第二章 应力状态分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章应力状态分析

内容介绍

知识点

体力

应力矢量

应力分量

平衡微分方程

面力边界条件

主平面与主应力

主应力性质

截面正应力与切应力三向应力圆

八面体单元

偏应力张量不变量面力

正应力与切应力

应力矢量与应力分量

切应力互等定理

应力分量转轴公式

平面问题的转轴公式

应力状态特征方程

应力不变量

最大切应力

球应力张量和偏应力张量

作用于物体的外力可以分为两种类型:体力和面力。

所谓体力就是分布在物体整个体积内部各个质点上的力,又称为质量力。例如物体的重力,惯性力,电磁力等等。

面力是分布在物体表面上的力,例如风力,静水压力,物体之间的接触力等。

为了表明物体在xyz坐标系内任意一点P 所受体力的大小和方向,在P点的邻域取一微小体积元素△V, 如图所示

设△V的体力合力为△F,则P点的体力定义为

令微小体积元素△V趋近于0,则可以定义一点P的体力为

一般来讲,物体内部各点处的体力是不相同的。

物体内任一点的体力用F b表示,称为体力矢量,其方向由该点的体力合力方向确定。

体力沿三个坐标轴的分量用F b i( i = 1,2,3)或者F b x,F b y,F b z表示,称为体力分量。体力分量的方向规定与坐标轴方向一致为正,反之为负。

应该注意的是:在弹性力学中,体力是指单位体积的力。

类似于体力,可以给出面力的定义。

对于物体表面上的任一点P,在P点的邻域取一包含P点的微小面积元素△S,

如图所示。设△S上作用的面力合力为△F,则P 点的面力定义为

面力矢量是单位面积上的作用力,面力是弹性体表面坐标的函数。一般条件下,面力边界条件是弹性力学问题求解的主要条件。

面力矢量用F s表示,其分量用F s i(i=1,2,3)或者F s x、F s y和F s z表示。

面力的方向规定以与坐标轴方向一致为正,反之为负。

弹性力学中的面力均定义为单位面积的面力。

物体在外界因素作用下,例如外力,温度变化等,物体内部各个部分之间将产生相互作用,这种物体一部分与相邻部分之间的作用力称为内力。

内力的计算可以采用截面法,即利用假想平面将物体截为两部分,将希望计算内力的截面暴露出来,通过平衡关系计算截面内力F。

内力的分布一般是不均匀的。为了描述任意一点M的内力,在截面上选取一个包含M的微面积单元ΔS,如图所示

则可认为微面积上的内力主矢ΔF 的分布是均匀的。设ΔS 的法线方向为n,则定义:

上式中p n为微面积ΔS 上的平均应力。如果令ΔS 逐渐减小,并且趋近于零,取极限可得

上述分析可见:p n是通过任意点M,法线方向为n的微分面上的应力矢量。

应力p n是矢量,方向由内力主矢ΔF确定,又受ΔS方位变化的影响。

应力矢量不仅随点的位置改变而变化,而且即使在同一点,也由于截面的法线方向n的方向改变而变化。这种性质称为应力状态。因此凡是应力均必须说明是物体内哪一点,并且通过该点哪一个微分面的应力。

一点所有截面的应力矢量的集合称为一点的应力状态。应力状态对于研究物体的强度是十分重要的。显然,作为弹性体内部一个确定点的各个截面的应力矢量,就是应力状态必然存在一定的关系。不可能也不必要写出一点所有截面的应力。为了准确、明了地描述一点的应力状态,必须使用合理的应力参数。

讨论一点各个截面的应力变化趋势称为应力状态分析。为了探讨各个截面应力的变化趋势,确定可以描述应力状态的参数,通常将应力矢量分解。

应力矢量的一种分解方法是将应力矢量p n在给定的坐标系下沿三个坐标轴方向分解,如用p x, p y, p z表示其分量,则

p n=p x i + p y j+ p z k

这种形式的分解并没有工程实际应用的价值。它的主要用途在于作为工具用于推导弹性力学基本方程。

另一种分解方法,如图所示,是将应力矢量p n 沿微分面ΔS的法线和切线方向分解。与微分面ΔS法线n方向的投影称为正应力,用σ n表示;平行于微分面ΔS 的投影称为切应力或剪应力,切应力作用于截面内,用τ n表示。

弹性体的强度与正应力和切应力息息相关,因此这是工程结构分析中经常使用的应力分解形式。

由于微分面法线n的方向只有一个,因此说明截面方位就确定了正应力 σ n 的方向。但是平行于微分面的方向有无穷多,因此切应力τ n不仅需要确定截面方位,还必须指明方向。

为了表达弹性体内部任意一点M的应力状态,利用三个与坐标轴方向一致的微分面,通过M点截取一个平行六面体单元,如图所示

将六面体单元各个截面上的应力矢量分别向3个坐标轴投影,可以得到应力分量σij。

应力分量的第一脚标i 表示该应力所在微分面的方向,即微分面外法线的方向;

第二脚标j 表示应力的方向。如果应力分量与j 坐标轴方向一致为正,反之为负。

如果两个脚标相同,i=j,则应力分量方向与作用平面法线方向一致,这是正应力,可以并写为一个脚标,例如σ x。

如果两脚标不同,i≠j,则应力分量方向与作用平面法线方向不同,这是切应力,例如τxy。

六面体单元的3对截面共有九个应力分量σij。

应该注意:应力分量是应力矢量在坐标轴上的投影,因此是标量,而不是矢量。

在已知的坐标系中应力状态通常用应力张量

表示。使用应力张量可以完整地描述一点的应力状态。

微分四面体在应力矢量和体积力作用下应满足平衡条件,设h为O点至斜面ABC 的高,由x方向的平衡,可得

将公式代入上式,则

对于微分四面体单元,h与单元体棱边相关,因此与1相比为小量,趋近于零,因此

相关文档
最新文档