE ,∵IF =IE ,∴∠IFE =∠IEF ,∴∠FEH +∠EHG =∠FEH +∠IEF +∠DEH =∠EID =90°,∴EF ⊥GH ;(5)连接BD ,∵∠C =90°,∴∠A =90°,∵ABCD 是圆O 的内接圆,∴BD 是圆O 的直径,连接IF、IH,∵I是四边形ABCD的内切圆圆心,∴∠ADI=∠IDH,∠ABI=∠FBI,∵IH⊥CD,IF⊥BC,∴∠BIF=90°-∠IBF,∠DIH=90°-∠IDH,∴∠BIF+∠DIH=180°-(∠IBF+∠IDH)=180°-12(∠ADC+∠ABC),∵∠ABC+∠ADC=180°,∴∠BIF+∠DIH=90°,∵IF⊥FC,IH⊥CD,∠C=90°,IH=IF,∴四边形IHCF是正方形,∴∠HIF=90°,∴I点在BD上,∵BC=3,CD=2,∴S四边形ABCD=3×2=6,∵∠DIH+∠IDH=90°,∠IBF+∠IDH=90°,∴∠DIH=∠IBF,∵∠IHD=∠IFB=90°,∴△DHI∽△IFB,∴IH BF =DHIF,即IH3-IH=2-IHIH,解得IH=6 5,∴S⊙I=3625π,∴阴影部分的面积=6-3625π.【点评】本题考查圆的综合应用,熟练掌握四边形的内切圆性质,外接圆性质,三角形相似的判定及性质,切线的性质,四点共圆的性质是解题的关键.一.选择题(共3小题)11(2022•思明区二模)如图,四边形ABCD是⊙O的内接四边形,点E为边CD上任意一点(不与点C,点D重合),连接BE,若∠A=60°,则∠BED的度数可以是()A.110°B.115°C.120°D.125°【分析】四边形ABCD 是⊙O 的内接四边形,则∠A 和∠C 互补,已知∠A =60°,则∠C 的度数为120°,而∠BED 大于∠C 的度数,从而得出答案.【解答】解:∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠C =180°,∵∠A =60°,∴∠C =120°,∵∠BED =∠C +∠CBE ,∴∠BED >120°,∴∠BED 可能为125°.故选:D .【点评】本题主要考查了圆内接四边形以及三角形外角的性质,解题的关键是根据圆内接四边形的对角互补求出∠C 的度数,再根据外角的性质对∠BED 的度数做出正确的推断.12(2023•泾阳县模拟)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.如图,已知⊙O 的半径为2,则⊙O 的内接正六边形ABCDEF 的面积为()A.6B.63C.65D.43【分析】连接OA 、OB ,根据正多边形和圆的关系可判断出△OAB 为等边三角形,过点O 作OM ⊥AB 于点M ,再利用勾股定理即可求出OM 长,进而可求出△AOB 的面积,最后利用⊙O 的面积约为6S △AOB 即可计算出结果.【解答】解:如图,连接OA 、OB ,由题意可得:∠AOB =360÷6=60°,∵OA =OB =2,∴△OAB 为等边三角形,∴AB =2,过点O 作OM ⊥AB 于点M ,则AM =BM =1,在Rt △AOMR 中,OM =22-12=3,∴S △AOB =12×2×3=3,∴⊙O 的面积约为6S △AOB =63.故选:B .【点评】本题主要考查正多边形与圆、勾股定理等,正确应用正六边形的性质是解题关键.13(2023•蜀山区校级模拟)如图,△ABC 中,∠BAC =60°,AD 平分∠BAC ,∠BDC =120°,连接BD ,CD 并延长分别交AC ,AB 于点E 和点F ,若DE =6,DF CD=35,则BD 的长为()A.10B.12C.15D.16【分析】由AEDF四点共圆,得到DE=DF,再证明△CDE∽△CAF,得到AF与AC的比,延长CF 到P,使DP=DB,得到△BDP为等边三角形,在证明出△AFC∽△PFB,证出PF与PB,利用DF 即可求出BD.【解答】解:∵∠BAC=60°,∠BDC=120°,∴A、E、D、F四点共圆,∵AD平分∠BAC,∴∠DAE=∠DAF,∴DE=DF=6,∵∠BDC=120°,∴∠CDE=60°=∠FAC,∵∠ACD=∠ACD,∴△CDE∽△CAF,∴AF:AC=DE:CD=6:10=3:5,如图,延长CF到P,使DP=DB,∵∠PBD=60°,∴△BDP为等边三角形,∴∠P=60°,∴△AFC∽△PFB,∴PF:PB=AF:AC=3:5,设每一份为k,∴PB=PD=5k,PF=3k,∴DF=2k=6,∴k=3,∴BD=5k=15.故选:C.【点评】本题考查了三角形相似的性质、等边三角形的性质等知识点的应用,四点共圆的应用及相似比的转化是解题关键.二.填空题(共2小题)14(2023•银川校级二模)如图,在直径为AB的⊙O中,点C,D在圆上,AC=CD,若∠CAD= 28°,则∠DAB的度数为34°.【分析】利用等腰三角形的性质可得∠CAD =∠CDA =28°,从而利用三角形内角和定理可得∠ACD =124°,然后根据圆内接四边形对角互补求出∠ABD =56°,再根据直径所对的圆周角是直角可得∠ADB =90°,从而求出∠DAB 的度数.【解答】解:∵AC =CD ,∠CAD =28°,∴∠CAD =∠CDA =28°,∴∠ACD =180°-∠CAD -∠CDA =124°,∵四边形ABCD 是⊙O 的内接四边形,∴∠ACD +∠ABD =180°,∴∠ABD =180°-∠ACD =56°,∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠DAB =90°-∠ABD =34°.故答案为:34°.【点评】本题考查了等腰三角形的性质,圆周角定理,圆心角、弧、弦的关系,熟练掌握圆周角定理是解题的关键.15(2023•海曙区校级一模)如图,在等腰三角形纸片ABC 中,AB =AC ,将该纸片翻折,使得点C 落在边AB 的F 处,折痕为DE ,D ,E 分别在边BC ,AC 上,∠AFD =∠DEF ,若DE =4,BD =9,则DF =6,△ABC 的面积为 45154 .【分析】根据折叠的性质可得∠CED =∠DEF ,∠C =∠DFE ,以此可得∠CED =∠AFD ,因此可判断A 、F 、D 、E 四点共圆,由圆周角定理可得∠DAF =∠DEF ,∠CAD =∠DFE ,进而得到∠AFD =∠DAF ,∠CAD =∠C ,则DF =AD =CD ,由等腰三角形的性质可得∠B =∠C ,以此可证明△BAD∽△CED ,由相似三角形的性质可求得DF =AD =CD =6,则BC =15,BG =CG =152,DG =32,根据勾股定理求出AG ,再算出△ABC 的面积即可求解.【解答】解:连接AD ,过点A 作AG ⊥BC 于点G ,如图,根据折叠的性质可得,∠CED =∠DEF ,∠C =∠DFE ,∵∠AFD =∠DEF ,∴∠CED =∠AFD ,∴A 、F 、D 、E 四点共圆,∴∠DAF =∠DEF ,∠CAD =∠DFE ,∴∠AFD =∠DAF ,∠CAD =∠C ,∴DF =AD =CD ,∵AB =AC ,∴∠B =∠C ,∵∠CED =∠DEF =∠DAF ,∴△BAD ∽△CED ,∴AD DE =BD CD,∵DE =4,BD =9,DF =AD =CD ,∴DF 4=9DF,∴DF =AD =CD =6,∴BC =BD +CD =9+6=15,∵AG ⊥BC ,AB =AC ,∴BG =CG =12BC =152,∴DG =CG -CD =152-6=32,在Rt △ADG 中,由勾股定理得AG =AD 2-DG 2=62-32 2=3152,∴S △ABC =12BC ⋅AG =12×15×3152=45154.故答案为:6,45154.【点评】本题主要考查四点共圆的判定、相似三角形的判定与性质、等腰三角形的性质,圆周角定理、勾股定理,正确作出辅助线,通过所给条件推出A 、F 、D 、E 四点共圆,以此得到DF =AD =CD 是解题关键.三.解答题(共7小题)16(2022秋•南关区校级期末)【问题情境】如图①,在四边形ABCD 中,∠B =∠D =90°,求证:A 、B 、C 、D 四点共圆.小吉同学的作法如下:连结AC ,取AC 的中点O ,连结OB 、OD ,请你帮助小吉补全余下的证明过程;【问题解决】如图②,在正方形ABCD 中,AB =2,点E 是边CD 的中点,点F 是边BC 上的一个动点,连结AE ,AF ,作EP ⊥AF 于点P .(1)如图②,当点P 恰好落在正方形ABCD 对角线BD 上时,线段AP 的长度为 102 ;(2)如图③,过点P 分别作PM ⊥AB 于点M ,PN ⊥BC 于点N ,连结MN ,则MN 的最小值为 132-52 .【分析】【问题情境】连结AC,取AC的中点O,连结OB、OD,根据直角三角形斜边上的中线等于斜边的一半,可得OD=OA=OC=OB,以此即可证明;【问题解决】(1)根据题意可得AE=AD2+DE2=5,由【问题情境】结论可知A、D、E、P四点共圆,根据圆周角定理以及正方形的性质可得∠PDE=∠PAE=45°,则△PAE为等腰直角三角形,设AP长为a,则PE长为a,根据勾股定理列出方程,求解即可;(2)由【问题情境】结论可知A、D、E、P四点共圆,过点O作OG⊥AD于点G,作OH⊥AB于点H,连接OB交⊙O于点P′,连接PB,根据题意可得四边形MBNP为矩形,则要求MN的最小值,即求PB的最小值,根据平行线的性质和中点的定义可得OG为△ADE的中位线,得AG=1,OG=12,同理可证四边形AHOG为矩形,以此得到OH=AG=1,BH=32,根据勾股定理得OB=OH2+BH2=132,根据两点之间线段最短得PB+OP≥OB,以此即可求出PB的最小值,从而求得MN的最小值.【解答】【问题情境】证明:如图,连结AC,取AC的中点O,连结OB、OD,∵∠ADC=∠ABC=90°,O为AC的中点,∴OA=OB=OC=OD=12AC,∴A、B、C、D四点共圆;【问题解决】解:(1)∵四边形ABCD为正方形,点E是边CD的中点,AB=2,∴AD=2,DE=1,∴AE=AD2+DE2=5,由【问题情境】结论可知,A、D、E、P四点共圆,如图,∴∠PAE=∠PDE,∵BD为正方形ABCD的对角线,∴∠PDE=∠PAE=45°,∵EP⊥AF,∴△PAE为等腰直角三角形,设AP长为a,则PE长为a,∴AP2+PE2=AE2,即a2+a2=52,解得:a1=102,a2=-102(不合题意,舍去),∴线段AP的长度为102;故答案为:10 2;(2)由【问题情境】结论可知,A、D、E、P四点共圆,如图,过点O作OG⊥AD于点G,作OH⊥AB于点H,连接OB交⊙O于点P′,连接PB,∵PM⊥AB,PN⊥BC,∴∠PMB=∠MBN=∠PNB=90°,∴四边形MBNP为矩形,∴MN=PB,要求MN的最小值,即求PB的最小值,由(1)知,AE=5,∴OA=52,∵OG⊥AD,且点O为AE的中点,∴OG∥DE,∴OG为△ADE的中位线,∴AG=1,OG=12,∵OG⊥AD,OH⊥AB,∴四边形AHOG为矩形,∴AH=OG=12,OH=AG=1,∴BH=32,在Rt△BHO中,OB=OH2+BH2=13 2,根据两点之间线段最短得,PB+OP≥OB,PB≥OB-OP=132-52,∴PB的最小值为132-52,∴MN的最小值为132-52.故答案为:132-52.【点评】本题主要考查四点共圆、正方形的性质,等腰直角三角形的性质、勾股定理、中位线的判定与性质、平行线的判定与性质,属于圆的综合题,熟练掌握相关知识是解题关键.17(2023•萍乡模拟)如图,点A,B,C在⊙O上,且∠ABC=120°,请仅用无刻度的直尺,按照下列要求作图.(保留作图痕迹,不写作法)(1)在图(1)中,AB>BC,作一个度数为30°的圆周角;(2)在图(2)中,AB=BC,作一个顶点均在⊙O上的等边三角形.【分析】(1)作直径AD,连接CD,AC,则∠ADC=60°,∠DAC=30°;(2)作直径BE,连接EC,AE,AC,△ACE即为所求.【解答】解:(1)如图1中,∠CAD即为所求;(2)如图2中,△ACE即为所求.【点评】本题考查作图-复杂作图,等边三角形的判定和性质,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18(2022•芜湖一模)如图,在正方形ABCD中,P是边BC上的一个动点(不与点B,C重合),作点B关于直线AP的对称点E,连接AE,再连接DE并延长交射线AP于点F,连接BF和CF.(1)若∠BAP=α,则∠AED=45°+α(用含α的式子直接填空);(2)求证:点F在正方形ABCD的外接圆上;(3)求证:AF-CF=2BF.【分析】(1)由轴对称的性质得∠EAP=∠BAP=a,AE=AB,由正方形的性质得∠BAD=90°,AB =AD,则∠DAE=90°-2a,AD=AE,由等腰三角形的性质即可得出结论;(2)由轴对称的性质得∠AEF=∠ABF,AE=AB,证出AE=AD,由等腰三角形的性质得∠ADE =∠AED,证∠ADE+∠ABF=180°,则∠BFD+∠BAD=180°,得∠BFD=90°即可;(3)过点B作BM⊥BF交AF于点M,则∠MBF=90°,证△BMF是等腰直角三角形,得BM=BF,FM=2BF,证△AMB≌△CFB(SAS),得AM=CF,进而得出结论.【解答】解:(1)∵点B关于直线AP的对称点E,∠BAP=α,∴∠EAP=∠BAP=α,AE=AB,∵ABCD 是正方形,∴AD =AB ,∠BAD =90°,∴AE =AD ,∠DAE =90°-2α,∴∠ADE =∠AED =12(180°-∠DAE )=12(90°+2α)=45°+α,故答案为:45°+α;(2)证明:由(1)∠AED =45°+α,又∵∠BAE =2α,∴∠EFA =∠BFA =45°,∠BFD =90°,连接BD ,则∠BCD =90°,∴∠BCD =∠BAD =∠BFD =90°,∴B 、F 、C 、D 和A 、B 、C 、D 都在以BD 为直径的圆上,即点F 在正方形ABCD 的外接圆上;(3)过点B 作BM ⊥BF 交AF 于M 点,则∠MBF =90°,∵四边形ABCD 是正方形,∴AB =CB ,∠ABC =90°,∴∠MBF =∠ABC ,∴∠ABM =∠CBF ,∵点E 与点B 关于直线AP 对称,∴∠BFD =90°,∴∠MFB =∠MFE =45°,∴△BMF 是等腰直角三角形,∴BM =BF ,FM =2BF ,在△AMB 和△CFB 中,AB =BC ∠ABM =∠CBF BM =BF,∴△AMB ≌△CFB (SAS ),∴AM =CF ,∴AF =FM +AM =2BF +CF ,∴AF -CF =2BF .【点评】本题考查了正方形的性质、轴对称的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质等知识,解题关键是熟练掌握矩形的性质和轴对称的性质,证明三角形全等.19(2021秋•鹿城区校级期中)如图,△ABC 内接于⊙O ,CD ⊥AB ,CB =10cm ,CD =8cm ,AB =14cm .(1)∠A 度数45°.(直接写出答案)(2)求BC 的长度.(3)P 是⊙O 上一点(不与A ,B ,C 重合),连结BP .①若BP 垂直△ABC 的某一边,求BP 的长.②将点A 绕点P 逆时针旋转90°后得到A ′,若A ′恰好落在CD 上,则CA '的长度为4.(直接写出答案)【分析】(1)利用勾股定理,等腰三角形的判定和三角形的内角和定理解答即可;(2)连接OB ,OC ,利用圆周角定理求得圆心角的度数,再利用弧长公式解答即可;(3)①连接AP ,利用等腰直角三角形的性质求得BE ,利用全等三角形的判定与勾股定理求得PE ,则BP 可求;②连接AA ′,PD ,设PD 与AC 交于点E ,通过证明P ,A ,D ,A ′四点共圆,利用圆周角定理和垂径定理得到PD 经过圆心O ,过点O 作OF ⊥AB 于点F ,利用垂径定理和勾股定理求得OE ,连接OC ,利用勾股定理求得圆的半径,再利用等腰直角三角形的性质求得PA ,勾股定理求得DA ′,则CA ′=CD -DA ′.【解答】解:(1)在Rt △BCD 中,CB =10cm ,CD =8cm ,∴BD =BC 2-CD 2=102-82=6(cm ),∴AD =AB -BD =14-6=8cm =CD ,∴∠A =∠ACD ,∵CD ⊥AB ,∴∠ADC =90°,∴∠A =180o -∠ADC 2=180o -90°2=45°,故答案为:45°;(2)连接OB ,OC ,如图,∵∠BAC =45°,∴∠BOC =90°,在Rt △BOC 中,OB =OC ,CB =10cm ,∴OB =22BC =52(cm ),∴BC 的长度=90π×52180=52π2cm ;(3)①∵P 是⊙O 上一点(不与A ,B ,C 重合),BP 垂直△ABC 的某一边,∴点P 只能在AC上,连接AP ,如图,由(1)知:∠CAB =45°,∵BP ⊥AC ,。

隐圆模型---四点共圆【模型专题】(含答案解析)

隐圆模型---四点共圆【模型专题】(含答案解析)
【详解】(1) 将线段 绕点 逆时针旋转 得到线段 ,

是等边三角形
为等边三角形

,且 ,
(2)如图,过点 作 ,交 的延长线于点 ,




,且 ,
点 是 中点
(3)如图,连接 ,
是等边三角形,
点 ,点 ,点 ,点 四点在以 为直径的圆上,
最大为直径,
即最大值为1
【点睛】本题是三角形的综合题,考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,圆的性质等知识,熟练掌握这些知识并灵活运用是关键.
四点共圆
【模型讲解】
如图①பைடு நூலகம்②,Rt△ABC和Rt△ABD共斜边,取AB 中点O,根据直角三角形斜边上的中线等于斜边的一半,可得:OC=OD=OA=OB,∴A、B、C、D四点共圆.即共斜边的两个直角三角形,直角顶点在斜边同侧或异侧,都可得到四点共圆.得到四点共圆后可以根据圆周角定理得到角度相等,完成角度等量关系的转化,这是证明角度相等重要的途径之一.
【详解】过点O作OM⊥AB于点M,作ON⊥BC于点N,
∵∠ABC=90°,
∴四边形OMBN是矩形,
∴OM∥BC,ON∥AB,
∴△AOM∽△ACB,△CON∽△CAB,
∴OM:BC=OA:AC,ON:AB=OC:AC,
∵O为AC的中点,
∴OM= BC= ×8=4,ON= AB= ×6=3,
∴MN= =5,
∴HC=OD,DH=OA,
又∵BO=AO,
∴HO=DH+DO=OB+CH,
而CH=OQ,HO=CQ,
∴CQ=OB+OQ=BQ,
∴∠CBQ=45°,
又∵CH∥BA,

中考数学总复习《四点共圆问题》专题(含答案)

中考数学总复习《四点共圆问题》专题(含答案)
如图,已知 内接于 , 、 为 的切线,作 ,交 于 ,连结 并延长交 于 ,求证: .
如图,在 中, , 中, ,若 三点在同一直线 上. 连接 、 ,点 、 、 分别为 、 、 的中点.求证 .
在梯形ABCD中, , , , 分别在 , 上, .
求证: .
如图 和 中, ,求证点 , , , 四点在同一个圆上.
(1)当点 在 内时,延长 交 于 ,连结 ,则有
如图,在△ABC中,分别以AB,AC为直径在 ABC外作半圆 和半圆 ,其中 和 分别为两个半圆的圆心.F是边BC的中点,点D和点E分别为两个半圆圆弧的中点.过点A作半圆 的切线,交CE的延长线于点Q,过点Q作直线FA的垂线,交BD的延长线于点P,连结PA.
求证:PA是半圆 的切线.
如图,在四边形ABCD中,已知∠BAD=60°,∠ABC=90°,∠BCD=120°,对角线AC,BD交于点E,且DE=2EB,F为AC的中点.
求证:(1)∠FBD=30°;(2)AD=DC.
四点共圆问题答案解析
一、解答题
(1)∵ ,∴ ,
∴ ,∴ 四点共圆.
(2) 连结 ,设 相交于
由(1)可知 是圆的直径,
又∵ 是平行四边形,∴ 是 中点,
∴ 是圆心,∴ ,
∵ ,∴ .
取 的中点 ,连接 ,故
【解析】取斜边中点,利用斜边中线等于斜边长一半,然后利用证明方法一.
∵ 是 的切线,∴ ,
∴ ,
∵ ,
∴ ,
∴ 四点共圆,
∵ ,∴ .
连结ห้องสมุดไป่ตู้,
∵ ,
∴ ,
∴ ,
∵ ,
∴ 四点共圆, 四点共圆,
∴ 五点共圆,
∴ .

四点共圆例题及答案

四点共圆例题及答案

四点共圆例题及答案四点共圆是一个基本的几何概念,指的是在同一平面上有四个点,可以在一个圆上找到这四个点构成的圆周。

这个概念在几何学中非常重要,因为它可以用来解决许多几何问题。

在本文中,我们将展示一些常见的四点共圆例题及答案,希望对几何学爱好者有所帮助。

题目1:如图,ABCD为一矩形,O为AC的中点,P、Q分别为AB、CD上一点,连OP、OQ。

证明O、P、Q、D四点共圆。

答案1:首先,连接BD,可以得到三角形BOD。

因为ABCD是一个矩形,所以BD是矩形的对角线,即BD=AC。

由于O是AC的中点,所以OD=1/2AC=1/2BD。

因此,OD是矩形的中线,而且OD平分角BOD。

所以,∠BOD=2∠POQ。

另一方面,因为PO、QD分别是∠BOD的平分线,所以∠POD=1/2∠BOD、∠QOD=1/2∠BOD。

这样,我们可以得到:∠POQ=∠POD+∠QOD=1/2∠BOD+1/2∠BOD=∠BOD所以,O、P、Q、D四点共圆,且这个圆的圆心是OD的中点。

题目2:如图,在平面上有四个点ABCD,能否用尺规作出过这四点的圆?答案2:可以,下面是具体的做法:1.连接AB、BC、CD和DA,得到一个矩形ABCD。

2.以AB为直径作圆,得到圆O1。

3.以BC为直径作圆,得到圆O2。

4.在线段AC上取一点E,使得AE=AB,连BE,作线段BE的中垂线,交O1于点F,交O2于点G。

5.以FG为直径作圆,得到过四点ABCD的圆。

题目3:如图,在平面上有一圆O,点A、B、C在这个圆上,点D在圆内,且以AD、BD、CD为边的三角形相似。

证明:四点A、B、C、D共圆。

答案3:设AB与CD的交点为E,BC与AD的交点为F。

因为三角形ABC在圆O上,所以∠AEB=∠ACB,又因为三角形CBD在圆O上,所以∠CEB=∠CDB,而∠AEB+∠CEB=180,所以∠ACB+∠CDB=180。

同理可得∠AFC+∠BFD=180。

因为三角形ABC和三角形AFB相似,所以∠AEB=∠AFC,同理∠BFD=∠CDB。

2024年中考数学常见几何模型全归纳(全国通用)专题31 圆中的重要模型之四点共圆模型(解析版)

2024年中考数学常见几何模型全归纳(全国通用)专题31 圆中的重要模型之四点共圆模型(解析版)

专题31圆中的重要模型之四点共圆模型四点共圆是初中数学的常考知识点,近年来,特别是四点共圆判定的题目出现频率较高。

相对四点共圆性质的应用,四点共圆的判定往往难度较大,往往是填空题或选择题的压轴题,而计算题或选择中四点共圆模型的应用(特别是最值问题),通常能简化运算或证明的步骤,使问题变得简单。

本文主要介绍四点共圆的四种重要模型。

四点共圆:若在同一平面内,有四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

模型1、定点定长共圆模型(圆的定义)【模型解读】若四个点到一定点的距离相等,则这四个点共圆。

这也是圆的基本定义,到定点的距离等于定长点的集合。

条件:如图,平面内有五个点O、A、B、C、D,使得OA=OB=OC=OD,结论:A、B、C、D四点共圆(其中圆心为O)。

【答案】2【分析】首先连接OE,由角器上对应的读数.【详解】解:连接OE,A .13B .52∵在ABC 中,90BAC【答案】30【分析】连接AC 与BD 又易知在Rt ACD △中,【详解】解:连接AC 与∵四边形形ABCD 是矩形,12OA OB OC OD AC又∵DE BF 于E ,即是直角三角形,∴12OE BD ,∴OA OC OD OE ,∴点A B 、、,由旋转的性质可知:AF AB ,【答案】122【分析】(1)根据条件,证明AOD COD△△△△,代入推断即可.(2)通过AOG ABC证明ODF CBF△△,代入推断即可.又∵∵CE CF∴CEF CFE模型2、定边对双直角共圆模型C同侧型异侧型1)定边对双直角模型(同侧型)条件:若平面上A、B、C、D四个点满足90ABD ACD,结论:A、B、C、D四点共圆,其中AD为直径。

2)定边对双直角模型(异侧型)条件:若平面上A、B、C、D四个点满足90ABC ADC,结论:A、B、C、D四点共圆,其中AC为直径。

【点睛】本题考查了圆的直径所对的圆周角为【点睛】此题主要考查圆内接四边形,直角三角形斜边上的中线等于斜边的一半和等腰三角形的性质等知识点,解答此题的关键是添加辅助线构造特殊三角形,求出线段.模型3、定边对定角共圆模型条件:如图1,平面上A 、B 、C 、D 四个点满足ADB ACB ,结论:A 、B 、C 、D 四点共圆.条件:如图2,AC 、BD 交于H ,AH CH BH DH ,结论:A B C D 、、、四点共圆.例1.(2023·江苏·九年级假期作业)如图,在Rt ABC 中,∠BAC =90°,∠ABC =40°,将 ABC 绕A 点顺时针旋转得到 ADE ,使D 点落在BC 边上.(1)求∠BAD 的度数;(2)求证:A 、D 、B 、E 四点共圆.【答案】(1)10°;(2)见解析【分析】(1)由三角形内角和定理和已知条件求得∠C 的度数,由旋转的性质得出AC =AD ,即可得出∠ADC =∠C ,最后由外角定理求得∠BAD 的度数;(2)由旋转的性质得到∠ABC =∠AED ,由四点共圆的判定得出结论.【详解】解:(1)∵在Rt ABC 中,∠BAC =90°,∠ABC =40°,∴∠C =50°,∵将 ABC 绕A 点顺时针旋转得到 ADE ,使D 点落在BC 边上,∴AC =AD ,∴∠ADC =∠C =50°,∴∠ADC =∠ABC +∠BAD =50°,∴∠BAD =50°-40°=10°证明(2)∵将 ABC 绕A 点顺时针旋转得到 ADE ,∴∠ABC =∠AED ,∴A 、D 、B 、E 四点共圆.【点睛】本题考查了旋转的性质、等腰三角形的性质、外角定理以及四点共圆的判定,解题的关键是理解旋转后的图形与原图形对应边相等,对应角相等.例3.(2022·江苏无锡·中考真题)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=________°;现将△DCE 绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是________.【答案】804##4【分析】利用SAS 证明△BDC ≌△AEC ,得到∠DBC =∠EAC =20°,据此可求得∠BAF 的度数;利用全等三角形的性质可求得∠AFB =60°,推出A 、B 、C 、F 四个点在同一个圆上,当BF 是圆C 的切线时,即当CD ⊥BF 时,∠FBC 最大,则∠FBA 最小,此时线段AF 长度有最小值,据此求解即可.【详解】解:∵△ABC 和△DCE 都是等边三角形,∴AC =BC ,DC =EC ,∠BAC =∠ACB =∠DCE =60°,∴∠DCB +∠ACD =∠ECA +∠ACD =60°,即∠DCB =∠ECA ,在△BCD 和△ACE 中,CD CE BCD ACE BC AC,∴△ACE ≌△BCD (SAS ),∴∠EAC =∠DBC ,∵∠DBC =20°,∴∠EAC =20°,∴∠BAF =∠BAC +∠EAC =80°;设BF 与AC 相交于点H,如图:∵△ACE ≌△BCD ∴AE =BD ,∠EAC =∠DBC ,且∠AHF =∠BHC ,∴∠AFB =∠ACB =60°,∴A 、B 、C 、F 四个点在同一个圆上,∵点D 在以C 为圆心,3为半径的圆上,当BF 是圆C 的切线时,即当CD ⊥BF 时,∠FBC 最大,则∠FBA 最小,∴此时线段AF 长度有最小值,在Rt △BCD 中,BC =5,CD =3,∴BD 4,即AE =4,∴∠FDE =180°-90°-60°=30°,∵∠AFB =60°,∴∠FDE =∠FED =30°,∴FD =FE ,过点F 作FG ⊥DE 于点G ,∴DG =GE =32,∴FE =DF =cos 30DG∴AF =AE -FE 80;【点睛】本题考查了旋转的性质,等边三角形的性质,圆周角定理,切线的性质,解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件.例4.(2022·贵州遵义·统考中考真题)探究与实践:“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC 同侧有两点B ,D ,连接AD ,AB ,BC ,CD ,如果B D ,那么A ,B ,C ,D 四点在同一个圆上.探究展示:如图2,作经过点A ,C ,D 的O ,在劣弧AC 上取一点E (不与A ,C 重合),连接AE ,CE 则180AEC D (依据1)B D ∵180AEC B点A ,B ,C ,E 四点在同一个圆上(对角互补的四边形四个顶点共圆)点B ,D 在点A ,C ,E 所确定的O 上(依据2)点A ,B ,C ,E 四点在同一个圆上(1)反思归纳:上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:__________;依据2:__________.(2)图3,在四边形ABCD 中,12 ,345 ,则4 的度数为__________.(3)拓展探究:如图4,已知ABC 是等腰三角形,AB AC ,点D 在BC 上(不与BC 的中点重合),连接AD .作点C 关于AD 的对称点E ,连接EB 并延长交AD 的延长线于F ,连接AE ,DE .①求证:A ,D ,B ,E与判定,掌握以上知识是解题的关键.模型4、对角互补共圆模型P条件:如图1,平面上A、B、C、D四个点满足ABC ADC,结论:A、B、C、D四点共圆.条件:如图2,BA、CD的延长线交于P,PA PB PD PC,结论:A、B、C、D四点共圆.A.2B.22【答案】A【分析】先根据等腰三角形的性质可得,,,A B E D四点共圆,在以BE为直径的圆上,连接【答案】43/113【分析】过点B作BH AM交F,点A,M,B,C四点共圆,得法求解,12AMBS AM DE△【详解】解析:过点B作BH 于点,如图所示:【答案】52 2【分析】连接BD并延长,利用四点共圆的判定定理得到的性质和圆周角定理得到DBF性质解答即可得出结论.(1)求证:A ,E ,B ,D 四点共圆;(2)如图2,当AD CD 时,O 是四边形AEBD O 的切线;(3)已知1206BC ,,点M 是边BC 的中点,此时P 是四边形出圆心P 与点M 距离的最小值.【答案】(1)证明见解析(2)证明见解析(3)32(3)解:如图所示,作线段AB 的垂直平分线,分别交∵120AB AC BAC ,,∴B课后专项训练1.(2023秋·河北张家口·九年级校考期末)如图①,若BC是Rt△ABC和Rt△DBC的公共斜边,则A、B、C、D在以BC为直径的圆上,则叫它们“四点共圆”.如图②,△ABC的三条高AD、BE、CF相交于点H,则图②中“四点共圆”的组数为()A.2B.3C.4D.6【答案】D【分析】根据两个直角三角形公共斜边时,四个顶点共圆,结合图形求解可得.【详解】解:如图,以AH为斜边的两个直角三角形,四个顶点共圆(A、F、H、E),以BH为斜边的两个直角三角形,四个顶点共圆(B、F、H、D),以CH为斜边的两个直角三角形,四个顶点共圆(C、D、H、E),以AB为斜边的两个直角三角形,四个顶点共圆(A、E、D、B),以BC为斜边的两个直角三角形,四个顶点共圆(B、F、E、C),以AC为斜边的两个直角三角形,四个顶点共圆(A、F、D、C),共6组.故选D.【点睛】本题考查四点共圆的判断方法.解题的关键是明确有公共斜边的两个直角三角形的四个顶点共圆.,.下2.(2023·安徽合肥·校考一模)如图,O是AB的中点,点B,C,D到点O的距离相等,连接AC BD列结论不一定成立的是()A .12B .3=4C .180ABC ADCD .AC 平分BAD【答案】D 【分析】以点O 为圆心,OA 长为半径作圆.再根据圆内接四边形的性质,圆周角定理逐项判断即可.【详解】如图,以点O 为圆心,OA 长为半径作圆.由题意可知:OA OB OC OD .即点A 、B 、C 、D 都在圆O 上.A .∵ AB AB ,∴12 ,故A 不符合题意;B .∵ BCBC ,∴3=4 ,故B 不符合题意;C .∵四边形ABCD 是O 的内接四边形,∴180ABC ADC ,故C 不符合题意;D .∵ BC 和CD不一定相等,∴BAC 和DAC 不一定相等,∴AC 不一定平分BAD ,故D 符合题意.故选:D .【点睛】本题考查圆周角定理及其推论,充分理解圆周角定理是解答本题的关键.3.(2023·江苏宿迁·九年级校考期末)如图,在Rt ABC △中,90ACB ,3BC ,4AC ,点P 为平面内一点,且CPB A ,过C 作CQ CP 交PB 的延长线于点Q ,则CQ 的最大值为()【点睛】本题考查相似三角形的判定和性质以及四点共圆,掌握同圆或等圆中,同弧所对的圆周角相等确定四点共圆,利用相似三角形性质得到线段间等量关系是解题关键.4.(2023·北京海淀·九年级校考期中)如图,点接AC,BD.请写出图中任意一组互补的角为【答案】DAB【分析】首先判断出点【答案】130【分析】根据题意得到四边形【详解】解:由题意得到∴四边形ABCD为圆∵∠ABC=50°,∴∠【点睛】此题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解本题的关键.6.(2023·浙江金华·A.3B.1∵PE AB 于点E ,PD AC 于点,∴90AEP ADP ,∴180AEP ADP ,∴A 、E 、D 四点共圆,PA 是直径,在Rt PDC 中,45C ,∴△是等腰直角三角形,45APD ∴APD △也是等腰直角三角形,45PAD ,∴PED PAD ∴45AED ,∴AED C ,∵EAD CAB ,∴AED ∽设2AD x ,则2PD DC x ,22x ,如图2,取AP 的中点O 则2AO OE OP x ,∵604515EAP BAC PAD ,过E 作EM AP 于M ,则EM x,cos30OM OE ,∴36222OM x x ,∴6226222AM x x x ,由勾股定理得: 222226222AE AM EM x x +【答案】3632 /323 【分析】数形结合,根据动点的运动情况判断点【详解】解:如图旋转,连接以BC 为直径作O ,以AE 为半径作在ABD △和ACE △中AB AC AD AE BAD CAEPBC PBA ACB PBC 90BAC BPC EAD ∵,122AB ∵,A 的半径为62∴又∵90BAC EAD ,CAD,∵33BC ,OP BC∵MQ,MC与圆O相切,1QOM COM COP 【答案】(1)见详解(2)证明:如下图所示由题意可知AC 逆时针旋转90得到边AE ,90E ACB ,则90ACB ∵,AE BF ∥,90 ∵,90EFC ,,F ,E 四点共圆..∵四边形ABCD是菱形,AC,且 GOC GCO90==∵, 点90DHC DOC=BDF OCH=,且BF OM ∵, 点==90AED AOD尝试应用如图2,点D 为等腰Rt ABC △外一点,AB AC ,BD CD ,过点A 的直线分别交DB 的延长线和CD 的延长线于点N ,M ,求证:12ABN ACM S S AN AM △△.问题拓展如图3,ABC 中,AB AC ,点D ,E 分别在边AC ,BC 上,60BDA BEA ,AE ,BD ,直接写出BE 的长度(用含a ,b 的式子)∵ABC 为等腰直角三角形,∴AB AC , 又∵BD CD ,即:=90BDC ,∴A 、B 在ABN 与ACE △中,AB AC ABN ACE BN CE,∴∴BAN BAE CAE BAE BAC ∴1122AME AMC S AE AM AN AM S S △△∴60AFB BAF ABF ,AB AF AC ,∵60BDA BEA ,∴A 、D 、E 、B 、F 五点共圆,则:13 ,24 ,60BEF AEB ,【答案】问题情境:见解析;问题解决:(1)102;(2)13522【分析】[问题情境]连结AC ,取AC 的中点O ,连结OB 、OD ,根据直角三角形斜边上的中线等于斜边的一半,可得OD OA OC OB ,以此即可证明;[问题解决](1)根据题意可得225AE AD DE ,由[问题情境]结论可知A 、D 、E 、据圆周角定理以及正方形的性质可得45PDE PAE ,则PAE △为等腰直角三角形,设AP 长为a ,根据勾股定理列出方程,求解即可;(2)由[问题情境]结论可知A 、D 、E 、P 四点共圆,过点O 作OG AD 于点G ,作OH 接OB 交O 于点P ,连接PB ,根据题意可得四边形MBNP 为矩形,则要求MN 的最小值,即求值,根据平行线的性质和中点的定义可得OG 为ADE V 的中位线,得1AG ,12OG ,同理可证四边形1【翻折】(1)如图1,将DEF 沿线段AB 翻折,连接CF ,下列对所得四边形ACBF 的说法正确的是平分CBF 、CAF ,②AB 、CF 互相平分,③12ACBF S AB CF 四边形,④A 、C 、B 、F 四点共圆.AB 垂直平分CF ,故②ABC ABF ACBF S S S 四边形1122AB AB FG 12AB CG 取AB 的中点O ,连接CO FO ,ABC ABF △、△均为直角三角形,∴OB OC OA OF ,∴A 、B 、F 四点共圆,故()沿线段向左平移,∴AB CF ,CF BE 的中点,∴BE BD BF特殊情况分析:(1)如图1,正方形ABCD 中,点P 为对角线时针旋转ADC 的度数,交直线BC 于点Q .小明的思考如下:连接DQ ,∵AD CQ ∥,90ADC DCQ ,∴ACQ DAC ∵90DPQ ,∴180DPQ DCQ ,∴点D P Q 、、PDQ PCQ DQP PCD∵在菱形ABCD 中BC AD ∥,180ADC DCQ ,DPQ ADC ,∵180DPQ DCQ ,∴点P C Q 、、、共圆,∴DQP ACD ,ACB PDQ ,∵AC 为菱形ABCD 的对角线,ACB ACD ,∴PDQ DQP ,∴ DP PQ ;(3)解:3PQ 或3.由于点P 为对角线AC 上一个动点,分两类情况讨论如下:所示:180302ADC ACD,。

四川省成都地区中考数学第二部分系统复习专题9四点共圆巧解中考题课件

四川省成都地区中考数学第二部分系统复习专题9四点共圆巧解中考题课件
4 3-3 ∵PA= 3 AH,
∴PA=(4 3-3)k.∴PH=4 3k.
DH 3 ∴在 Rt△PDH 中,tan∠P=PH= 3 . ∴∠P=30°,∠PDH=60°. ∵PD⊥DO, ∴∠BDE=90°-∠PDH=30°. 连接 BE,则∠DBE=90°,DE=2r=50, ∴BD=DE·cos 30°=25 3.
方法提炼
1.四点共圆 如果同一平面内的四个点在同一个圆上,则称这四 个点共圆,一般简称为“四点共圆”. 2.四点共圆的性质 (1)共圆的四个点所连成同侧共底的两个三角形的 顶角相等. (2)圆内接四边形的对角互补. (3)圆内接四边形的一个外角等于它的内对角.
方法提炼
3.四点共圆的判定 (1)用“角”判定: ①一组对角互补的四边形的四个顶点在同一个圆上; ②一个外角等于它的内对角的四边形的四个顶点在同一个圆 上; ③如果两个三角形有一条公共边,且位于公共边同侧的两个 角相等,则这两个三角形的四个顶点在同一个圆上. (2)“等线段”判定: 四顶点到同一点的距离相等,若OA=OB=OC=OD,则A,B,C, D四点共圆. (3)用“比例线段”判定: 若线段AB,CD(或其延长线)交于点P,且PA·PC=PB·PD,则 A,B,C,D四点共圆.
∵∠DBE=∠DBE,∴△BOF∽△BED. BO OF 3
∴BE=DE=10 5. 6
∵DE=4,∴OF=5 5.
∴BF=59 10.
课堂精讲
方法二:如图,∵∠BOC=∠BFC=90°,
∴B,C,F,O 四点共圆.
∴∠1=∠2=45°.
∵∠2=∠3=45°,∴∠1=∠3=45°.
∵∠DBE=∠FBO,∴△BOF∽△BED.
第 8 题图
课后精练

中考数学冲刺——四点共圆(学生版+解析版)

中考数学冲刺——四点共圆(学生版+解析版)

中考数学冲刺——四点共圆【知识点】1、四点共圆:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角。

2、判定定理:方法1:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆。

方法2 :若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆。

【例1】 如图,在Rt ABC △中,90ACB ∠=,3BC =,4AC =,点P 为平面内一点,且CPB A ∠=∠,过C 作CQ CP ⊥交PB 的延长线于点Q ,则CQ 的最大值为( )A .175B .154C .5D .5【例2】 如图,AB 是Rt ABC 和Rt ABD △的公共斜边,AC=BC ,32BAD ∠=,E 是AB 的中点,联结DE 、CE 、CD ,那么ECD ∠=___________________.【例3】 如图,正方形ABCD 中,9AB =,点E 为AD 上一点,且:1:2AE ED =,点P 为边AB 上一动点,连接PE ,过点E 作EF PE ⊥,交射线BC 于点F ,连接PF ,点M 为PF 中点,连接DM ,则DM 的最小值为________.【例4】 如图,等腰Rt△ABC 中,∠ACB=90°,D 为BC 边上一点,连接AD .(1)如图1,作BE⊥AD 延长线于E ,连接CE ,求证:∠AEC=45°;(2)如图2,P 为AD 上一点,且∠BPD=45°,连接CP .若AP =2,求△APC 的面积;【例5】在边长为12cm的正方形ABCD中,点E从点D出发,沿边DC以1cm/s的速度向点C运动,同时,点F从点C出发,沿边CB以1cm/s的速度向点B运动,当点E达到点C时,两点同时停止运动,连接AE、DF交于点P,设点E.F运动时间为t秒.回答下列问题:(1)如图1,当t为多少时,EF的长等于(2)如图2,在点E、F运动过程中,①求证:点A、B、F、P在同一个圆(⊙O)上;②是否存在这样的t值,使得问题①中的⊙O与正方形ABCD的一边相切?若存在,求出t值;若不存在,请说明理由;③请直接写出问题①中,圆心O的运动的路径长为_________.【例6】如图,等腰三角形△ABC中,∠BAC=120°,AB=3.(1)求BC的长.(2)如图,点D在CA的延长线上,DE⊥AB于E,DF⊥BC于F,连EF.求EF的最小值.【例7】 已知AD 为锐角ABC ∆的高,G 为AC 中点,DE AB ⊥于点E ,延长ED 至F ,使得GF GD =.(1)证明:AED AFC ∆∆;(2)证明:22AE CF BE AF ⋅=⋅;(3)若6,7,8AB BC CA ===,求四边形ACFD 的面积.A两点.【例8】如图1,抛物线2=++经过原点(0,0),(12,0)y bx c(1)求b的值;(2)如图2,点P是第一象限内抛物线2=++上一点,连接PO,若tan POA∠=,求y bx c点P的坐标;=,连接(3)如图3,在(2)的条件下,过点P的直线y m=+与x轴交于点F,作CF OFOC交抛物线于点Q,点B在线段OF上,连接CP、CB、PB,PB交CF于点E,若∠=∠,求点Q的坐标.BEF BCF∠=∠,22PBA PCB中考数学冲刺——四点共圆【知识点】1、四点共圆:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

中考数学几何模型重点突破讲练专题26 四点共圆模型(教师版)

中考数学几何模型重点突破讲练专题26 四点共圆模型(教师版)

∴ EAC 180 ACB 90 ,
CE 82 32 73 ,
EF 1 CE 73 , CF 2 CE 2 73 ,
3
3
3
3
∵∠ EAC =∠ CDE=90°
∴C、A、E、D 四点共圆,
∴∠CEA=∠CDA
∴△AEF∽△DCF(AA)
∴ AF CF ,
EF DF
∴ AF DF CF EF ,即 10 DF 73 2 73 ,
EF DF AF DF EF CF , AF EF ,
CF DF AFE EFD , △ AFE∽△CFD (SAS), FAE ECD , FAE B , AE ∥ BC . ②如图 1, EF 1 CF ,
2
EF
1 ,
CF 2
∵ AE ∥ BC
∴∠BAE=∠CBA
又∵∠AFE=∠BFC
点 A 、 B 、 C 、 D 四点在同一个圆上,且 AB 为圆 O 的直径。
【例 1】如图,四边形 ABCD 内接于 O , AB CD , A 为 BD 中点, BDC 60 ,则 ADB 等于( )
A. 40
B. 50
C. 60
D. 70
【答案】A 【分析】根据 AB CD , A 为 BD 中点求出∠CBD=∠ADB=∠ABD,再根据圆内接四边形的性质得到 ∠ABC+∠ADC=180°,即可求出答案. 【解析】∵ A 为 BD 中点, ∴ AB AD , ∴∠ADB=∠ABD,AB=AD,
ACE ADE ACP , BDC ADE 90 , BCD ACP 90 , BDC BCD , BD BC 6 , ADP BDC , P BCD , ADP P , AE AP AD 10 6 4 , △FAE∽△FBC , AF AE 4 2

2024长沙中考数学二轮专题复习 题型四 圆的综合题 (含答案)

2024长沙中考数学二轮专题复习 题型四 圆的综合题  (含答案)

2024长沙中考数学二轮专题复习题型四圆的综合题类型一与圆的基本性质结合典例精讲例已知A、B、C是⊙O上的三点,AB=AC,∠BAC=120°.(1)如图①,连接OA,OB,求证:△ABO是等边三角形;例题图①【思维教练】利用有一个角为60°的等腰三角形为等边三角形进行求证.(2)连接BC,若⊙O的半径为23,求线段BC的长;【思维教练】连接OB,OA,利用垂径定理求解.(3)如图②,若点D是∠BAC所对弧上的一动点,连接DA,DB,D C.①探究DA,DB,DC三者之间的数量关系,并说明理由;②若AB=3,点E是CD的中点,当点D从点B运动到点C时,求点E的运动路径长.例题图②【思维教练】①将△ABD绕点A逆时针旋转120°,结合圆内接四边形及三角函数求解;②点D为主动点,点E为从动点,由点D的运动轨迹可知点E的运动轨迹也为圆弧,找出圆心及半径,利用弧长公式求解.针对训练1.(2023长沙25题10分)如图,点O 为以AB 为直径的半圆的圆心,点M ,N 在直径AB 上,点P ,Q 在AB ︵上,四边形MNPQ 为正方形,点C 在QP ︵上运动(点C 与点P ,Q 不重合),连接BC 并延长交MQ 的延长线于点D ,连接AC 交MQ 于点E ,连接OQ .(1)求sin ∠AOQ 的值;(2)求AM MN的值;(3)令ME =x ,QD =y ,直径AB =2R (R >0,R 是常数),求y 关于x 的函数解析式,并指明自变量x 的取值范围.第1题图2.(2022长沙25题10分)如图,半径为4的⊙O 中,弦AB 的长度为43,点C 是劣弧AB ︵上的一个动点,点D 是弦AC 的中点,点E 是弦BC 的中点,连接DE 、OD 、OE .(1)求∠AOB 的度数;(2)当点C 沿着劣弧AB ︵从点A 开始,逆时针运动到点B 时,求△ODE 的外心P 所经过的路径的长度;(3)分别记△ODE ,△CDE 的面积为S 1,S 2,当S 21-S 22=21时,求弦AC 的长度.第2题图类型二与切线的性质结合(10年3考)典例精讲例如图,AB是⊙O的直径,AB=16,点C在⊙O的半径OA上运动,PC⊥AB,垂足为C,PC=10,PT为⊙O的切线,切点为T,连接OP.(1)当C点运动到O点时.①求PT的长;②延长AB、PT,交于点D,求证:△POT∽△PDO;例题图【思维教练】①运用勾股定理求解;②运用切线的性质证明两三角形的角相等,即可求证.(2)当C点运动到A点时,连接BT,求证:PO∥BT;【思维教练】证明两三角形全等,得到等弧所对的圆心角、圆周角之间的关系,利用同位角相等,两直线平行求证.(3)设PT=y,AC=x,求y关于x的函数解析式,并求出y的最小值.【思维教练】运用切线的性质及勾股定理求解.针对训练1.(2023长沙模拟)如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O ,B 重合),作EC ⊥OB ,交⊙O 于点C ,作直径CD ,过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接C B.(1)求证:AC 平分∠FAB ;(2)求证:BC 2=CE ·CP ;(3)当AB =43且CF CP =34时,求弦BC 与其所对的劣弧BC ︵所组成的弓形面积.第1题图2.如图,点C 是以AB 为直径的半圆O 上圆心右侧的一点,连接BC ,在BC 的上方作∠BCM =45°,CM 交半圆O 于点M ,过点M 作半圆O 的切线,与AC 的延长线交于点D ,当点C与点A 重合时,AD ⊥AB ,且AD =12A B.连接MB ,B D.(1)求证:①BM ︵=AM ︵;②MD ∥AB ;(2)当sin ∠CBM =55时,求tan ∠CBD 的值;(3)若AB =5,求点C 在半圆O 上,从点A 移动到AD 的中点时,点D 移动的路径的长.第2题图类型三与切线的判定结合(10年3考)典例精讲例如图①,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边BC 相交于点D,与边AB相切于点E,AC=AE,连接OA交⊙O于点F,连接CF并延长交线段AB于点G.(1)求证:AC是⊙O的切线;例题图①【思维教练】已知点E是切点,则可连接OE,证明两三角形全等,可得到∠OCA=90°即可求证.(2)若AB=5,tan B=43,求⊙O的半径;【思维教练】由题意可得两直角边的比例关系,利用勾股定理即可求解.(3)若CD=3BD,求sin∠OAB的值;【思维教练】根据题中所给线段数量关系,利用勾股定理及相似三角形的性质求解.(4)如图②,若F是OA的中点,CG=3,求阴影部分的面积;例题图②【思维教练】求出扇形圆心角度数,利用S 阴影=S △BCG -S △COF -S 扇形DOF 求解.(5)如图③,若G 是AB 的中点,连接EF ,求证:CF =GE .例题图③【思维教练】利用全等三角形的性质和等腰三角形的性质求证.针对训练1.如图,已知△ABC 内接于⊙O ,CD 平分∠ACB 交⊙O 于点D ,过点D 作PQ ∥AB 分别交CA 、CB 的延长线于点P 、Q ,连接BD ,O B.(1)求证:PQ 是⊙O 的切线;(2)若tan ∠ACD =13,求OB BD的值;(3)若AC ·BQ =9,且∠ACB =60°,求AB 的长.第1题图2.在Rt△ABC中,∠A=90°,AB=AC=4,O是BC边上的点,⊙O与AB相切,切点为D,AC与⊙O相交于点E,且AD=AE.(1)求证:AC是⊙O的切线;(2)如果F为DE︵上的一个动点(不与D、E重合),过点F作⊙O的切线分别与边AB、AC相交于G、H,连接OG、OH,判断∠GOH的度数是否为定值,若是,请求出这个值,若不是请说明理由;(3)在(2)的条件下,设BG=x,CH=y,求y与x之间满足的函数关系式;并说明当x=y时F点的位置.第2题图参考答案类型一与圆的基本性质结合例(1)证明:如解图①,连接OC ,例题解图①∵AB =AC ,OB =OC ,OA =OA ,∴△OAB ≌△OAC (SSS),∴∠BAO =∠CAO ,又∵∠BAC =120°,∴∠OAB =60°=∠OAC ,∴△ABO 是等边三角形;(2)解:如解图②,连接OB ,OA ,OA 交BC 于点E ,则OA ⊥BC ,BE =CE ,由(1)可知,∠AOB =60°,∴BE =OB ·sin60°=23×32=3,∴BC =6;例题解图②(3)解:①DC +DB =3DA ,理由:如解图③,将△ABD 绕点A 逆时针旋转120°得到△ACH ,使AB 与AC 重合,过点A 作AN ⊥CH 于点N ,例题解图③∴BD=CH,AD=AH,∠DAH=120°,∠ABD=∠ACH,∵四边形ABDC是⊙O的内接四边形,∴∠ABD+∠ACD=180°,∴∠ACD+∠ACH=180°,∴D,C,H三点共线,∵AD=AH,∠DAH=120°,AN⊥CH,∴∠AHD=∠ADH=30°,HN=DN=12 DH,∴AD=2AN,DN=3AN,∴HD=23AN=3AD,∴DC+DB=DC+HC=3DA;②由题可知,点E的运动轨迹为以OC的中点F为圆心,12OC长为半径的圆弧,如解图④所示,当点D与点B重合时,点E为OA的中点,∴EF=FO,∠EFO=60°,∴点E运行轨迹所在弧的圆心角为180°+60°=240°,由题可知OC=AB=3,∴OF=3 2,∴点E的运动路径长为240·π·32180=2π.例题解图④1.解:(1)如解图①,连接OP,则OP=OQ,第1题解图①∵四边形MNPQ 为正方形,∴PN =QM =MN ,∠QMO =∠PNO =90°,在Rt △OPN 和Rt △OQM =QM =OQ,∴Rt △OPN ≌Rt △OQM (HL),∴ON =OM ,(2分)设QM =MN =2a ,则ON =OM =a ,在Rt △OQM 中,OQ =QM 2+OM 2=5a ,则sin ∠AOQ =QM OQ =2a 5a=255;(3分)(2)设QM =MN =2a ,则ON =OM =a ,OQ =5a ,∴OA =OQ =5a ,∴AM =OA -OM =(5-1)a ,∴AM MN =(5-1)a 2a =5-12;(6分)(3)∵AB =2R ,∴OA =OQ =OB =R ,∵sin ∠AOQ =QM OQ =255,∴QM R =255,解得QM =255R ,∴OM =OQ 2-QM 2=55R ,∴BM =OB +OM =5+55R ,AM =AB -BM =5-55R ,∵QD =y ,∴DM =QD +QM =y +255R ,(7分)由圆周角定理得∠ACB =90°,∴∠DBM +∠BAC =90°,∵∠QMO =90°,∴∠DBM +∠D =90°,∴∠D =∠BAC ,∵∠DMB =∠AME =90°,∴△DBM ∽△AEM ,∴DM AM =BM EM ,即y +255R 5-55R =5+55R x ,解得y =4R 25x-255R ,(8分)如解图②,连接AP ,交QM 于点F ,第1题解图②∵PN =MN =QM =255R ,AM =5-55R ,∴AN =AM +MN =5+55R ,∵四边形MNPQ 为正方形,∴QM ∥PN ,∴△AFM ∽△APN ,∴FM PN =AM AN ,即FM 255R =5-55R 5+55R ,解得FM =35-55R ,(9分)∵点C 在QP ︵上运动(点C 与点P ,Q 不重合),∴点E 在线段QF 上运动(点E 与点F ,Q 不重合),∴FM <ME <QM ,即35-55R <x <255R ,综上所述,y =4R 25x -255R (35-55R <x <255R ).(10分)2.解:(1)如解图①,过点O 作OF ⊥AB 于点F ,由垂径定理可得AF =BF ,∠AOF =∠BOF ,∵AB =43,∴AF =12AB =23,∵OA =4,∴sin ∠AOF =AF OA =234=32,∴∠AOF =60°,∴∠AOB =2∠AOF =120°;(3分)第2题解图①(2)如解图②,连接OC ,取OC 的中点G ,连接DG ,GE ,第2题解图②∵D 、E 分别为AC 、BC 的中点,∴由垂径定理可知OD ⊥AC ,OE ⊥BC ,∴DG =12OC ,EG =12OC ,∴DG =OG =GE =GC =2,即G 为△DOE 的外心,(5分)∴G 在以O 为圆心的圆弧上运动,其运动轨迹为解图②中的G 1G 2︵,∴G 1G 2︵的长为120×π×2180=43π.(6分)∴△ODE 的外心P 所经过的路径的长度为43π;(3)如解图③,过D 点作BC 的垂线,交BC 的延长线于点F ,连接OC ,∵∠ACB =12(360°-120°)=120°,∴∠DCF =180°-120°=60°.(7分)∵点D ,E 分别是弦AC ,BC 的中点,∴OD ⊥AC ,OE ⊥BC .∠AOD =∠COD ,∠COE =∠BOE ,DE =12AB =23,又∵∠AOB =120°,∴∠DOE =∠COD +∠COE =60°,令AD =CD =x ,CE =BE =y ,则OD =16-x 2,OE =16-y 2,CF =CD ·cos ∠DCF =12x ,DF =CD ·sin ∠DCF =32x .在Rt △DFE 中,DF 2+EF 2=DE 2,即(32x )2+(12x +y )2=(23)2,化简得:x 2+y 2+xy =12①.(8分)过点E 作EK ⊥OD 于点K ,则有S 1=12OD ·EK =12OD ·OE ·sin 60°.即S 1=1216-x 2·16-y 2·32,∵S 2=12CE ·DF =12·32xy ,S 21-S 22=21,∴316(16-x 2)(16-y 2)-316(xy )2=21.整理得:x 2+y 2=9②,∵x >0,y >0+y =15=3,解得x =15±32.∴AC =15± 3.综上所述,弦AC 的长度为15± 3.(10分)第2题解图③类型二与切线的性质结合例(1)①解:如解图①,连接OT ,则OT ⊥PT ,∴∠OTP =90°,∵AB 是⊙O 的直径,AB =16,∴OT =12AB =12×16=8,在Rt △OTP 中,由勾股定理得PT =PO 2-OT 2=102-82=6;例题解图①②证明:如解图①,由①知,∠OTP =90°,∵PC ⊥AB ,∴∠PCD =90°.∴∠PTO =∠POD .又∵∠OPT =∠DPO ;∴△POT ∽△PDO ;(2)证明:如解图②,连接OT ,∵PC ⊥AB ,点C 与点A 重合,AB 是⊙O 的直径,∴PA 是⊙O 的切线,∵PT 为⊙O 的切线,∴PA =PT ,在△OPA 和△OPT 中,PA =PTOP =OP OA =OT,∴△OPA ≌△OPT (SSS),∴∠AOP =∠TOP =12∠AOT ,∵∠AOT =2∠B ,∴∠AOP =∠B ,∴PO ∥BT ;例题解图②(3)解:如解图③,连接OT ,∵AB是⊙O的直径,AB=16,AC=x,∴OC=OA-AC=12AB-AC=8-x,OT=12AB=8,∵PC⊥AB,∴∠PCO=90°,在Rt△PCO中,由勾股定理得PO=OC2+PC2=(8-x)2+102,∵PT为⊙O的切线,∴PT⊥OT,在Rt△OTP中,由勾股定理得y=PT=PO2-OT2=(8-x)2+102-82=(x-8)2+36,∴y关于x的函数解析式为y=(x-8)2+36,∵点C在OA上运动,∴0≤x≤8.∴当x=8时,y有最小值,y的最小值为6.例题解图③1.(1)证明:∵PF是⊙O的切线,∴OC⊥PF,∵AF⊥PF,∴AF∥OC.∴∠FAC=∠ACO,∵OA=OC,∴∠OAC=∠ACO,∴∠FAC=∠CAB,即AC平分∠FAB;(2)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE =∠BCP ,∵CD 是⊙O 的直径,∴∠CEB =∠CBD =∠CBP =90°,∴△CBE ∽△CPB ,∴CB CP =CE CB,∴BC 2=CE ·CP ;(3)解:如解图,作BM ⊥PF 于点M .由(2)得∠ECB =∠MCB ,∴∠CEB =∠CMB =90°,CB =CB .∴△CEB ≌△CMB ,∴CE =CM .由(1)得∠FAC =∠EAC .∵∠AFC =∠AEC =90°.∴CE =CF ,∴CE =CM =CF ,设CE =CM =CF =3a ,则PC =4a ,PM =a ,∵CD 是⊙O 的直径,BM ⊥PC ,∴∠CBP =∠CMB =∠BMP =90°,∴∠MCB +∠P =90°,∠P +∠PBM =90°,∴∠MCB =∠MBP ,∴△BMC ∽△PMB ,∴BM PM =CM BM,∴BM 2=CM ·PM =3a 2,∴BM =3a (负值已舍去),∴tan ∠BCM =BM CM =33,∴∠BCM =30°,∴∠OCB =∠OBC =∠BOC =60°,∵AB =43,∴BC =OC =OB =23,∴弦BC 与其所对的劣弧BC ︵所组成的弓形面积=60°×π×(23)2360°-34×(23)2=2π-33.第1题解图2.(1)证明:①如解图①,连接MO ,第2题解图①∵∠BCM =45°,∴∠BOM =2∠BCM =90°.∴OM ⊥AB .∴∠BOM =∠AOM =90°.∴BM ︵=AM ︵;②∵DM 切半圆O 于点M ,且OM 为半径,∴OM ⊥MD .由①知,OM ⊥AB ,∴∠BOM =∠DMO =90°.∴MD ∥AB ;(2)解:如解图②,连接OM ,OC ,过点M 作MG ⊥BC ,∵AB 是半圆O 的直径,∴∠ACB =∠BCD =90°.∵∠BCM =45°,∴∠DCM =90°-∠BCM =45°=∠BCM .∵OM =OC ,∴∠OMC =∠OCM .∵MD 是半圆O 的切线,∴∠CMD =90°-∠CMO =12∠MOC .∵∠CBM =12∠MOC ,∴∠CMD =∠CBM ,∴△CMD ∽△CBM ,∴MC BC =CD CM,即MC 2=BC ·CD .在Rt △MBG 中,∵sin ∠CBM =55,设MG =m ,则MB =5m ,BG =2m ,在Rt △MCG 中,∠BCM =45°,∴MG =CG =m ,MC =2m ,∴BC =3m .∴(2m )2=3m ·CD ,∴CD =23m .在Rt △BDC 中,tan ∠CBD =CD BC =23m 3m =29;第2题解图②(3)解:如解图③,过点D 作DH ⊥AB 于点H .第2题解图③当点C 为AD 的中点时,∵BC ⊥AD ,∴BD =AB =5.∵MD ∥AB ,MO ⊥AB ,DH ⊥AB ,∴DH =OM =12AB =52,在Rt △BDH 中,sin ∠DBH =12,∴∠DBH =30°.∴BH =BD ·cos30°=5×32=532.∴AH =AB -BH =5-532=10-532.∵DM 是半圆O 的切线,且MD ∥AB ,∴点D 到AB 的距离总是52.当点C 与A 重合时,点D 在D ′的位置,∴点C 在半圆O 上从点A 移动到AD 的中点时,点D 的运动路径为平行于AB 到AB 距离为52的线段DD ′.易得四边形DD ′AH 为矩形,∴DD ′=AH =10-532.∴点C 在半圆O 上从点A 移动到AD 的中点时,点D 运动的路径长为10-532.类型三与切线的判定结合例(1)证明:如解图①,连接OE ,∵⊙O 与边AB 相切于点E ,∴OE ⊥AB ,即∠AEO =90°,∵AO =AO ,AC =AE ,OC =OE ,∴△ACO ≌△AEO (SSS),∴∠ACO =∠AEO =90°,又∵OC 是⊙O 的半径,∴AC 是⊙O 的切线;例题解图①(2)解:如解图①,∵tan B =43=AC BC,∴设AC =4x ,BC =3x ,∵AC 2+BC 2=AB 2,∴16x 2+9x 2=25,解得x =1(负值舍去).∴BC =3,AE =AC =4,∴BE =AB -AE =1,设⊙O 的半径为r ,则OC =OE =r ,OB =BC -OC =3-r ,在Rt △BOE 中,OB 2=OE 2+BE 2,∴(3-r )2=r 2+12,解得r =43,∴⊙O 的半径为43;(3)解:如解图①,设BD =a ,则CD =3a ,∴OE =OC =OD =3a 2,BC =CD +BD =4a .∴OB =OD +BD =5a 2.∴BE =OB 2-OE 2=2a .∵∠OEB =∠ACB =90°,∠OBE =∠ABC ,∴△BEO ∽△BCA .∴BE BC =OE AC .∴2a 4a =32a AC.解得AC =3a .∴OA =AC 2+OC 2=352a .∴sin ∠OAB =OE OA =32a 352a =55;(4)解:如解图②,过点O 作OM ⊥CF 于点M ,连接OE ,例题解图②∵F 是OA 的中点,∠ACO =90°,∴OF =CF =OC ,∴△OCF 是等边三角形,∠AOC =60°,∴∠OAE =∠OAC =30°,∠AOB =120°,∵OE ⊥AB ,∴∠AEO =90°,∴∠AOE =60°,∴∠EOB =60°,∴∠B =30°,∴∠CGB =90°,∵CG =3,∴BG =3CG =3 3.易证△OFM ≌△AFG ,∴FM =FG ,∴CM =FM =FG =1,∴OF =CF =2,OM = 3.∵S △BCG =12BG ·CG =932,S △OCF =12CF ·OM =3,S 扇形DOF =120π×22360=4π3.∴S 阴影=S △BCG -S △OCF -S 扇形DOF =732-4π3;(5)证明:如解图③,连接OE ,例题解图③由(1)可知△ACO ≌△AEO ,∴∠AOC =∠AOE ,又∵OC =OE ,OF =OF ,∴△COF ≌△EOF (SAS),∴∠OCF =∠OEF ,CF =EF ,∵OC =OF =OE ,∴∠OCF =∠OFC =∠OFE =∠OEF .∴∠GFE =180°-∠OFC -∠OFE =180°-2∠OCF ,∵G 是AB 的中点,∠ACB =90°,∴CG =AG =BG ,∴∠GCB =∠GBC ,∴∠EGF =180°-∠GCB -∠GBC =180°-2∠OCF ,∴∠GFE =∠EGF ,∴GE =EF =CF ,即CF =GE .1.(1)证明:如解图,连接OD ,∵CD 平分∠ACB ,∴∠ACD =∠BCD ,∴AD ︵=BD ︵,∴OD ⊥AB ,∵PQ ∥AB ,∴OD ⊥PQ ,∵OD 是⊙O 的半径,∴PQ 是⊙O 的切线;(2)解:如解图,设OD 与AB 交于点E ,设DE =a ,⊙O 的半径为r ,∴OE =r -a ,∵∠ABD =∠ACD ,∴tan ∠ABD =tan ∠ACD =13,即DE BE =13,∴BE =3DE =3a ,∴在Rt △BDE 中,由勾股定理得BD =BE 2+DE 2=(3a )2+a 2=10a ,∴在Rt △OBE 中,OB 2=OE 2+BE 2,∴r 2=(r -a )2+(3a )2,解得r =5a ,∴OB =5a ,∴OB BD =5a 10a=102;第1题解图(3)解:如解图,连接AD ,∵∠ACD =∠BCD ,∴AD =BD ,∵PQ ∥AB ,∴∠Q =∠ABC ,∠BDQ =∠ABD ,∵∠ADC =∠ABC ,∠ABD =∠ACD ,∴∠ADC =∠Q ,∠ACD =∠BDQ ,∴△ACD ∽△BDQ ,∴AC BD =AD BQ,∴AD ·BD =AC ·BQ =9,∴BD 2=9,即BD =3,∵∠ACB =60°,∴∠BCD =30°,∴∠BOD =60°,∴△BOD 为等边三角形,∵BE ⊥OD ,∴BE =32BD ,∴AB =2BE =3BD =3 3.2.(1)证明:如解图,连接OD 、OE 、OA ,∵⊙O 与AB 相切,切点为D ,∴∠ADO =90°.在△AOD 与△AOE 中,=AE=OE=AO,∴△AOD≌△AOE(SSS).∴∠ADO=∠AEO=90°,即OE⊥AC.又∵OE是⊙O的半径,∴AC是⊙O的切线;(2)解:∠GOH的度数是定值.如解图,连接OF,由题意得,GD、GF以及HF、HE与⊙O相切,∴GD=GF,HE=HF,∠DOG=∠FOG,∠FOH=∠HOE,∵∠BAC=∠ODA=∠OEA=90°,∴∠DOE=90°,∴∠GOH=12∠DOE=45°;(3)解:BG=x,CH=y,易得BD=CE=2,GF=GD=x-2,FH=HE=y-2,AG=4-x,AH=4-y,∴GH=x+y-4,∵∠BAC=90°,∴GH2=AG2+AH2,即(x+y-4)2=(4-x)2+(4-y)2,化简可得y=8 x,∵AG≥0,AH≥0,∴x≤4,y≤4,∴2≤x≤4,∴y与x之间的函数关系式为y=8x.(2≤x≤4)当x=y时,AG=AH,∵AB=AC,∴GH∥BC,如解图,连接AO,设AO交GH于F′,∴∠OF ′H =∠F ′OC =90°,∴F ′与点F 重合,即F 为AO 与⊙O 的交点,∴F 是DE ︵的中点.第2题解图。

中考数学压轴题破解策略专题20《简单的四点共圆》

中考数学压轴题破解策略专题20《简单的四点共圆》

专题20《简单的四点共圆》破解策略如果同一平面内的四个点在同一个圆上,则称之为四个点共圆·一般简称为”四点共圆”.四点共圆常用的判定方法有:1.若四个点到一个定点的距离相等,则这四个点共圆.如图,若OA=OB=OC=OD,则A,B,C,D四点在以点O为圆心、OA为半径的圆上.D【答案】(1)略;(2)AB,CD相交成90°时,MN取最大值,最大值是2.【提示】(1)如图,连结OP,取其中点O',显然点M,N在以OP为直径的⊙O'上,连结NO'并延长,交⊙O'于点Q,连结QM,则∠QMN=90°,QN=OP=2,而∠MQN=180°-∠BOC=60°,所以可求得MN的长为定值.(2)由(1)知,四边形PMON内接于⊙O',且直径OP=2,而MN为⊙O'的一条弦,故MN为⊙O'的直径时,其长取最大值,最大值为2,此时∠MON=90°.2.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆.如图,在四边形ABCD中,若∠A+∠C=180°(或∠B+∠D=180°)则A,B,C,D四点在同一个圆上.D【答案】(1)略;(2)AD=3DE;(3)AD=DE·tanα.【提示】(1)证A,D,B,E四点共圆,从而∠AED=∠ABD=45°,所以AD=DE.(2)同(1),可得A ,D ,B ,E 四点共圆,∠AED =∠ABD =30°,所以AD DE= tan30°,即AD =3DE . 3.若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆.如图,在四边形ABCD 中,∠CDE 为外角,若∠B =∠CDE ,则A ,B ,C ,D 四点在同一个圆上.【答案】略4.若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆.【来源:21·世纪·教育·网】如图,点A ,D 在线段BC 的同侧,若∠A =∠D ,则A ,B ,C ,D 四点在同一个圆上.D【答案】略诸多几何问题,若以四点共圆作桥梁,就能与圆内的等量关系有机地结合起来.利用四点共圆,可证线段相等、角相等、两线平行或垂直,还可以证线段成比例,求定值等.例题讲解例1 如图,在△ABC 中,过点A 作AD ⊥BC 与点D ,过点D 分别作AB ,AC 的垂线,垂足分别为E ,F .求证:B ,E ,F ,C 四点共圆.证明 因为DE ⊥AB ,DF ⊥AC ,所以∠AED +∠AFD =180°,即A ,E ,D ,F 四点共圆.A B C D EF AB CD E F G连结EF ,则∠AEF =∠ADF .因为AD ⊥BC ,DF ⊥AC ,所以∠FCD =∠ADF =∠AEF ,所以B ,E ,F ,C 四点共圆.例2 在锐角△ABC 中,AB =AC ,AD 为BC 边上的高,E 为AC 的中点.若M 为线段BD 上的动点(点M 与点D 不重合),过点C 作CN ⊥AM 与点N ,射线EN 与AB 相交于点P ,证明:∠APE =2∠MA D .证明 如图,连结DE .因为AD ⊥BC ,CN ⊥AM ,E 为AC 的中点,所以DE =AE =CE =NE ,从而A ,N ,D ,C 在以点E 为圆心、AC 为直径的圆上,所以∠DEN =2∠DAN .由题意可得D 为BC 的中点,所以ED ∥AB ,所以∠APE =∠DEP =2∠MA D .进阶训练1.已知⊙O 的半径为2,AB ,CD 是⊙O 的直径,P 是BC 上任意一点,过点P 分别作AB ,CD 的垂线,垂足分别为N ,M .(1)如图1,若直径AB 与CD 相交成120°角,当点P (不与B ,C 重合)从B 运动到C 的过程中,证明MN 的长为定值;(2)如图2,求当直径AB 与CD 相交成多少度角时,MN 的长取最大值,并写出其最大值.答案:(1)略(2)AB ,CD 相交成90°时,MN 取最大值,最大值为2.【提示】(1)如图,连接OP ,取其中点O ′,显然点M .,N 在以OP 为直径的⊙O ′上.连结NO ′并延长,交⊙O ′于点Q ,连结QM ,则∠QMN =90°,QN =OP =2.而∠MQN =180°-∠BOC =60°,所以可求得MN 的长为定值.A B C D E PN M AB C D EP N M AB C D O MN P图1 图2 A B C D P M N O(2)由(1)知,四边形PMON 内接于⊙O ′,且直径OP =2.而MN 为⊙O ′的一条弦,故MN 为⊙O ′的直径时,其长取最大值,最大值为2,此时∠QMN =90°.2.在Rt△ABC 中,∠BAC =90°,过点B 的直线MN ∥AC ,D 为BC 边上一点,连结AD ,作DE ⊥AD 交MN 于点E ,连结AE .(1)如图1,当∠ABC =45°时,求证:AD =DE ;(2)如图2,当∠ABC =30°时,线段AD 与DE 有何数量关系?请说明理由;(3)当∠ABC =α时,请直接写出线段AD 与DE 的数量关系(用含α的三角函数表示).答案:(略);(2)ADDE ;(3)AD =DE ·tan α. 【提示】(1)证A ,D ,B ,E 四点共圆,从而∠AED =∠ABD =45°,所以AD =DE .(2)同(1)可得A ,D ,B ,E 四点共圆,从而∠AED =∠ABD =30°,所以AE DE=tan30°,即ADDE . AB C D O MN QO ′ P图1 图1AB C DEFG 图2 A B C D E M N。

【中考数学必备专题】中考模型解题系列之四点共圆模型(含答案)

【中考数学必备专题】中考模型解题系列之四点共圆模型(含答案)

【中考数学必备专题】中考模型解题系列之四点
共圆模型
一、证明题(共2道,每道50分)
1.设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.
答案:证明:过点P作EP∥AD,且EP=AD.连接AE,EB
∴四边形AEPD是平行四边形
∴∠ABP=∠ADP=∠AEP,
可得:A、E、B、P共圆.
∴∠PAB=∠BEP
又∵EP∥BC,且EP=BC
∴四边形EBCP是平行四边形
∴∠BEP=∠PCB
∴∠PAB=∠PCB.
解题思路:根据已知作出过P点平行于AD的直线,并选一点E,使AE∥DP,通过倒角得出A、E、B、P四点共圆,即可得出答案.
试题难度:三颗星知识点:平行四边形的判定与性质
2.如图,O是Rt△ABC斜边AB的中点,CH⊥AB于H,延长CH至D,使得CH=DH,F为CO 上任意一点,过B作BE⊥AF于E,连接DE交BC于G.求证:∠CAF=∠CDE.
答案:(1)证明:连接OD,
∵△ABC是Rt三角形,BE⊥AF
∴∠BEA=∠ACB=90°,
∴A,B,E,C,四点共圆,且AB是此圆直径,
又∵CH⊥AB,CH=DH,
∴OC=OD
∴D在此圆上,
∴A,B,C,D,E五点共圆,
∴∠CAF=∠CDE.
解题思路:先连接OD,根据已知条件得出∠BEA=∠ACB=90°,得出A,B,E,C,四点共圆且AB是此圆直径,再根据CH⊥AB,CH=DH,确定出D也在此圆上,从而得出A,B,C,D,E五点共圆,即可证出∠CAF=∠CDE
试题难度:三颗星知识点:确定圆的条件。

中考数学专题复习 四点共圆模型 含答案-文档资料

中考数学专题复习   四点共圆模型  含答案-文档资料

共圆模型模型1共端点,等线段模型如图①,出现“共端点,等线段”时,可利用圆定义构造辅助圆.如图②,若OA=OB=OC,则A、B、C三点在以O为圆心,OA为半径的圆上.如图③,常见结论有:∠ACB=12∠AOB,∠BAC=12∠BOC.模型分析∵OA=OB=OC.∴A、B、C三点到点O的距离相等.∴A、B、C三点在以O为圆心,OA为半径的圆上.∵∠ACB是AB的圆周角,∠AOB是AB的圆心角,∴∠ACB=12∠AOB.同理可证∠BAC=12∠BOC.(1)若有共端点的三条线段,可考虑构造辅助圆.(2)构造辅助圆是方便利用圆的性质快速解决角度问题.模型实例如图,△ABC和△ACD都是等腰三角形,AB=AC,AC=AD,连接BD.求证:∠1+∠2=90°.证明证法一:如图①,∵AB=AC=AD.∴B、C、D在以A为圆心,AB为半径的⊙A上.∴∠ABC=∠2.在△BAC中,∵∠BAC+∠ABC+∠2=180°,∴2∠1+2∠2=180°.∴∠1+∠2=90°.证法二:如图②,∵AB=AC=AD.∴∠BAC=2∠1.∵AB=AC,∴B、C、D在以A为圆心,AB为半径的⊙O上.延长BA与圆A相交于E,连接CE.∴∠E=∠1.(同弧所对的圆周角相等.)∵AE=AC,∴∠E=∠ACE.∵BE为⊙A的直径,∴∠BCE=90°.∴∠2+∠ACE=90°.∴∠1+∠2=90°.小猿热搜1.如图,△ABC为等腰三角形,AB=AC,在△ABC的外侧作直线AP,点B与点D关于AP轴对称,连接BD、CD,CD与AP交于点E.求证:∠1=∠2.证明∵A、D关于AP轴对称,∴AP是BD的垂直平分线.∴AD=AB,ED=EB.又∵AB=AC.∴C、B、D在以A为圆心,AB为半径的圆上.∵ED=EB,∴∠EDB=∠EBD.∴∠2=2∠EDB.又∵∠1=2∠CDB.∴∠1=∠2.2.己知四边形ABCD,AB∥CD,且AB=AC=AD=a,BC=b,且2a>b,求BD的长.解答以A为圆心,以a为半径作圆,延长BA交⊙A于E点,连接ED.∵AB∥CD,∴∠CAB=∠DCA,∠DAE=∠CDA. ∵AC=AD,∴∠DCA=∠CDA. ∴∠DAE=∠CAB.在△CAB和△DAE中.∴△CAB≌△DAE.∴ED=BC=b∵BE是直径,∴∠EDB=90°.在Rt△EDB中,ED=b,BE=2a,∴BD.模型2 直角三角形共斜边模型模型分析如图①、②,Rt△ABC和Rt△ABD共斜边,取AB中点O,根据直角三角形斜边中线等于斜边一半,可得:OC=OD=OA=OB,∴A、B、C、D四点共圆.(1)共斜边的两个直角三角形,同侧或异侧,都会得到四点共圆;(2)四点共圆后可以根据圆周角定理得到角度相等,完成角度等量关系的转化,是证明角度相等重要的途径之一.模型实例例1如图,AD、BE、CF为△ABC的三条高,H为垂线,问:(1)图中有多少组四点共圆?(2)求证:∠ADF=∠ADE.解答(1)6组①C、D、H、E四点共圆,圆心在CH的中点处;②D、B、F、H四点共圆,圆心在BH的中点处;③A、E、H、F四点共圆,圆心在AH的中点处;④C、B、F、E四点共圆,圆心在BC的中点处;⑤B、A、E、D四点共圆,圆心在AB的中点处;⑥C、D、F、A四点共圆,圆心在AC的中点处.(2)如图,由B、D、H、F四点共圆,得∠ADF=∠1.同理:由A、B、D、E四点共圆,得∠ADE=∠1.∴∠ADF=∠ADE.例2如图,E是正方形ABCD的边AB上的一点,过点E作DE的垂线交∠ABC的外角平分线于点F,求证:FE=DE.解答如图,连接DB、DF.∵四边形ABCD是正方形,且BF是∠CBA的外角平分线,∴∠CBF=45°,∠DBC=45°,∴∠DBF=90°.又∵∠DEF=90°,∴D、E、B、F四点共圆.∴∠DFE=∠DBE=45°(同弧所对的圆周角相等).∴△DEF是等腰直角三角形.∴FE=DE.1.如图,锐角△ABC中,BC.CE是高线,DG⊥CE于G,EF⊥BD于F,求证:FG BC证明:由于Rt△BCE与Rt△BCD共斜边BC,∴B、C、D、E四点共圆.∴∠DBC=∠DEG,同理,Rt∠EDF与Rt△DGE共斜边DE,∴D、E、F、G四点共圆.于是∠DEG=∠DFG,因此,∠DBC=∠DFG.于是FG∥BC2. 如图,BE.CF为△ABC的高,且交于点H,连接AH并延长交于BC于点D,求证:AD⊥BC.3.如图,等边△PQR内接于正方形ABCD,其中点P,Q,R分别在边AD,AB,DC上,M是QR的中点.求证:不论等边△PQR怎样运动,点M为不动点.4.如图,已知△ABC中,AH是高,AT是角平分线,且TD⊥AB,TE⊥AC.求证:∠AHD=∠AHE.证明:(1)∵∠ADT=∠AHT=∠AET=90°,∴D,E,H在以AT为直径的圆上,∴∠AHD=∠ATD,∠AHE=∠ATE,又∵AT是角平分线,TD⊥AB,TE⊥AC,∴∠ATD=∠ATE,∴∠AHD=∠AHE.补充:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

共圆模型
模型1共端点,等线段模型
如图①,出现“共端点,等线段”时,可利用圆定义构造辅助圆.
如图②,若OA=OB=OC,则A、B、C三点在以O为圆心,OA为半径的圆上.
如图③,常见结论有:∠ACB=1
2
∠AOB,∠BAC=
1
2
∠BOC.
模型分析
∵OA=OB=OC.
∴A、B、C三点到点O的距离相等.
∴A、B、C三点在以O为圆心,OA为半径的圆上.∵∠ACB是»AB的圆周角,∠AOB是»AB的圆心角,
∴∠ACB=1
2
∠AOB.
同理可证∠BAC=1
2
∠BOC.
(1)若有共端点的三条线段,可考虑构造辅助圆.
(2)构造辅助圆是方便利用圆的性质快速解决角度问题.
模型实例
如图,△ABC和△ACD都是等腰三角形,AB=AC,AC=AD,连接BD.
求证:∠1+∠2=90°.
证明
证法一:如图①,
∵AB=AC=AD.∴B、C、D在以A为圆心,AB为半径的⊙A上.∴∠ABC=∠2.
在△BAC中,∵∠BAC+∠ABC+∠2=180°,∴2∠1+2∠2=180°.∴∠1+∠2=90°.
证法二:如图②,
∵AB=AC=AD.∴∠BAC=2∠1.∵AB=AC,
∴B、C、D在以A为圆心,AB为半径的⊙O上.
延长BA与圆A相交于E,连接CE.
∴∠E=∠1.(同弧所对的圆周角相等.)
∵AE=AC,∴∠E=∠ACE.
∵BE为⊙A的直径,∴∠BCE=90°.
∴∠2+∠ACE=90°.∴∠1+∠2=90°.
小猿热搜
1.如图,△ABC为等腰三角形,AB=AC,在△ABC的外侧作直线AP,点B与点D关于AP轴对称,连接BD、CD,CD与AP交于点E.求证:∠1=∠2.
证明
∵A、D关于AP轴对称,∴AP是BD的垂直平分线.
∴AD=AB,ED=EB.又∵AB=AC.
∴C、B、D在以A为圆心,AB为半径的圆上.
∵ED=EB,∴∠EDB=∠EBD.∴∠2=2∠EDB.又∵∠1=2∠CDB.∴∠1=∠2.
2.己知四边形ABCD,AB∥CD,且AB=AC=AD=a,BC=b,且2a>b,求BD的长.
解答
以A为圆心,以a为半径作圆,延长BA交⊙A于E点,连接ED.
∵AB∥CD,∴∠CAB=∠DCA,∠DAE=∠CDA. ∵AC=AD,
∴∠DCA=∠CDA. ∴∠DAE=∠CAB.在△CAB和△DAE中.
∴△CAB≌△DAE.∴ED=BC=b
∵BE是直径,∴∠EDB=90°.
在Rt△EDB中,ED=b,BE=2a,
∴BD
模型2 直角三角形共斜边模型
模型分析
如图①、②,Rt△ABC和Rt△ABD共斜边,取AB中点O,根据直角三角形斜边中线等于斜边一半,可得:OC=OD=OA=OB,
∴A、B、C、D四点共圆.
(1)共斜边的两个直角三角形,同侧或异侧,都会得到四点共圆;
(2)四点共圆后可以根据圆周角定理得到角度相等,完成角度等量关系的转化,是证明角度相等重要的途径之一.
模型实例
例1如图,AD、BE、CF为△ABC的三条高,H为垂线,问:
(1)图中有多少组四点共圆?
(2)求证:∠ADF=∠ADE.
解答
(1)6组
①C、D、H、E四点共圆,圆心在CH的中点处;
②D、B、F、H四点共圆,圆心在BH的中点处;
③A、E、H、F四点共圆,圆心在AH的中点处;
④C、B、F、E四点共圆,圆心在BC的中点处;
⑤B、A、E、D四点共圆,圆心在AB的中点处;
⑥C、D、F、A四点共圆,圆心在AC的中点处.
(2)如图,由B、D、H、F四点共圆,得∠ADF=∠1.
同理:由A、B、D、E四点共圆,得∠ADE=∠1.
∴∠ADF=∠ADE.
例2如图,E是正方形ABCD的边AB上的一点,过点E作DE的垂线交∠ABC的外
角平分线于点F,求证:FE=DE.
解答
如图,连接DB、DF.
∵四边形ABCD是正方形,且BF是∠CBA的外角平分线,
∴∠CBF=45°,∠DBC=45°,
∴∠DBF=90°.
又∵∠DEF=90°,
∴D、E、B、F四点共圆.
∴∠DFE=∠DBE=45°(同弧所对的圆周角相等).
∴△DEF是等腰直角三角形.
∴FE=DE.
P
1.如图,锐角△ABC中,BC.CE是高线,DG⊥CE于G,EF⊥BD于F,求证:FG BC
证明:由于Rt△BCE与Rt△BCD共斜边BC,
∴B、C、D、E四点共圆.
∴∠DBC=∠DEG,
同理,Rt∠EDF与Rt△DGE共斜边DE,
∴D、E、F、G四点共圆.
于是∠DEG=∠DFG,
因此,∠DBC=∠DFG.
于是FG∥BC
2. 如图,BE.CF为△ABC的高,且交于点H,连接AH并延长交于BC于点D,求证:AD⊥BC.
3.如图,等边△PQR内接于正方形ABCD,其中点P,Q,R分别在边AD,AB,DC上,M是QR的中点.求证:不论等边△PQR怎样运动,点M为不动点.
4.如图,已知△ABC中,AH是高,AT是角平分线,且TD⊥AB,TE⊥AC.求证:∠AHD=∠AHE.
证明:(1)∵∠ADT=∠AHT=∠AET=90°,
∴D,E,H在以AT为直径的圆上,
∴∠AHD=∠ATD,∠AHE=∠ATE,
又∵AT是角平分线,TD⊥AB,TE⊥AC,
∴∠ATD=∠ATE,
∴∠AHD=∠AHE.
补充:。

相关文档
最新文档