高一数学必修1各

合集下载

新高一数学必修一知识点梳理

新高一数学必修一知识点梳理

第一章〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N 表示自然数集,N*或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.(3)集合与元素间的关系(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x|x具有的性质},其中x 为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集.【1.1.2】集合间的基本关系(6)子集、真子集、集合相等【1.1.3】集合的基本运算(8)交集、并集、补集【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(2)一元二次不等式的解法〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作f:A→B.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法(3)求函数的定义域时,一般遵循以下原则:①f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑥零(负)指数幂的底数不能为零.⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a≤g(x)≤b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数f(x)为奇函数,且在x=0处有定义,则f(0)=0.③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换②伸缩变换③对称变换(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义【2.2.2】对数函数及其性质(5)对数函数〖2.3〗幂函数(1)幂函数的定义一般地,函数y=x a叫做幂函数,其中x为自变量,a 是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象②过定点:所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1)③单调性:如果a>0,则幂函数的图象过原点,并且在[0, +∞)上为增函数.如果a<0,则幂函数的图象在[0, +∞)上为减函数,在第一象限内,图象无限接近x轴与y轴.〖补充知识〗二次函数(1)二次函数解析式的三种形式(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与X轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便.(3)二次函数图象的性质一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.⑥k1<x1<k2≤p1<x2<p2此结论可直接由⑤推出.第三章函数的应用一、方程的根与函数的零点。

高一数学必修一章节重点知识点1~4单元

高一数学必修一章节重点知识点1~4单元

高一数学必修一章节重点知识点1~4单元全文共5篇示例,供读者参考高一数学必修一章节重点知识点1~4单元篇1集合的运算运算类型交集并集补集定义域r定义域r值域>0值域>0在r上单调递增在r上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;二、对数函数(一)对数1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式)说明:○1 注意底数的限制,且;○2 ;○3 注意对数的书写格式.两个重要对数:○1 常用对数:以10为底的对数;○2 自然对数:以无理数为底的对数的对数 .指数式与对数式的互化幂值真数=n =b底数指数对数(二)对数的运算性质如果,且,,,那么:○1 +;○2 -;○3 .注意:换底公式:(,且;,且;).利用换底公式推导下面的结论:(1);(2) .(3)、重要的公式①、负数与零没有对数;②、,③、对数恒等式(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

如:,都不是对数函数,而只能称其为对数型函数.○2 对数函数对底数的限制:,且 .2、对数函数的性质:a>时,开口方向向上,a0时,抛物线向上开口;当a1,且∈_.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

高中数学必修一全册PPT课件

高中数学必修一全册PPT课件
例如:book中的字母的集合表示为:A={x|x是 book中的字母}
所有奇数组成的集合:A={x∈R|x=2k+1, k∈Z} 所有偶数组成的集合:A={x∈R|x=2k, k∈Z}
注意:1、中间的“|”不能缺失; 2、不要忘记标明x∈R或者k∈Z,除非上下文明确表示 。
思考:1、比较这三个集合:
5、设A={1,2},B={x|xA},问A与B有什么关系?并用列举法写出B?
6 、A 设 { | x x 2 集 4 x 0B 合 } { | , x x 2 2 ( 1 a ) a 2 - x 1 0 a , R} 若 B A ,a 的 求 . 值 实数
7、判断下列表示是否正确:
(1)a {a}; (2) {a} ∈{a,b};
A={x ∈Z|x<10},B={x ∈R|x<10} , C={x |x<10} ;
例题:求由方程x2-1=0的实数解构成的集合。
解:(1)列举法:{-1,1}或{1,-1}。
(2)描述法:{x|x2-1=0,x∈R}或{X|X为方程x2-1=0的实数解}
2021
8
2、两个集合相等
如果两个集合的元素完全相同,则它们相等。
33函数零点的判定零点存在性定理函数零点的判定零点存在性定理如果函数如果函数yfx在区间在区间ab上的图象是连续不上的图象是连续不断的一条曲线并且有断的一条曲线并且有那么函那么函数数yfx在区间在区间内有零点内有零点即存在即存在cab使得使得这个这个也就是也就是f
高中数学课件
人教版必修一精品ppt
2021
(3){a,b} {b,a}; (4){-1,1}{-1,0,1}
(5)0;
(6) {-1,1}.

新人教版高一数学必修一目录

新人教版高一数学必修一目录

新人教版高一数学必修一目录
一、第一章函数
1. 基本概念
2. 函数的表示法
3. 函数的图象
4. 函数的性质
二、第二章曲线
1. 曲线的表示法
2. 曲线的切线
3. 兰联形曲线
4. 椭圆曲线
5. 双曲线
三、第三章相关与回归
1. 相关系数
2. 线性回归与回归直线
四、第四章初等函数
1. 指定法求方程的根
2. 二次函数及加减乘除法
3. 牛顿迭代法求方程的根
五、第五章指数函数
1. 指数函数的基本性质
2. 常用指数函数
3. 对数函数及其应用
六、第六章对数函数及其应用
1. 对数函数的基本性质
2. 对数函数及其应用
七、第七章几何极限
1. 无穷小分析法
2. 无穷量极限
3. 二元函数极限
4. 级数的极限
八、第八章函数的微分
1. 导数的概念
2. 定义型微分
3. 导数的性质及应用
九、第九章函数的积分
1. 定积分及其应用问题
2. 微积分的应用ii
3. 曲线的积分性质。

高一数学必修一每章知识点

高一数学必修一每章知识点

高一数学必修一每章知识点高中数学是学生在过渡到大学数学的重要阶段,必修一是高中数学的第一门课程,对学生打下数学基础非常关键。

本文将按照必修一每章的顺序,对各章的知识点进行论述,帮助学生理解和掌握这些知识。

第一章:函数及其图象函数是高中数学的重要概念,本章首先介绍了函数的定义和表示方法。

学生需要了解函数的自变量、因变量和函数值的概念,并能通过给定函数的定义域和值域,确定函数的取值范围。

接着,本章介绍了一次函数、二次函数和反比例函数的图象特征,以及如何根据图象来确定函数的性质和特点。

第二章:函数的运算与初等函数本章主要介绍了函数的基本运算,包括函数的加减、函数的乘法、函数的除法以及函数的复合等。

学生需要了解各种运算的定义和规则,并能通过这些运算来解决实际问题。

同时,本章还介绍了一些常见的初等函数,如幂函数、指数函数、对数函数、三角函数等,学生需要理解这些函数的性质和变化规律。

第三章:三角函数及其图象三角函数是高中数学中的重要概念,本章首先介绍了正弦函数、余弦函数和正切函数的定义和性质。

学生需要了解这些函数的周期、定义域、值域等特点,并能够根据给定的函数关系绘制函数的图象。

此外,本章还介绍了三角函数的性质和变换规律,学生需要理解这些知识并能够灵活运用到解决实际问题中。

第四章:三角函数的应用三角函数广泛应用于几何、物理等领域,本章主要介绍了三角函数在三角关系解法、航空导航、测量等方面的应用。

学生需要学会根据实际问题中的几何图形或物理知识,建立相应的三角函数关系,并能够运用所学知识解决相关问题。

第五章:平面解析几何初步平面解析几何是高中数学的重要内容,本章首先介绍了平面直角坐标系的建立和基本性质。

学生需要学会读取和表示二维平面上的点,并能够通过坐标计算两点间的距离和斜率。

接着,本章介绍了直线和圆的方程,学生需要理解这些方程的含义,并能够根据方程解决相关问题。

第六章:多项式函数多项式函数是高中数学的重要分支,本章首先介绍了多项式函数的定义和性质。

高中高一数学必修一所学目录及内容概要

高中高一数学必修一所学目录及内容概要

高中高一数学必修一所学目录及内容概要高一数学必修一是在高中阶段的一门课程,它为学生提供一个良好的数学基础,为他们将来的学习和工作打下坚实的基础。

本篇文章主要介绍该课程所涵盖的内容及其目录。

首先,本课程涵盖了数学的基本知识,具体包括概念、定义、法则、公式、推理等。

如代数系统、集合系统、几何系统等基本概念;如实数、整数、有理数、无理数、分数和分式等数学定义;如欧几里得拉定理、中位数公式、勾股定理等数学法则;如方程的线性和非线性求解、几何的内推理等数学推理。

其次,本课程还包括一些经典的数学应用,如概率论、统计学、抽样理论等。

其中,概率论主要研究给定条件下不同事件发生的概率以及如何求解概率问题,统计学则利用大量的数据进行数据分析,抽样理论则是利用抽样的方法来进行实际研究的基本原理。

最后,本课程目录如下:
一、基本概念
1、代数系统
2、集合系统
3、几何系统
二、数学定义
1、实数
2、整数
3、有理数
4、无理数
5、分数、分式
三、数学法则
1、欧几里得拉定理
2、中位数公式
3、勾股定理
四、数学推理
1、线性方程求解
2、非线性方程求解
3、几何内推理
五、数学应用
1、概率论
2、统计学
3、抽样理论
综上所述,高一数学必修一是个非常重要的课程,它涵盖了基本概念、数学定义、数学法则、数学推理以及数学应用等重要知识,是学生从中学习和理解数学知识的重要课程。

本文介绍了本课程的内容及其目录,以便学生们能够更好地学习和理解这门课程。

高一必修一数学各章知识点

高一必修一数学各章知识点

高一必修一数学各章知识点高一的数学课程可谓是一个基础扎实的阶段,包括了几个重要的章节,如函数、导数和几何等。

在这篇文章中,我将为大家总结一下高一必修一数学各章的知识点。

1. 数与代数数与代数是数学的基础,也是高中数学的入门篇章。

在这一章节中,我们主要学习了有理数、整式和方程等内容。

(1)有理数:有理数包括整数、分数和小数等形式。

我们可以进行有理数的四则运算,如加减乘除,并学会求有理数的相反数和绝对值。

(2)整式:整式是由常数和变量以及它们的运算符号组成的表达式。

我们需要掌握多项式和分式的加减乘除运算法则,并学会因式分解和提取公因式。

(3)方程:方程是表示等式关系的代数式,包括一元一次方程、一元二次方程等。

我们学习了方程的解法,如逆运算法、配方法和求根公式等。

2. 函数函数是高中数学中的重点和难点之一。

函数是一种特殊的关系,它把一个数集的每个元素都映射到另一个数集的元素上。

在这一章节中,我们主要学习了函数的定义、性质和图像等。

(1)函数的定义:函数是两个数集之间的一种关系,它满足每一个自变量对应一个唯一的因变量。

我们需要掌握函数的自变量、因变量和函数值的概念,并学会用函数的定义判断函数关系是否成立。

(2)函数的性质:函数有很多重要的性质,如函数的奇偶性、周期性和单调性等。

我们需要掌握这些性质的定义和判断方法,以及它们在图像上的表现。

(3)函数的图像:函数的图像是函数的可视化表示,它能通过一条曲线或折线的形式展示函数的变化规律。

我们需要学会用函数的定义域、值域和单调性等性质来分析函数的图像。

3. 导数导数是高中数学的一大亮点,它是微积分学的基础概念。

在这一章节中,我们主要学习了函数的导数及其应用。

(1)函数的导数:函数的导数描述了函数在某一点的变化速率,它是函数在该点的切线斜率。

我们需要掌握导数的定义和求法,如极限定义、导数公式和求导法则等。

(2)函数的导数应用:导数在实际问题中有广泛的应用,如求函数的极值、曲线的凹凸性、曲率和曲线的切线问题等。

高一数学必修一各章知识点总结技巧解答

高一数学必修一各章知识点总结技巧解答

高一数学必修1各章知识点总结一、集合1.集合的中元素的三个特性:2.集合的表示方法: 列举法与描述法、图示法非负整数集(即自然数集)记作: N正整数集 N*或 N+ 整数集Z 有理数集Q 实数R二、集合间的基本关系1.“包含”关系—子集注意: 有两种可能(1)A是B的一部分, ;(2)A与B 是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2. “相等”关系: A=B (5≥5, 且5≤5, 则5=5)实例: 设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即: ①任何一个集合是它本身的子集。

A(A②真子集:如果A(B,且A( B那就说集合A是集合B的真子集, 记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B◆ 3.不含任何元素的集合叫做空集, 记为Φ◆规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

有n个元素的集合, 含有2n个子集, 2n-1个真子集例题:1.下列四组对象, 能构成集合的是()A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数2.集合{a, b, c }的真子集共有个3.若集合M={y|y=x2-2x+1,x R},N={x|x≥0}, 则M与N的关系是 .4.设集合A= , B= , 若A B, 则的取值范围是5.50名学生做的物理、化学两种实验, 已知物理实验做得正确得有40人, 化学实验做得正确得有31人,两种实验都做错得有4人, 则这两种实验都做对的有人。

6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M.........7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ, A∩C=Φ, 求m的值二、函数的有关概念1. 定义域:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么, 它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法: ①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2. 值域 : 先考虑其定义域3.函数图象常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4. 映射可一对一、多对一补充: 复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f、g的复合函数。

高一数学必修1目录

高一数学必修1目录

高一数学必修1目录
高一数学必修1目录
第一章初识集合
1.1 集合及其表示
1.2 集合间的关系与运算
1.3 常用集合的表示法
1.4 集合运算的基本性质
第二章数与式
2.1 实数的概念及其表示
2.2 实数间的大小比较
2.3 实数的绝对值
2.4 单项式与多项式
2.5 多项式的加减运算
2.6 多项式乘法及其应用
第三章一次函数
3.1 函数的概念与函数的表示
3.2 一次函数的概念及其图象
3.3 一次函数的性质及其应用
3.4 函数的相等与不等关系
第四章二次函数
4.1 二次函数的概念及其图象
4.2 二次函数的解析式
4.3 二次函数的性质及其应用
4.4 二次函数与一次函数的比较
第五章指数与对数
5.1 指数及其运算
5.2 指数方程与不等式
5.3 对数及其运算
5.4 对数方程与不等式
第六章三角函数初步
6.1 角的概念及其度量
6.2 同弦等角及其应用
6.3 正弦、余弦、正切及其应用
6.4 三角函数的图象和性质
第七章平面向量
7.1 向量的概念及其运算
7.2 向量的数量积
7.3 向量的应用
第八章解析几何初步
8.1 平面直角坐标系
8.2 点、直线、圆的方程
8.3 图形的对称
8.4 距离、中点的坐标公式
以上是高一数学必修1的全部目录。

通过本课程的学习,可以帮助学生对数学基础知识有一个全面的了解,并能够掌握一些基本的计算方法和应用技巧,为高中后继的深化学习打下坚实的基础。

高一必修一数学全册知识点

高一必修一数学全册知识点

高一必修一数学全册知识点一、集合1. 集合的基本概念1.1 集合的定义和表示方法1.2 集合的元素与集合的关系二、数字与代数1. 实数与数轴2.1 实数的概念及表示2.2 数轴的绘制与实数的表示2.3 实数的比较与加减法运算2.4 实数的乘除法运算及其性质2. 同底数幂与科学计数法2.1 指数与幂的概念2.2 同底数幂的乘除法运算2.3 科学计数法的表示与运算3. 整式的基本概念3.1 代数式与整式的定义3.2 项、次数及系数的概念3.3 同类项与合并同类项3.4 整式的加减法运算4. 一元一次方程及其应用4.1 一元一次方程的定义及基本性质4.2 解一元一次方程的基本方法4.3 应用题中的一元一次方程5. 分式及其运算5.1 分式的定义及分式运算的基本性质5.2 分式的化简5.3 分式方程的解法及应用三、函数与图像1. 函数的概念与表示6.1 函数的定义及函数的表示方法6.2 函数的自变量、因变量与定义域、值域的关系2. 幂函数与分段函数6.2.1 幂函数的概念及其性质6.2.2 分段函数的定义及分段函数的画法3. 一次函数与斜率6.3.1 一次函数的定义及一次函数的性质6.3.2 斜率的概念及其计算方法4. 二次函数及其图像6.4.1 二次函数的定义及二次函数的图像特点6.4.2 二次函数的变换与最值四、三角函数1. 三角函数及其基本性质7.1.1 弧度制与角度制的转换7.1.2 正弦、余弦、正切函数的定义及其基本性质2. 三角函数图像的性质与变换7.2.1 三角函数图像的对称性与奇偶性7.2.2 三角函数图像的平移与伸缩7.2.3 三角函数图像的组合与分解3. 三角函数的简单应用7.3.1 三角函数在实际问题中的应用7.3.2 直角三角形的解题方法五、平面几何1. 直线与圆的性质8.1.1 直线的定义及其性质8.1.2 圆的定义及其性质2. 三角形的基本性质8.2.1 三角形分类及其特性8.2.2 三角形的成立条件3. 三角形的相似8.3.1 相似三角形的定义及判定条件 8.3.2 相似三角形的性质及应用4. 圆的切线与割线8.4.1 切线的定义及性质8.4.2 相交弦的性质及切割定理六、统计与概率1. 统计图与数据的分析9.1.1 统计图的绘制及其分析9.1.2 数据的分析与统计规律2. 事件的概率9.2.1 随机事件与概率的定义 9.2.2 事件的计算与概率的性质3. 排列与组合9.3.1 排列的定义及排列的计算 9.3.2 组合的定义及组合的计算。

高一数学必修一知识点总结

高一数学必修一知识点总结

高一数学必修一知识点总结(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学必修一知识点总结本店铺为各位同学整理了《高一数学必修一知识点总结》,希望对您的学习有所帮助!1.高一数学必修一知识点总结1、集合的概念集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)。

高一数学必修1知识点大全

高一数学必修1知识点大全

高一数学必修1知识点大全一、集合。

1. 集合的概念。

- 集合是由一些确定的、不同的对象所组成的整体。

这些对象称为集合的元素。

例如,全体自然数组成一个集合,每个自然数就是这个集合的元素。

- 集合通常用大写字母表示,如A、B、C等,元素用小写字母表示,如a、b、c等。

- 元素与集合的关系:如果a是集合A的元素,就说a∈ A(读作“a属于A”);如果a不是集合A的元素,就说a∉ A(读作“a不属于A”)。

2. 集合的表示方法。

- 列举法:把集合中的元素一一列举出来,写在大括号内。

例如,集合A = {1,2,3}。

- 描述法:用确定的条件表示某些对象是否属于这个集合。

一般形式为{xp(x)},其中x是集合中的代表元素,p(x)是元素x所满足的条件。

例如,{xx是大于2的整数}。

- 区间表示法:对于数集,还可以用区间表示。

- 开区间(a,b)={xa < x < b};- 闭区间[a,b]={xa≤slant x≤slant b};- 半开半闭区间(a,b]= {xa < x≤slant b},[a,b)={xa≤slant x < b};- 无穷区间(-∞,+∞)=R,(a,+∞)={xx > a},[a,+∞)={xx≥slant a},(-∞,b)={xx < b},(-∞,b]={xx≤slant b}。

3. 集合间的基本关系。

- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B(读作“A包含于B”)或B⊇ A(读作“B包含A”)。

如果A⊆ B且B⊆ A,那么A = B。

- 真子集:如果A⊆ B,且存在元素x∈ B,x∉ A,那么集合A是集合B的真子集,记作A⊂neqq B。

- 空集:不含任何元素的集合叫做空集,记作varnothing。

空集是任何集合的子集,是任何非空集合的真子集。

4. 集合的基本运算。

- 交集:由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A 与B的交集,记作A∩ B={xx∈ A且x∈ B}。

高一数学必修一知识点

高一数学必修一知识点

高一数学必修第一册知识点第一章集合与常用逻辑用语1元素:研究的对象统称为元素,用小写拉丁字母 ,,,c b a 表示,元素三大性质:互异性,确定性,无序性.2集合:一些元素组成的总体叫做集合,简称集,用大写拉丁字母 ,,,C B A 表示.3集合相等:两个集合B A ,的元素一样,记作B A .4元素与集合的关系:①属于:A a ;②不属于:A a .5常用的数集及其记法:自然数集N ;正整数集 N N 或*;整数集Z ;有理数集Q ;实数集R .6集合的表示方法:①列举法:把集合中的所有元素一一列举出来,并用花括号括起来表示集合的方法;②描述法:把集合中所有具有共同特征)(x P 的元素x 所组成的集合表示为})(|{x P A x 的方法;③图示法(Ve nn 图):用平面上封闭曲线的内部代表集合的方法.7集合间的基本关系:子集:对于两个集合B A ,,如果集合A 中任意一个元素都是集合B 中的元素,就称集合A 为集合A 的子集,记作,读作A 包含于B ;真子集:如果B A ,但存在元素B x ,且A x ,就称集合A 是集合B 的真子集,记作A B ,读作A 真包含于B .8空集:不含任何元素的集合,用 表示,空集的性质,空集是任何集合的子集,是任何集合的真子集.9集合的基本运算:并集},|{B x A x x B A 或 ;交集},|{B x A x x B A 且 ;补集},|{A x U x x A C U且(U 为全集,全集是含有所研究问题中涉及的所有元素).运算性质:B A B B A ;B A A B A ;A A ; A ;U C U C A A C C U U U U ,,)(,)()()(),()()(B A C B C A C B A C B C A C UU U U U U .10充分条件与必要条件:一般地,“若p ,则q ”为真命题,p 可以推出q ,记作q p ,称p 是q 的充分条件,q 是p 的必要条件;p 是q 的条件的四种类型:若q q p , p ,则p 是q 的充分不必要条件;若p p q , q ,则p 是q 的必要充分不条件;若q p ,则p 是q 的充要条件;若p q ,q p ,则p 是q 的既不充分也不必要条件.11全称量词及全称量词命题:短语“所有的”,“任意一个”在逻辑中叫做全称量词,并用符号 表示,含有全称量词的命题成为全称量词命题.12存在量词及存在量词命题:短语“存在一个”,“至少有一个”在逻辑中叫做存在量词,并用符号 表示,含有存在量词的命题成为存在量词命题.13全称量词命题与存在量词命题的否定:全称量词命题的否定是存在量词命题;存在量词命题的否定是全称量词命题.第二章一元二次函数、方程不等式1不等式的性质不等式的性质:①对称性a b b a ;②传递性,a b b c a c ;③可加性a b a c b c ;④可乘性,0a b c ac bc ,,0a b c ac bc ;⑤同向可加性,a b c d a c b d ;⑥同向可乘性0,0a b c d ac bd ;⑦可乘方性 0,1nna b a b n n ;⑧可开方性 0,1nna b ab n n.⑨可倒数性bab a 11.2重要不等式:若R b a ,,则ab b a 222,当且仅当b a 时等号成立.3基本不等式:若0a ,0b ,则2a b ab,即2abab,当且仅当b a 时等号成立.4不等式链:若0a ,0b ,则baabbab a1122222,当且仅当b a 时等号成立;一正二定三相等.5一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.6一元二次不等式的解法:二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24b ac0 0 0 二次函数2y a x b x c0a的图象一元二次方程2a xb x 0c0a的根有两个相异实数根1,22b x a12x x 有两个相等实数根122bx x a没有实数根一元二次不等式的解集20a x b x c 0a 12x xx x x 或2bx xaR2a xb x c0a12x x x x第三章函数的概念与性质1函数的概念:一般地,设B A ,是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 与它对应,那么就称B A f :为从集合A 到集合B 的一个函数,记作A x x f y ),(,其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合}|)({A x x f 叫做函数的值域,值域是集合B 的子集.2函数的三要素:定义域、对应关系、值域.求函数定义域的原则:(1)若 f x 为整式,则其定义域是R ;(2)若 f x 为分式,则其定义域是使分母不为0的实数集合;(3)若 f x 是二次根式(偶次根式),则其定义域是使根号内的式子不小于0的实数集合;(4)若 0f x x ,则其定义域是 0x x ;(5)若 0,1xf x aaa ,则其定义域是R ;(6)若 lo g 0,1af x x aa ,则其定义域是 0xx;(7)若x x f t a n )( ,则其定义域是},2|{Z k k x x;求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数.6函数的单调性:(1)单调递增:设任意D x x 21,(I D ,I 是 f x 的定义域),当12x x 时,有12()()f x f x .特别的,当函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意D x x 21,(I D ,I 是 f x 的定义域),当12x x 时,有12()()f x f x.特别的,当函数在它的定义域上单调递增时,该函数称为减函数.7单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间.8复合函数的单调性:同增异减.9函数的最大值、最小值:一般地,设函数)(x f y 的定义域为I ,如果存在实数M 满足:I x ,都有))(()(M x f M x f ;I x 0使得M x f )(0,那么称M 是函数的最大(小)值.10函数的奇偶性:偶函数:一般地,设函数)(x f y 的定义域为I ,如果I x ,都有I x ,且)()(x f x f ,那么函数叫做偶函数;偶函数的图象关于y 轴对称;偶函数)(x f y 满足|)(|)()(x f x f x f ;奇函数:一般地,设函数)(x f y 的定义域为I ,如果I x ,都有I x ,且)()(x f x f ,那么函数叫做奇函数;奇函数的图象关于原点对称;若奇函数)(x f y 的定义域中有零,则其函数图象必过原点,即(0)0f .11幂函数:一般地,函数 x y 叫做幂函数,其中x 是自变量, 是常数.12幂函数 f x x 的性质:①所有的幂函数在 0, 都有定义,并且图象都通过点 1,1;②如果0 ,则幂函数的图象过原点,并且在区间 0, 上是增函数;③如果0 ,则幂函数的图象在区间 0, 上是减函数,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地逼近y 轴,当x 趋向于 时,图象在x 轴上方无限地逼近x 轴;④在直线1 x 的右侧,幂函数图象“指大图高”;⑤幂函数图象不出现于第四象限.第四章指数函数与对数函数1、n 次方根与分数指数幂、指数幂运算性质(1)若nx a ,则 n na n xa n为奇数为偶数;(2)n n a n a n a为奇数为偶数;(3)()nna a ;(4)*(0,,,1)mnmn a a am n N n 且;(5)*1(0,,1)m nnmaam n N n a,且;(6)0的正分数指数幂为0,0的负分数指数幂没有意义.(7) 0,,r s r s a a a a r s R ;(8) ()0,,r s r s a a a r s R ;(9) ()0,0,,r r r ab a b a b r s R .2、对数、对数运算性质(1) lo g 0,1x a a N x N a a ;(2) lo g 100,1aa a ;(3) lo g 10,1aaa a ;(4); lo g 0,1a NaNaa ;(5) lo g 0,1maam a a ;(6) lo g ()lo g lo g 0,1,0,0aaaM N MN aa ;(7) lo g lo g lo g 0,1,0,0aaaM MN aa N;(8) lo glo g 0,1,0naaMn M aa ;(9)换底公式 lo g lo g 0,1,0,0,1lo g c a c b b aa b c c a;(10)l o g l o g 0,1,,*mna a n bb aa n m Nm;(11) 1lo g lo g 0,1,0,naa MM aa M n R n;(12) lo g lo g lo g 10,1,0,1,0,1a b c b c a a a b b c c .3、指数函数)1,0( a a a y x且及其性质:①定义域为 , ;②值域为 0, ;③过定点 0,1;④单调性:当1a 时,函数 f x 在R 上是增函数;当01a 时,函数 f x 在R 上是减函数;⑤在y 轴右侧,指数函数的图象“底大图高”.4、对数函数)1,0(lo ga ax y a且及其性质:①定义域为 0, ;②值域为 , ;③过定点 1,0;④单调性:当1a 时,函数f x 在 0, 上是增函数;当01a 时,函数 f x 在 0, 上是减函数;⑤在直线1 x 的右侧,对数函数的图象“底大图低”.5指数函数xa y 与对数函数)1,0(lo g a a x y a且互为反函数,它们的图象关于直线x y 对称.6不同函数增长的差异:线性函数模型)0( k b kx y 的增长特点是直线上升,其增长速度不变;指数函数模型)1( a a y x的增长特点是随着自变量的增大,函数值增大的速度越来越快,呈“指数爆炸”状态;对数函数模型)1(lo g a x y a的增长特点是随着自变量的增大,函数值增大速度越来越慢,即增长速度平缓;幂函数模型)0( n x y n的增长速度介于指数函数和对数函数之间.7函数的零点:在函数)(x f y 的定义域内,使得0)( x f 的实数x 叫做函数的零点.8零点存在性定理:如果函数 f x 在区间 ,a b 上的图象是连续不断的一条曲线,且有0f a f b ,那么函数y f x在区间 ,a b 内至少有一个零点,即存在 ,c a b ,使得0f c ,这个c 也就是方程 0f x 的根.9二分法:对于区间],[b a 上图象连续不断且 0f a f b 的函数)(x f y,通过不断把它的零点所在区间一分为二,使得区间的两个端点逐步逼近零点,进而得到零点近似值的方法.10给定精确度 ,用二分法求函数)(x f y 零点0x 近似值的步骤:⑴确定零点0x 的初始区间 ,a b ,验证 0f a f b ;⑵求区间 ,a b 的中点c ;⑶计算)(c f ,并进一步确定零点所在的区间;①若0)( c f ,则c 就是函数的零点;②若0)()( c f a f (此时),(0c a x ),则令c b ;③若0)()( b f c f (此时),(0b c x ),则令c a ;⑷判断是否达到精确度 :若a b ,则得到零点的近似值a (或b );否则重复上面的⑵至⑷.第五章三角函数1任意角的分类:按终边的旋转方向分:正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2象限角:角 的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的集合为 36036090,k k k ;第二象限角的集合为 36090360180,k k k ;第三象限角的集合为 360180360270,k k k ;第四象限角的集合为360270360360,k k k 角 的终边不在任何一个象限,就称这个角不属于任何一个象限终边在x 轴非负半轴的角的集合},2|{Z k k ;终边在x 轴非正半轴的角的集合},2|{Z k k ;终边在y 轴非负半轴的角的集合},22|{Z k k;终边在y 轴非正半轴的角的集合},22|{Z k k;终边在x 轴的角的集合},|{Z k k ;终边在y 轴的角的集合},2|{Z k k;终边在坐标轴的角的集合},2|{Z kk;2终边相同的角:与角 终边相同的角的集合为 360,k k .3弧度制:长度等于半径长的弧所对的圆心角叫做1弧度.4角度与弧度互化公式:2360 ,1180 ,180157.3.5扇形公式:半径为r 的圆的圆心角 所对弧的长为l ,则角 的弧度数的绝对值是lr .若扇形的圆心角为 为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r ,2Cr l ,21122S l rr.6三角函数的概念:设 是一个任意大小的角, 的终边上任意一点P 的坐标是 ,x y ,它与原点的距离是 220r r xy,则si n y r,c os x r, t a n 0y xx.7三角函数的符号:一全正二正弦三正切四余弦.8记忆特殊角的三角函数值:15 30 45 60759012013515018027036012643125 232 43 65232 sin 426212223426123222101c os4262322214260212223101t a n 321332不存在3133不存在9同角三角函数的基本关系:221si n c os 1 , 2222si n 1c os ,c os 1si n ;si n 2t a n c ossi n sinta n c os ,c os t a n.10诱导公式口诀:奇变偶不变,符号看象限.1si n 2si n k , c os 2c os k , t a n 2t a n k k .2si n si n, c os c os , t a n t a n . 3si n si n , c os c os , t a n t a n . 4si n si n, c os c os , t a n t a n .5si n c os 2,c os si n 2 . 6si n c os 2 ,c os si n 2.11三角函数的图象与性质:si n yxc os yxt a n yx图象定义域RR,2x xk k值域1,11,1 R函数性质12两角和差的正弦、余弦、正切公式:(1) c os c os c os si n si n ;(2) c os c os c os si n si n ;(3) si n si n c os c os si n ;(4) si n si n c os c os si n ;(5) t a n t a n t a n 1t a n t a n( t a n t a n t a n 1t a n t a n );(6) t a n t a n t a n 1t a n t a n( t a n t a n t a n 1t a n t a n ).13二倍角公式:(1)si n 22si n c os ;(2)2222c os 2c os si n 2c os 112si n ;(2c os 21c os 2 ,21c os 2si n 2);(3)22t a n t a n 21t a n ;14半角公式:(1)2c os 12sin ;(2)2c os12c os;(3)c os 1c os12t a n;(4)c os 1sin sin c os 12t a n15辅助角公式:的终边上在角点其中 ),(,t a n ),sin (c ossin 22b a ab xb axb xa.最值当22x kk时,m a x1y ;当22x kk时,m i n 1y .当 2x k k 时,m a x1y ;当2x kk时,m i n 1y .既无最大值也无最小值周期性22奇偶性奇函数偶函数奇函数单调性在2,222k kk上是增函数;在32,222k kk上是减函数.在2,2k k k上是增函数;在2,2k k k上是减函数.在,22k kk上是增函数.对称性对称中心 ,0k k 对称轴2x k k对称中心 ,02k k对称轴x k k 对称中心 ,02k k无对称轴16函数b x A y )sin ( 的图象与性质:图象变换:(1)先平移后伸缩:函数si n y x 的图象上所有点向左(右)平移 个单位长度,得到函数 si n yx 的图象;再将函数 si n y x 的图象上所有点的横坐标伸长(缩短)到原来的1倍(纵坐标不变),得到函数 si n y x 的图象;再将函数 si n y x 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 si n y x 的图象.(2)先伸缩后平移:函数si n y x 的图象上所有点的横坐标伸长(缩短)到原来的1倍(纵坐标不变),得到函数si n y x 的图象;再将函数si n y x 的图象上所有点向左(右)平移个单位长度,得到函数 si n y x 的图象;再将函数 si n y x 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 si n y x 的图象.五点法画图函数 si n 0,0y x 的性质:①定义域为R ;②值域为],[A A ;③单调性:根据函数x y sin 的单调区间求函数的单调区间;④奇偶性:当Z k k , 时,函数 si n y x 是奇函数;当Z k k ,2时,函数si n yx 是偶函数;⑤周期:2T ;⑥对称性:根据函数x y sin 的对称性研究函数的对称性1217函数B x A y )sin ( 的应用①振幅:A ;②周期:2 ;③频率:12f;④相位:x ;⑤初相: .⑥最值:函数B x A y )sin ( ,当1x x 时,取得最小值为m i n y ;当2x x 时,取得最大值为m a xy,则 m a xm i n 12y y, m a xm i n 12y y,21122x x x x.。

高一必修一数学全章知识点

高一必修一数学全章知识点

高一必修一数学全章知识点一、集合与函数1. 集合的概念和表示方法2. 集合的基本运算3. 集合的关系和判定方法4. 函数的概念和表示方法5. 函数的性质和基本类型二、数与式1. 实数的概念和性质2. 整式与分式的概念和性质3. 代数式的运算规则和性质4. 同类项与合并同类项5. 因式分解的方法和应用6. 分式的运算和应用三、方程与不等式1. 方程的概念和解的概念2. 一元一次方程的解法和应用3. 一元二次方程的解法和应用4. 一元一次不等式的解法和应用5. 一元二次不等式的解法和应用6. 绝对值方程与不等式的解法和应用四、平面几何与立体几何1. 点、线、面的基本概念与性质2. 直线与线段的性质3. 角的概念与性质4. 三角形的分类与性质5. 四边形的分类与性质6. 圆的性质与定理7. 三维图形的基本概念与性质五、函数与图像1. 二次函数的图像与性质2. 一次函数的图像与性质3. 反比例函数的图像与性质4. 幂函数的图像与性质5. 指数函数的图像与性质6. 对数函数的图像与性质六、实数与三角函数1. 整式的值域与最值问题2. 三角函数的概念与性质3. 三角函数的图像与变化规律4. 三角函数的同角关系5. 三角函数的基本公式与应用七、数列与数学归纳法1. 数列的概念与表示2. 等差数列与等差数列的性质3. 等比数列与等比数列的性质4. 递推数列与递推数列的性质5. 数学归纳法的原理与应用八、概率与统计1. 随机事件与概率的概念2. 概率的运算与应用3. 组合与排列的概念与性质4. 统计图表的制作与分析5. 平均数与波动范围的计算以上是高一必修一数学全章的知识点,希望对你的学习有所帮助。

高一数学必修一知识点整理大全

高一数学必修一知识点整理大全

高一数学必修一知识点整理大全
一、数集与复数
1、数集:实数集、整数集、有理数集、自然数集、负数集和无理数集等
2、复数:复数由实数部分和虚数部分组成,表示形式为a+bi,其中a 为实数部分,b为虚数部分;以及其实部和虚部计算方法,共轭数,复数的乘法和除法等
二、方程与不等式
1、一元一次方程的解法:唯一解法、无解法,以及利用求根公式求解等
2、不等式:不等式的解法、绝对值不等式、二次不等式和向量不等式
三、集合与函数
1、集合:一个集合由若干元素组成,可用于天空符号来表示,以及运算符号的应用;
2、函数:体景函数的定义、反函数的概念、一元函数的性质、复合函数和函数的变换
四、直线与圆
1、直线:斜率的概念,相交点的求解、两条直线的垂直关系、直线的标准方程和点斜式;
2、圆:圆的性质,圆的中点、半径和圆心的关系,同心圆的特点,圆的标准方程,圆上一点到圆心的弧长。

五、三角函数
1、三角函数的定义:余弦函数、正切函数,以及三角函数的四象性理论;
2、三角函数的应用:三角形的基本概念、余弦定理、正弦定理,以及用于解三角形的其他定理。

六、分数与比例
1、分数:基本分数的概念,真分数、假分数,特殊分数及其转换,带分数的基本运算等;
2、比例:比例具有多重性,比例的初始情况和分级表,比例的连续变化、列比较法求不确定比例等。

高一数学必修一知识点归纳

高一数学必修一知识点归纳

高一数学必修一知识点归纳一、集合与函数的概念1. 集合的定义与表示- 集合是具有某种特定性质的事物的全体。

- 常用符号表示集合,如 A = {x | x 是偶数}。

2. 集合之间的关系- 子集:如果集合A的所有元素都属于集合B,则A是B的子集。

- 真子集:A是B的子集,且A不等于B。

- 并集:集合A和集合B所有元素组成的集合。

- 交集:集合A和集合B共有的元素组成的集合。

- 补集:对于集合A,其在全集U中的补集是U中不属于A的元素组成的集合。

3. 函数的定义- 函数是将一个集合中的每一个元素映射到另一个集合中的唯一元素的对应关系。

- 函数的表示方法:y = f(x)。

4. 函数的域与值域- 域:函数中所有允许输入的x值的集合。

- 值域:函数输出的所有y值的集合。

5. 函数的性质- 单调性:函数在某个区间内,随着x的增加,y也增加(单调递增)或减少(单调递减)。

- 奇偶性:奇函数满足f(-x) = -f(x),偶函数满足f(-x) = f(x)。

二、基本初等函数1. 幂函数- y = x^n,其中n是实数。

2. 指数函数- y = a^x,其中a > 0 且a ≠ 1。

3. 对数函数- y = log_a(x),其中a > 0 且 a ≠ 1。

4. 三角函数- 正弦函数:y = sin(x)- 余弦函数:y = cos(x)- 正切函数:y = tan(x)5. 反三角函数- y = arcsin(x) 或 y = sin^(-1)(x)- y = arccos(x) 或 y = cos^(-1)(x)- y = arctan(x) 或 y = tan^(-1)(x)三、函数的图像与变换1. 函数图像的绘制- 根据函数的表达式,确定函数的图像形状。

- 选择适当的x和y值,绘制函数的图像。

2. 函数的变换- 平移:通过改变函数中x和y的值来移动图像。

- 伸缩:通过改变函数中的比例系数来改变图像的大小。

高一数学必修1各章知识点总结

高一数学必修1各章知识点总结

高一数学必修1各章知识点总结高一数学必修1共有7个单元:
1. 函数与方程
- 函数和反函数
- 幂函数和指数函数
- 对数函数和指数方程
- 一次函数和一元一次方程
- 二次函数和一元二次方程
- 二次函数的图像和性质
- 一元二次方程的解
2. 三角函数
- 角度和弧度制
- 常用角的三角函数值
- 三角函数的定义和性质
- 三角函数图像
- 三角函数的和差化积公式
- 三角函数的倍角公式
3. 二次函数
- 二次函数的定义
- 二次函数的图像和性质
- 二次函数的解析式和一般式- 二次函数的最值和变化趋势- 二次函数和一次函数的关系- 二次函数与零点问题
4. 应用题
- 几何与量的关系
- 数据的收集和描述
- 数据的表达和分析
- 等腰三角形
- 三角形的性质和判定
- 直角三角形及其应用
5. 平面向量
- 平面向量的概念和表示
- 平面向量的运算
- 平面向量的共线和垂直
- 平面向量的模和单位向量- 平面向量的线性运算
- 平面向量的数量积和方向角
6. 数数原理和概率
- 数数原理的基本概念
- 排列和组合
- 加法原理和乘法原理
- 概率的基本概念和计算
- 事件的独立性和相关性
- 概率模型和统计调查
7. 数列
- 数列的概念和表示
- 等差数列的通项公式
- 等比数列的通项公式
- 数列的性质和运算
- 数列的极限与无穷
- 应用题
这些知识点涵盖了高一数学必修1的全部内容,希望对你有帮助!。

高中数学必修一最全知识点汇总

高中数学必修一最全知识点汇总

高中数学必修一最全知识点汇总高中数学必修1知识点第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由元素组成的整体,其中的元素具有确定性、互异性和无序性。

常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。

集合与元素之间的关系可以表示为a∈M或a∉M。

集合的表示法有自然语言法、列举法、描述法和图示法。

集合可以分为有限集、无限集和空集(∅)。

1.1.2 集合间的基本关系集合间的基本关系包括子集、真子集和集合相等。

子集表示为A⊆B,真子集表示为A⊂B,集合相等表示为A=B。

已知集合A有n(n≥1)个元素,则它有2个子集,2^(n-1)个真子集,2^(n-1)个非空子集和2^n-2个非空真子集。

1.1.3 集合的基本运算集合的基本运算包括交集、并集和补集。

交集表示为A∩B,并集表示为A∪B,补集表示为A的补集。

补集的性质为A∪A的补集=全集,A∩A的补集=空集。

2.补充知识:含绝对值的不等式与一元二次不等式的解法含绝对值的不等式|x|0)的解集为{-aa(a>0)的解集为{xa}。

一元二次不等式的解法与一元二次方程类似,可以通过移项、配方法和求根公式等方式求解。

1.解一元二次不等式将$ax+b$看作一个整体,化成$|x|c(c>0)$,$|x|>a(a>0)$型不等式来求解。

2.解一元二次不等式的方法通过判别式$\Delta=b^2-4ac$,确定二次函数$y=ax^2+bx+c(a>0)$的图像,分类讨论$\Delta>\Delta'$,$\Delta=\Delta'$和$\Delta0)$的根$x_1,x_2$(其中$x_10$和$y<0$的解集。

3.函数及其表示3.1 函数的概念设$A$、$B$是两个非空的数集,如果按照某种对应法则$f$,对于集合$A$中任何一个数$x$,在集合$B$中都有唯一确定的数$f(x)$和它对应,那么这样的对应(包括集合$A$、$B$以及$A$到$B$的对应法则$f$)叫做集合$A$到$B$的一个函数,记作$f:A\to B$。

高一必修一数学所有知识点

高一必修一数学所有知识点

高一必修一数学所有知识点【高一必修一数学所有知识点】
本文将为大家总结高一必修一数学所有的知识点,以供参考学习。

其中包括了数学基础概念、代数与函数、几何与三角、几何变换、概率与统计等几个大的知识模块。

希望能够帮助大家系统地了解和掌握高一必修一数学内容。

一、数学基础概念
1. 数的性质与数轴
2. 整数的运算与应用
3. 分数与分数运算
4. 实数及其运算规则
5. 算式与代数式
二、代数与函数
1. 代数式的语言和符号
2. 一元一次方程与方程运算
3. 二元一次方程组与解法
4. 一次函数与一次函数的应用
5. 两点间的直线方程
6. 不等式的性质与解法
7. 平方根与实数的比较
三、几何与三角
1. 二次根式的概念与运算
2. 同类图形与比例尺
3. 平行线与三角形
4. 相似三角形与三角比
5. 定比分点
6. 图形的变换与构造
四、几何变换
1. 平移、旋转和对称
2. 直线方程及其画法
3. 圆的定义与性质
4. 弧、弦和切线
5. 弧长与扇形面积
6. 面积计算与证明
五、概率与统计
1. 统计调查与图表分析
2. 基本概率与事件
3. 随机变量与概率分布
4. 平均数与位置中位数
5. 方差与标准差
以上就是高一必修一数学所有知识点的总结。

希望对大家的学习和复习有所帮助。

通过对这些知识点的透彻理解和掌握,相信可以在高中数学学习中取得不错的成绩。

当然,要想真正掌握这些知识点,还需要进行大量的练习和巩固。

希望大家加油,共同努力,取得优异的成绩!。

高一数学必修一知识点汇总

高一数学必修一知识点汇总

高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。

⊆/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊇/A或B2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSx x∉∈且韦恩图示A B图1A B图2SA二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.值域: 先考虑其定义域(1)观察法(2)配方法(3)代换法3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A 到集合B的一个映射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(C)复合函数的单调性 复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规 律:“同增异减” 注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一 起写成其并集. 8.函数的奇偶性(整体性质) (1)偶函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫 做偶函数. (2).奇函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就 叫做奇函数. (3)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 利用定义判断函数奇偶性的步骤: 1首先确定函数的定义域,并判断其是否关于原点对称; 2确定f(-x)与f(x)的关系; 3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) = -f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.
2
பைடு நூலகம்
注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否 关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .
9、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要 求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解析式的主要方法有: 凑配法 待定系数法 换元法 消参法 10.函数最大(小)值(定义见课本p36页) 1 利用二次函数的性质(配方法)求函数的最大(小)值 2 利用图象求函数的最大(小)值 3 利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处 有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处 有最小值f(b);
二.函数的性质 1.函数的单调性(局部性质) (1)增函数 设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量 x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区 间D称为y=f(x)的单调增区间. 如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2), 那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间. 注意:函数的单调性是函数的局部性质; (2) 图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具 有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的 图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A) 定义法: 1 任取x1,x2∈D,且x1<x2; 2 作差f(x1)-f(x2); 3 变形(通常是因式分解和配方); 4 定号(即判断差f(x1)-f(x2)的正负); 5 下结论(指出函数f(x)在给定的区间D上的单调性). (B)图象法(从图象上看升降)
4、集合的分类: 有限集 含有有限个元素的集合 无限集 含有无限个元素的集合 空集 不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。AA ②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作AB(或BA) ③如果 AB, BC ,那么 AC ④ 如果AB 同时 BA 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 有n个元素的集合,含有2n个子集,2n-1个真子集
例题: 1.下列四组对象,能构成集合的是 ( ) A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自 身的实数 2.集合{a,b,c }的真子集共有 个 3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},则M与N的关系是 . 4.设集合A=,B=,若AB,则的取值范围是 5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人, 化学实验做得正确得有31人, 两种实验都做错得有4人,则这两种实验都做对的有 人。 6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合 M= . 7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值
二、函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使 对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应, 那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其 中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值 叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意: 1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域 是使各部分都有意义的x的值组成的集合. (6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义. 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关); ②定义域一致 (两点必须同时具备)
高一数学必修1各章知识点总结
第一章 集合与函数概念
一、集合有关概念
1.集合的含义 2.集合的中元素的三个特性: 元素的确定性如:世界上最高的山 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 集合的表示方法:列举法与描述法。 注意:常用数集及其记法: 非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 列举法:{a,b,c……} 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方 法。{xR| x-3>2} ,{x| x-3>2} 语言描述法:例:{不是直角三角形的三角形} Venn图:
(见课本21页相关例2)
2.值域 : 先考虑其定义域 (1)观察法 (2)配方法 (3)代换法 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y 为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一 点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有 序实数对x、y为坐标的点(x,y),均在C上 . (2) 画法 描点法: 图象变换法 常用变换方法有三种 平移变换 伸缩变换 对称变换 4.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示.
5.映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于 集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那 么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系): A(原象)B(象)” 对于映射f:A→B来说,则应满足: (1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的; (2)集合A中不同的元素,在集合B中对应的象可以是同一个; (3)不要求集合B中的每一个元素在集合A中都有原象。 6.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。 (2)各部分的自变量的取值情况. (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数 如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。
4、集合的分类: 有限集 含有有限个元素的集合 无限集 含有无限个元素的集合 空集 不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。AA ②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作AB(或BA) ③如果 AB, BC ,那么 AC ④ 如果AB 同时 BA 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 有n个元素的集合,含有2n个子集,2n-1个真子集
三、集合的运算 运算类型交集,并集,补集. 定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读 作‘A交B’),即AB={x|xA,且xB}. 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作: AB(读作‘A并B’),即AB ={x|xA,或xB}). 设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合, 叫做S中子集A的补集(或余集)SA记作,即CSA=韦恩图示SA性 质AA=A AΦ=ΦAB=BAABA ABBAA=AAΦ=AAB=BAABAABB(CuA) (CuB)= Cu (AB)(CuA) (CuB)= Cu(AB)A (CuA)=UA (CuA)= Φ.
相关文档
最新文档