中考经典二次函数应用题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数应用题
1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件. (1)求商家降价前每星期的销售利润为多少元
(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元最大销售利润是多少
2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元 (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高最高利润是多少
3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形
ABCD 的面积为S 平方米.
(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围). (2)当x 为何值时,S 有最大值并求出最大值.
(参考公式:二次函数2
y ax bx c =++(0a ≠),当2b
x a
=-时,244ac b y a -=最大(小)值)
4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表: 月份 1月 5月 销售量 万台 万台 求该品牌电视机在去年哪个月销往农村的销售金额最大最大是多少
5、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;
(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元
(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.
6、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。

(1)请建立销售价格y (元)与周次x 之间的函数关系;
(2)若该品牌童装于进货当周售完,且这种童装每件进价z (元)与周次x 之间的关系为12)8(8
12
+--=x z , 1≤ x ≤11,且x 为整数,那么该品牌童装在第几周售出后,每件获得利润最大并求最大利润为多少 )
7
(1)设该车间每月生产甲、乙两种塑料各x 吨,利润分别为1y 元和2y 元,分别求1y 和2y 与x 的函数关系式(注:利润=总收入-总支出);
(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生
产甲、乙塑料各多少吨,获得的总利润最大最大利润是多少
8、某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式3
368
y x =-
+,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示. (1)试确定b c 、的值;
(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式; (3)“五·一”之前,几月份出售这种水产品每千克的利润最大最大利润是多少
y 2
二次函数应用题答案
1、解:(1) (130-100)×80=2400(元)
(2)设应将售价定为x元,则销售利润
130
(100)(8020)
5
x
y x
-
=-+⨯
2
4100060000
x x
=-+-2
4(125)2500
x
=--+.
当125
x=时,y有最大值2500. ∴应将售价定为125元,最大销售利润是2500元.
2、解:(1)(24002000)84
50
x
y x
⎛⎫
=--+⨯

⎝⎭
,即2
2
243200
25
y x x
=-++.
(2)由题意,得2
2
2432004800
25
x x
-++=.整理,得2300200000
x x
-+=.

12
100200
x x
==
,.要使百姓得到实惠,取200
x=.所以,每台冰箱应降价200元.(3)对于2
2
243200
25
y x x
=-++,当
24
150
2
2
25
x=-=
⎛⎫
⨯-

⎝⎭
时,
150
(24002000150)84250205000
50
y
⎛⎫
=--+⨯=⨯=

⎝⎭
最大值

所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.
3、
4、解:(1)设p与x的函数关系为(0)
p kx b k
=+≠,根据题意,得
3.9
5 4.3.
k b
k b
+=


+=


解得
0.1
3.8.
k
b
=


=


所以,0.1 3.8
p x
=+.
设月销售金额为w万元,则(0.1 3.8)(502600)
w py x x
==+-+.
化简,得2
5709800
w x x
=-++,所以,2
5(7)10125
w x
=--+.
当7
x=时,w取得最大值,最大值为10125.
答:该品牌电视机在去年7月份销往农村的销售金额最大,最大是10125万元.
(2)去年12月份每台的售价为501226002000
-⨯+=(元),
去年12月份的销售量为0.112 3.85
⨯+=(万台),
根据题意,得2000(1%)[5(1 1.5%) 1.5]13%3936
m m
-⨯-+⨯⨯=.
令%m t =,原方程可化为2
7.514 5.30t t -+=.
t ∴==
.10.528t ∴≈,2 1.339t ≈(舍去) 答:m 的值约为. 5、解:(1)根据题意得65557545.
k b k b +=⎧⎨
+=⎩,
解得1120k b =-=,.
所求一次函数的表达式为120y x =-+.
(2)(60)(120)W x x =--+ 2
1807200x x =-+- 2
(90)900x =--+,
抛物线的开口向下,∴当90x <时,W 随x 的增大而增大,而6087x ≤≤,
∴当87x =时,2(8790)900891W =--+=.
∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.
(3)由500W =,得2
5001807200x x =-+-,
整理得,2
18077000x x -+=,解得,1270110x x ==,.
由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而6087x ≤≤,所以,销售单价x 的范围是7087x ≤≤. 6、 解:(1)202(1)218(16)()......(2)30 (611)() (4)
x x x x y x x +-=+≤<⎧=⎨≤≤⎩为整数分为整数分
(2)设利润为w
2
22211202(1)(8)1214(16)()......881130(8)12(8)18(611)()......88y z x x x x x w y z x x x x ⎧-=+-+--=+≤<⎪⎪=⎨⎪-=+--=-+≤≤⎪⎩
为整数(6分)为整数(8分)
21114 5 1788w x x w =+=最大当时,=(元)....(9分)
2111
(8)18 11 91819888
w x x w =-+=⨯+最大当时,==(元)....(10分)
综上知:在第11周进货并售出后,所获利润最大且为每件1
198
元 (10)
7.解: (1)依题意得:1(2100800200)1100y x x =--=, 2(24001100100)20000120020000y x x =---=-,
(2)设该月生产甲种塑料x 吨,则乙种塑料(700)x -吨,总利润为W 元,依题意得: 11001200(700)20000100820000W x x x =+--=-+.
∵400700400x x ⎧⎨
-⎩≤,
≤,
解得:300400x ≤≤.
∵1000-<,∴W 随着x 的增大而减小,∴当300x =时,W 最大=790000(元) 此时,700400x -=(吨).
因此,生产甲、乙塑料分别为300吨和400吨时总利润最大,最大利润为790000元.
8、解:(1)由题意:22125338124448b c b c ⎧=⨯++⎪⎪⎨⎪=⨯++⎪⎩
解得718
1
292b c ⎧=-⎪⎪⎨⎪=⎪⎩
(2)12y y y =-231
151362988
82x x x ⎛⎫=-+--+ ⎪⎝⎭21316822x x =-++; (3)21316822y x x =-++2111(1236)46822x x =--+++21
(6)118
x =--+ ∵1
08
a =-
<,∴抛物线开口向下.在对称轴6x =左侧y 随x 的增大而增大. 由题意5x <,所以在4月份出售这种水产品每千克的利润最大.
最大利润2
11(46)111082
=--+=(元).。

相关文档
最新文档