概述一元一次方程的解法ppt.ppt
合集下载
《一元一次方程》PPT优秀课件
列方程:方程是根据题中的等量关系列出的等式. 既可用已知数,又可用未知数,解决问题从比算较式方到便方.程是数
学的进步!
探究新知
观察下列方程,它们有什么共同点?
x x 1 60 70
70 y=60(y+1) 70(z-1)=60z
问题1:每个方程中,各含有几个未知数? 1个 问题2:说一说每个方程中未知数的次数. 1次 问题3:等号两边的式子有什么共同点? 都是整式
x
2
⑤x 2 y 1
其中是方程的是 ①②③④⑤ ,是一元一次方程的
是 ②③ .(填序号)
课堂检测
能力提升题
根据下列问题,找出等量关系,设未知数列出方程,并指出其 是不是一元一次方程.
(1)环形跑道一周长400m,沿跑道跑多少周,可以 跑3000m?
一周长×周数=总路程 解:设沿跑道跑x周.
400x=3000, 是一元一次方程.
含有未知数的等式
方程
探究新知
一辆快车和一辆慢车同时从A地出发沿同一公路同方 向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是 60 km/h,快车比慢车早1 h经过B地,A,B两地间的路程 是多少?
60 km/h
1h
70 km/h
探究新知 (1) 上述问题中涉及到了哪些量? 路程:AB之间的路程. 速度:快车70 km/h,慢车60 km/h. 时间:快车比慢车早1h经过B地.
程,则 m= 1 .
加了限制条件,需进行取舍.
方法总结:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
巩固练习
方程3x5-2k -8=0是关于x的一元一次方程,则 k=___2__. 方程x|m| +4=0是关于x的一元一次方程,则 m=_1_或__-1_. 方程(m-1)x -2=0是关于x的一元一次方程,则 m__≠_1__.
学的进步!
探究新知
观察下列方程,它们有什么共同点?
x x 1 60 70
70 y=60(y+1) 70(z-1)=60z
问题1:每个方程中,各含有几个未知数? 1个 问题2:说一说每个方程中未知数的次数. 1次 问题3:等号两边的式子有什么共同点? 都是整式
x
2
⑤x 2 y 1
其中是方程的是 ①②③④⑤ ,是一元一次方程的
是 ②③ .(填序号)
课堂检测
能力提升题
根据下列问题,找出等量关系,设未知数列出方程,并指出其 是不是一元一次方程.
(1)环形跑道一周长400m,沿跑道跑多少周,可以 跑3000m?
一周长×周数=总路程 解:设沿跑道跑x周.
400x=3000, 是一元一次方程.
含有未知数的等式
方程
探究新知
一辆快车和一辆慢车同时从A地出发沿同一公路同方 向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是 60 km/h,快车比慢车早1 h经过B地,A,B两地间的路程 是多少?
60 km/h
1h
70 km/h
探究新知 (1) 上述问题中涉及到了哪些量? 路程:AB之间的路程. 速度:快车70 km/h,慢车60 km/h. 时间:快车比慢车早1h经过B地.
程,则 m= 1 .
加了限制条件,需进行取舍.
方法总结:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
巩固练习
方程3x5-2k -8=0是关于x的一元一次方程,则 k=___2__. 方程x|m| +4=0是关于x的一元一次方程,则 m=_1_或__-1_. 方程(m-1)x -2=0是关于x的一元一次方程,则 m__≠_1__.
(完整版)一元一次方程的解法PPT课件
2345 + 12x = 5129.
①
利用等式的性质,在方程①两边都减去2345,
得
2345+12x-2345= 5129-2345,
即
12x=2784.
②
方程②两边都除以12,得x=232 .
因此,热气球在后12h飞行的平均速度为232 km/h.
我们把求方程的解的过程叫做解方程. 在上面的问题中,我们根据等式性质1,在方程① 两边都减去2345,相当于作了如下变形:
-22334455 + 12x = 5129
从变形前后的两个方程可以看出,这种变形, 就是把方程中的某一项改变符号后,从方程的一边 移到另一边,我们把这种变形叫做移项.
必须牢记:移项要变号.
在解方程时,我们通过移项,把方程中含未知 数的项移到等号的一边,把不含未知数的项移到等 号的另一边.
例1 解下列方程:
解方程
应改为 4 x +6 =2+x 2(2x+3)=2+x
解 去括号,得 4x+3=2+x 应改为 4 x – x = 2-6
移项,得 4x +x = 2-3
化简,得
5x = -1
应改为 3x =-4
方程两边都除以5 ,得
方程两边都除以3,得
x
=
-
1 5
应改为
x
=
-4 3
2. 解下列方程.
(1) (4y+8)+2(3y-7)= 0 ; (2) 2(2x -1)-2(4x+3)= 7; (3) 3(x -4)= 4x-1.
y
;
(2)
5
+3x 2
一元一次方程的解法去分母ppt课件
议一议
解方程:0 0..1 0x30.90.50.2x1
解:
x92x1 35
5 1x 0 3 (9 2 x ) 15
5 x 0 2 6 7 x 15 5 x 0 6 x 1 2 57 5x642
x 3 4
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
练一练 烧伤病人的治疗通常是取烧伤病人的健康皮肤进行自体移植,但对于大面积烧伤病人来讲,健康皮肤很有限,请同学们想一想如何来治疗该病人
解下列方程:
(1)y1 y2
24
(2)2 -5
x
-
x
+3 2
=
2
(3)1-3x-7 = x+17
45
(4)yy212y52
(5)3x123x12x3
2
10 5
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
(3)分数线有括号作用,去掉分母 后,若分子是多项式,要加括号, 视多项式为一整体。
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
解一元一次方程的步骤: (1) 去分母
(2)去括号 (3)移项 (4)合并同类项 (5)系数化为1
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
解方程:0 0..1 0x30.90.50.2x1
解:
x92x1 35
5 1x 0 3 (9 2 x ) 15
5 x 0 2 6 7 x 15 5 x 0 6 x 1 2 57 5x642
x 3 4
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
练一练 烧伤病人的治疗通常是取烧伤病人的健康皮肤进行自体移植,但对于大面积烧伤病人来讲,健康皮肤很有限,请同学们想一想如何来治疗该病人
解下列方程:
(1)y1 y2
24
(2)2 -5
x
-
x
+3 2
=
2
(3)1-3x-7 = x+17
45
(4)yy212y52
(5)3x123x12x3
2
10 5
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
(3)分数线有括号作用,去掉分母 后,若分子是多项式,要加括号, 视多项式为一整体。
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
解一元一次方程的步骤: (1) 去分母
(2)去括号 (3)移项 (4)合并同类项 (5)系数化为1
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
解一元一次方程课件(共20张PPT)人教版初中数学七年级上册
x=20
(四)例题规范,巩固新知
1.解方程:2x- 5 x=6-8 2
解:合并同类项,得- 1 x=-2 2
系数化为1,得 x=4
(三)例题规范,巩固新知
2.解方程:7x-2.5x+3x-1.5x=-154-6 3. 解:合并同类项,得 6x= 78.
系数化为1,得 x= 13.
(四)基础训练,学以致用
还有不同的设法吗? 还可以列怎样的方程?
方法二:
方法三:
设去年购买计算机x台. 设今年购买计算机x台.
x +x+2x=140 2
x + x +x=140 42
(三)合作探究,归纳方法
如何将此方程转化为x=a(a为常数)的形式?
x+2x+4x=140
合并同类项
7 x=140
系数化为1
等式性质2 理论依据?
1. 什么是同类项?
2.计算:(1)3x-x (2)10x+0.5x (3)7xy-3xy+8ab-2xy-5ab
3.等式的基本性质有哪些?
二.新授
(一)介绍数学史,创设情境
约公元820年,中亚细亚数学家阿尔-花 拉子米写了一本代数书,重点论述怎样 解方程.这本书的拉丁文译本取名为 《对消与还原》.“对消”与“还原”是 什么意思呢?
1.解下列方程:
(1)5 x-2 x=9 (2)x + 3x =7
22 (3)-3 x+0.5 x=10
(4)7x-4.5x=2.5 3-5
例2 有一列数,按一定规律排列成1,-3,9,-27
81,-243,…。其中某三个相邻数的和-1701,这
三个数各是多少?
解:设所求三个数分别是x,-3x,9x. 由三个数的和是-1701,得
解一元一次方程课件PPT
概念和解题方法。
难度适中原则
根据学生实际水平,设置不同难 度的例题,以满足不同层次学生
的需求。
循序渐进原则
按照知识点难易程度,逐步增加 例题的复杂性和难度,帮助学生
逐步提升解题能力。
学生自主解答环节设计
独立思考
鼓励学生独立思考,自主分析问题,寻找解题思 路。
小组讨论
组织学生进行小组讨论,互相交流解题思路和方 法,拓展思维。
确定未知数的系数、将系数化为1、 求解化简后的方程。
03 实际应用问题建模
实际问题背景引入
商品打折销售
商店进行打折活动,原价与折扣 后价格的关系。
路程时间速度
物体运动中路程、时间和速度之间 的关系。
配套问题
不同物品之间的数量关系,如螺钉 和螺母等。
建立数学模型过程展示
定义变量
根据实际问题,选择合适 的未知数表示相关量。
下节课预告
提前预告下节课的教学内容,使学生 对学习有持续性和预见性。
作业布置
针对本节课的知识点,布置适当的练 习题,帮助学生巩固所学知识。
1.谢谢聆 听
方程解的应用
总结方程解在实际问题中的应用,如速度、时间、距离等问 题,强化方程解的实际意义。
学生自我评价报告收集
学生对本节课的掌握情况
收集学生对本节课知识点掌握情况的自我评价报告,便于教师了解学生的学习状况。
学生遇到的困难与问题
征集学生在学习过程中遇到的困难和问题,为下节课的教学提供参考。
下节课预告及作业布置
步骤
选定要移动的项、改变移 动项的符号、求解移动后 的方程。
示例
对于方程5x - 3 = 7,将3移至等号右侧得5x = 7 + 3,解得x = 2。
难度适中原则
根据学生实际水平,设置不同难 度的例题,以满足不同层次学生
的需求。
循序渐进原则
按照知识点难易程度,逐步增加 例题的复杂性和难度,帮助学生
逐步提升解题能力。
学生自主解答环节设计
独立思考
鼓励学生独立思考,自主分析问题,寻找解题思 路。
小组讨论
组织学生进行小组讨论,互相交流解题思路和方 法,拓展思维。
确定未知数的系数、将系数化为1、 求解化简后的方程。
03 实际应用问题建模
实际问题背景引入
商品打折销售
商店进行打折活动,原价与折扣 后价格的关系。
路程时间速度
物体运动中路程、时间和速度之间 的关系。
配套问题
不同物品之间的数量关系,如螺钉 和螺母等。
建立数学模型过程展示
定义变量
根据实际问题,选择合适 的未知数表示相关量。
下节课预告
提前预告下节课的教学内容,使学生 对学习有持续性和预见性。
作业布置
针对本节课的知识点,布置适当的练 习题,帮助学生巩固所学知识。
1.谢谢聆 听
方程解的应用
总结方程解在实际问题中的应用,如速度、时间、距离等问 题,强化方程解的实际意义。
学生自我评价报告收集
学生对本节课的掌握情况
收集学生对本节课知识点掌握情况的自我评价报告,便于教师了解学生的学习状况。
学生遇到的困难与问题
征集学生在学习过程中遇到的困难和问题,为下节课的教学提供参考。
下节课预告及作业布置
步骤
选定要移动的项、改变移 动项的符号、求解移动后 的方程。
示例
对于方程5x - 3 = 7,将3移至等号右侧得5x = 7 + 3,解得x = 2。
湘教版数学七年级上册3.3 一元一次方程的解法课件(共25张PPT)
6.清人徐子云《算法大成》中有一首诗: 巍巍古寺在山林, 不知寺中几多僧. 三百六十四只碗, 众僧刚好都用尽. 三人共食一碗饭, 四人共吃一碗羹. 请问先生名算者, 算来寺内几多增?
诗的意思:3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?
课后作业
1.从课后习题中选取;2.完成练习册本课时的习题。
同学们再见!
授课老师:
时间:2024年9月1日
去括号,得 2x +2+x-1 = 4,
去分母时,方程两边的每一项都要乘各个分母的最小公倍数.
做一做
解方程:.
去括号,得 15x -5+2x-4= 10x.
合并同类项,得 7x = 9.
移项,得 15x +2x-10x=5+4 .
例 3
例题讲解
B
解析:根据题意,得 .去分母,得 8x-10=2x-1.移项、合并同类项,得 6x=9.系数化为1,得 .
4(2x-1)=3(x+2)-12
去分母,得2(2x-1)=8-(3-x) =8-3+x
D
2.将方程=1-去分母后,正确的结果是( )A.2x-1=1-(3-x) B.2(2x-1)=1-(3-x)C.2(2x-1)=8-3-x D.2(2x-1)=8-3+x
5.已知方程与关于y的方程y+的解相同,求a的值.
6.火车用 26 s 的时间通过一个长 256 m 的隧道(即从车头进入入口到车尾离开出口),这列火车又以 16 s 的时间通过了长 96 m 的隧道,求火车的长度.
解:设火车的长度为x m,列方程:
解得 x =160. 答:火车的长度为160 m.
新课导入
诗的意思:3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?
课后作业
1.从课后习题中选取;2.完成练习册本课时的习题。
同学们再见!
授课老师:
时间:2024年9月1日
去括号,得 2x +2+x-1 = 4,
去分母时,方程两边的每一项都要乘各个分母的最小公倍数.
做一做
解方程:.
去括号,得 15x -5+2x-4= 10x.
合并同类项,得 7x = 9.
移项,得 15x +2x-10x=5+4 .
例 3
例题讲解
B
解析:根据题意,得 .去分母,得 8x-10=2x-1.移项、合并同类项,得 6x=9.系数化为1,得 .
4(2x-1)=3(x+2)-12
去分母,得2(2x-1)=8-(3-x) =8-3+x
D
2.将方程=1-去分母后,正确的结果是( )A.2x-1=1-(3-x) B.2(2x-1)=1-(3-x)C.2(2x-1)=8-3-x D.2(2x-1)=8-3+x
5.已知方程与关于y的方程y+的解相同,求a的值.
6.火车用 26 s 的时间通过一个长 256 m 的隧道(即从车头进入入口到车尾离开出口),这列火车又以 16 s 的时间通过了长 96 m 的隧道,求火车的长度.
解:设火车的长度为x m,列方程:
解得 x =160. 答:火车的长度为160 m.
新课导入
一元一次方程ppt课件
学生分享解题思路及经验
分享解题思路
学生分享自己在解题过程中的思 路和方法,帮助其他学生拓宽解
题思路。
交流解题经验
学生交流自己在解题过程中遇到 的困难和经验,促进彼此之间的
学习和进步。
互相评价
学生之间互相评价彼此的解题思 路和方法,提出改进意见和建议
,共同提高解题能力。
06
总结回顾与作业布置
关键知识点总结回顾
绝对值方程分类
根据未知数系数正负性, 将含绝对值一元一次方程 分为两类。
去除绝对值符号
分别探讨两类方程如何去 除绝对值符号,化为一般 形式一元一次方程求解。
含参数一元一次方程解法
参数方程概念
引入参数方程概念,解释 参数对方程解的影响。
参数分类讨论
针对不同参数取值情况, 对方程进行分类讨论,总 结各类情况下解的特点。
02
一元一次方程解法
等式性质法
等式性质
等式两边同时加上或减去同一个数,等式仍然成立。
解法步骤
通过运用等式性质,将方程中的未知数项移至等式一侧,常数项移至另一侧,从 而解出未知数。
移项法
移项原理
将方程中的未知数项和常数项分别移至等式两侧,使未知数 项系数化为1。
解法步骤
运用移项原理,逐步将方程中的未知数项和常数项分别移至 等式两侧,从而求解出未知数。
合并同类项法
合并同类项原理
将方程中相同未知数项的系数进行相加或相减,简化方程形式。
解法步骤
通过合并同类项,将方程中的未知数项系数化为1,常数项进行相应计算,从而解出未知数。
03
实际问题中一元一次方程应用
行程问题
路程=速度×时间
通过具体实例,展示如何用一元一次方 程解决行程问题,包括相遇问题、追及 问题等。
一元一次方程课件20张PPT
WENKU DESIGN
代数问题
代数式化简
通过一元一次方程,我们 可以对代数式进行化简, 简化计算过程。
解方程
一元一次方程是解代数方 程的基础,通过解一元一 次方程,我们可以找到代 数方程的解。
方程组求解
利用一元一次方程,我们 可以求解更复杂的方程组, 找到多个未知数的值。
实际问题
比例问题
利润和折扣问题
培养学生对数学的兴趣 和热爱,提高数学素养。
PART 02
一元一次方程的基本概念
REPORTING
WENKU DESIGN
定义与形式
定义
一元一次方程是只含有一个未知 数,且该未知数的次数为1的方程 。
形式
ax + b = 0,其中a和b是已知数, x是未知数。
方程的解与根
解的概念
满足方程的未知数的值称为方程的解。
移项法
总结词
通过将方程两边的同类项进行移动,使得未知数的系数为1,从 而求解未知数。
详细描述
移项法是一元一次方程中最常用的解法之一。具体操作是将含 有未知数的项移到等号的左边,常数项移到等号的右边,使得 未知数的系数为1,从而可以通过简单的除法计算得出未知数的 值。
合并同类项法
总结词
通过将方程两边的同类项进行合并,简化方程的形式,从而更容易求解未知数。
历史背景
一元一次方程是数学中一 个基础而重要的概念,起 源于古代数学,是代数和 数学分析的基础。
重要性
一元一次方程在日常生活 和科学研究中有着广泛的 应用,是解决实际问题的 重要工具。
课程目标
01
掌握一元一次方程的基 本概念和性质。
02
学会解一元一次方程的 方法。
5.2 一元一次方程课件(共20张PPT)
同学们再见!
授课老师:
时间:2024年9月15日
随堂练习
1. x=3,x=0,x=-2,各是下列哪个方程的解?(1) 5x+7=7-2x;(2) 6x-8=8x-4;(3) 3x-2=4+x.
x=0
x=-2
x=3
2.已知关于 x 的一元一次方程2(x-1)+3a=3的解为4,则 a 的值是( )A.-1 B.1 C.-2 D.-3
解析:将x=4代入2(x-1)+3a=3,得2×3+3a=3,解得a= -1.
A
技巧点拨:根据方程的解的定义求有关字母的值时,通常先将解代入方程中,得到关于字母的方程,求解即可得到这个字母的值.
3.以下哪些是一元一次方程?
解: (4)(5)是一元一次方程.
不是整式方程
不是等式
含有两个未知数
是不等式,不是方程
x=60是方程x2=4 000的解吗?x=80呢?
观察下列式子:1-2x+18,4x-3=1,x2+1=10x,6-x>3,y=xy+9.
思考
问题1:请判断哪些式子是方程,哪些不是方程.为什么?问题2:请思考每个方程所含未知数的个数与所含未知数的项的次数分别是多少?
1.4x-3=1,x2+1=10x,y=xy+9是方程,其他的不是.含有未知数的等式叫作方程,其他的式子不符合.2.4x-3=1 一个未知数,未知数次数是1;x2+1=10x 一个未知数,未知数次数是2;y=xy+9 两个未知数,未知数次数是2.
已知甲、乙两村相距18 km,小明骑自行车从甲村出发到乙村,行驶的速度是12 km/h.当小明骑行的时间为t h时,距乙村还有3 km,由此得到方程12t+3=18.
授课老师:
时间:2024年9月15日
随堂练习
1. x=3,x=0,x=-2,各是下列哪个方程的解?(1) 5x+7=7-2x;(2) 6x-8=8x-4;(3) 3x-2=4+x.
x=0
x=-2
x=3
2.已知关于 x 的一元一次方程2(x-1)+3a=3的解为4,则 a 的值是( )A.-1 B.1 C.-2 D.-3
解析:将x=4代入2(x-1)+3a=3,得2×3+3a=3,解得a= -1.
A
技巧点拨:根据方程的解的定义求有关字母的值时,通常先将解代入方程中,得到关于字母的方程,求解即可得到这个字母的值.
3.以下哪些是一元一次方程?
解: (4)(5)是一元一次方程.
不是整式方程
不是等式
含有两个未知数
是不等式,不是方程
x=60是方程x2=4 000的解吗?x=80呢?
观察下列式子:1-2x+18,4x-3=1,x2+1=10x,6-x>3,y=xy+9.
思考
问题1:请判断哪些式子是方程,哪些不是方程.为什么?问题2:请思考每个方程所含未知数的个数与所含未知数的项的次数分别是多少?
1.4x-3=1,x2+1=10x,y=xy+9是方程,其他的不是.含有未知数的等式叫作方程,其他的式子不符合.2.4x-3=1 一个未知数,未知数次数是1;x2+1=10x 一个未知数,未知数次数是2;y=xy+9 两个未知数,未知数次数是2.
已知甲、乙两村相距18 km,小明骑自行车从甲村出发到乙村,行驶的速度是12 km/h.当小明骑行的时间为t h时,距乙村还有3 km,由此得到方程12t+3=18.
一元一次方程 课件ppt
例子:例如,解方程 2x + 5 = 7,首先移项得 2x = 7 - 5,然后合并同类项得 2x = 2,最后系数化为1得 x = 1。
图像法
定义:图像法是一种通过绘制函数图像来解一元一次方 程的方法。 1. 确定函数:根据方程的形式确定表示该方程的函数。
3. 标记解:在图像上标记交点的坐标,即为方程的解。
型,例如成本、价格、利润等问题的计算。
物理问题的数学模型建立
03
在物理领域中,一元一次方程可以用于建立各种问题的数学模
型,例如速度、加速度、时间等问题的计算。
04
一元一次方程的变式
移项
概念
移项是将方程中的项改变符号后 移动到另一边的过程。
目的
通过移项,将方程中的未知数系 数变为正数,以便更容易求解。
步骤
2. 绘制图像:绘制函数的图像,将坐标轴上的交点作 为方程的解。
例子:例如,解方程 x + 2 = 5,确定函数为 y = x + 2,绘制图像后,交点为 (3,5),因此方程的解为 x = 3 。
实际应用法
定义:实际应用法是一种通过实际应用案例来解一元一次 方程的方法。
步骤
1. 分析问题:分析实际问题中涉及到的变量和关系。
2. 建立方程:根据实际问题建立一元一次方程。
3. 解方程:通过解方程得到未知数的值,解决实际问题 。
例子:例如,解方程 3x + 2 = 14,分析问题为求解 x 的 值使得 3x + 2 = 14,建立方程为 3x + 2 = 14,解方程 得 x = 4。因此,x 的值为4。
03
一元一次方程的应用
THANKS
感谢观看
06
一元一次方程的注意事项和易错点
图像法
定义:图像法是一种通过绘制函数图像来解一元一次方 程的方法。 1. 确定函数:根据方程的形式确定表示该方程的函数。
3. 标记解:在图像上标记交点的坐标,即为方程的解。
型,例如成本、价格、利润等问题的计算。
物理问题的数学模型建立
03
在物理领域中,一元一次方程可以用于建立各种问题的数学模
型,例如速度、加速度、时间等问题的计算。
04
一元一次方程的变式
移项
概念
移项是将方程中的项改变符号后 移动到另一边的过程。
目的
通过移项,将方程中的未知数系 数变为正数,以便更容易求解。
步骤
2. 绘制图像:绘制函数的图像,将坐标轴上的交点作 为方程的解。
例子:例如,解方程 x + 2 = 5,确定函数为 y = x + 2,绘制图像后,交点为 (3,5),因此方程的解为 x = 3 。
实际应用法
定义:实际应用法是一种通过实际应用案例来解一元一次 方程的方法。
步骤
1. 分析问题:分析实际问题中涉及到的变量和关系。
2. 建立方程:根据实际问题建立一元一次方程。
3. 解方程:通过解方程得到未知数的值,解决实际问题 。
例子:例如,解方程 3x + 2 = 14,分析问题为求解 x 的 值使得 3x + 2 = 14,建立方程为 3x + 2 = 14,解方程 得 x = 4。因此,x 的值为4。
03
一元一次方程的应用
THANKS
感谢观看
06
一元一次方程的注意事项和易错点
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)、新课展开(15——18分钟 ) (三)、练习+课堂测验(20分钟) (四)、课堂小结+布置作业(3分钟)
.精品课件.
4
在学生知识掌握方面不仅要求学
会去分母的方法,更要求掌握把前面
所学的知识与之融会贯通,能够按照
去分母、去括号、移项、合并同类项、
系数化为1的顺序,有目的、有步骤的
求一元一次方程的解,并达到灵活运
探究让学生体验知识的形成和运用的过程,
提高学生学习的主动性,帮助学生的数学
学习。
返到3
.精品课件.
10
解下列方程:
1、5x-80=15
2、4(x+2)-3(2x-1)=12
3、 x 1 2x 3 1
2
3 返到4
.精品课件.
11
x 1 2x 3 1
2
3
解:去分母,得 3(x-1)-2(2x-3)=6
返到2
7
.精品课件.
情感目标:
在总结一元一次方程的
解法过程中培养学生的严谨
的、有条理的解题思路,体
会数学中由新变旧的转化思
想,加强数字感。
返到2
8
.精品课件.
掌握含有分母的一元一次方程
的解法是本节课的重点,正确去掉
方程中的分母是难点。依据是本节
课就是要求学生会解带分母的一元
一次方程,而如何去掉分母,正确
用。从而体会并掌握解一元一次方程
的划归思想,提高分析和解决问题的
能力。
返到2
.精品课件.
5
知识目标:
理解解方程时去分母的依据,
会解含有分母的一元一次方程; 掌握解一元一次方程一般步骤 并按步骤做题;
返到2
6
.精品课件.
能力目标:
在解一元一次方程的过 程中提高准确并快速运算的 能力以及把复杂变简单的灵 活处理问题的能力;
去括号,得 3x-3-4x+6=6
移项, 得 -x=3
两边都除以-1,得 x=-3
.精品课件.
12
变形名称 去分母 去括号 移项
合并同类项 系数化为1
具体做法
在方程两边都乘各分母 的最小公倍数
利用乘法对加法的分配 律去掉括号。
把含有未知数的项移 到方程的一边,常数 项移到另一边(记住 移项要变号)
袁庄中学 张胜军
.精品课件.
1
一、教材分析:(说教材)
1、教材所处的地位和作用
2、教育教学目标: 知识目标
能力目标
情感目标
3、重、难点及确定依据
二、学情分析:(说学法)
.精品课件.
2
三、教学方法:(说教法)
(1)引导发现法 (2)讲练结合法 (3)个别指导法
.精品课件.
3
四、教学程序:(说过程) (一)、复习导入(5——8分钟)
注意事项
1.不要漏乘不含分母的 项,2.分子是一个整体, 去分母时应加上括号
1.不要漏乘括号里的 项 2.不要弄错符号
1.移项要变号 2.不要丢项
把方程化成ax=b (a≠0)的形式
分母及其指数不变
在方程两边都除以未知数 的系数a,得到方.精程品课的件解.
不要把分子、分母搞颠倒
13
的去掉分母则是正确的解一元一次
方程的关键,也是最容易出错的地
方,比如漏乘、不加括号等。
.精品课件.
返到2 9
尽管学生已经在前面几节课学习了一
些解一元一次方程的方法,在上学期也学
过解决本节问题的有关知识,但是在找最
小公分母、去分母时漏乘、去分母时忘记
加括号、去括号时符号的变化、移项要变
号等地方仍是学生易错的地方。通过合作
.精品课件.
4
在学生知识掌握方面不仅要求学
会去分母的方法,更要求掌握把前面
所学的知识与之融会贯通,能够按照
去分母、去括号、移项、合并同类项、
系数化为1的顺序,有目的、有步骤的
求一元一次方程的解,并达到灵活运
探究让学生体验知识的形成和运用的过程,
提高学生学习的主动性,帮助学生的数学
学习。
返到3
.精品课件.
10
解下列方程:
1、5x-80=15
2、4(x+2)-3(2x-1)=12
3、 x 1 2x 3 1
2
3 返到4
.精品课件.
11
x 1 2x 3 1
2
3
解:去分母,得 3(x-1)-2(2x-3)=6
返到2
7
.精品课件.
情感目标:
在总结一元一次方程的
解法过程中培养学生的严谨
的、有条理的解题思路,体
会数学中由新变旧的转化思
想,加强数字感。
返到2
8
.精品课件.
掌握含有分母的一元一次方程
的解法是本节课的重点,正确去掉
方程中的分母是难点。依据是本节
课就是要求学生会解带分母的一元
一次方程,而如何去掉分母,正确
用。从而体会并掌握解一元一次方程
的划归思想,提高分析和解决问题的
能力。
返到2
.精品课件.
5
知识目标:
理解解方程时去分母的依据,
会解含有分母的一元一次方程; 掌握解一元一次方程一般步骤 并按步骤做题;
返到2
6
.精品课件.
能力目标:
在解一元一次方程的过 程中提高准确并快速运算的 能力以及把复杂变简单的灵 活处理问题的能力;
去括号,得 3x-3-4x+6=6
移项, 得 -x=3
两边都除以-1,得 x=-3
.精品课件.
12
变形名称 去分母 去括号 移项
合并同类项 系数化为1
具体做法
在方程两边都乘各分母 的最小公倍数
利用乘法对加法的分配 律去掉括号。
把含有未知数的项移 到方程的一边,常数 项移到另一边(记住 移项要变号)
袁庄中学 张胜军
.精品课件.
1
一、教材分析:(说教材)
1、教材所处的地位和作用
2、教育教学目标: 知识目标
能力目标
情感目标
3、重、难点及确定依据
二、学情分析:(说学法)
.精品课件.
2
三、教学方法:(说教法)
(1)引导发现法 (2)讲练结合法 (3)个别指导法
.精品课件.
3
四、教学程序:(说过程) (一)、复习导入(5——8分钟)
注意事项
1.不要漏乘不含分母的 项,2.分子是一个整体, 去分母时应加上括号
1.不要漏乘括号里的 项 2.不要弄错符号
1.移项要变号 2.不要丢项
把方程化成ax=b (a≠0)的形式
分母及其指数不变
在方程两边都除以未知数 的系数a,得到方.精程品课的件解.
不要把分子、分母搞颠倒
13
的去掉分母则是正确的解一元一次
方程的关键,也是最容易出错的地
方,比如漏乘、不加括号等。
.精品课件.
返到2 9
尽管学生已经在前面几节课学习了一
些解一元一次方程的方法,在上学期也学
过解决本节问题的有关知识,但是在找最
小公分母、去分母时漏乘、去分母时忘记
加括号、去括号时符号的变化、移项要变
号等地方仍是学生易错的地方。通过合作