2020-2021初三数学下期中试卷(附答案)

合集下载

2020-2021九年级数学下期中试卷含答案

2020-2021九年级数学下期中试卷含答案
故选:A.
【点睛】
此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.
10.B
解析:B
【解析】
【分析】根据同一时刻物高与影长成正比可得出结论.
【详解】设竹竿的长度为x尺,
∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,
∴ ,
解得x=45(尺),
解得x= ,
故选D.
2.C
解析:C
【解析】
【分析】
根据位似图的性质可知,位似图形也是相似图形,周长比等于位似比,面积比等于位似比的平方,对应边之比等于位似比,据此判断即可.
【详解】
A.△ABC∽△A1B1C1,故A正确;
B.由图可知,AB=2-1=1,BC=2-1=1,AC= ,所以△ABC的周长为2+ ,由周长比等于位似比可得△A1B1C1的周长为△ABC周长的3倍,即6+ ,故B正确;
【解析】
【分析】
根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.
【详解】
A、∵当x=﹣3时,y=2,∴此函数图象过点(﹣3,2),故本选项正确;
B、∵k=﹣6<0,∴此函数图象的两个分支位于第二、四象限,故本选项正确;
C、∵当x=﹣2时,y=3,∴当x<﹣2时,0<y<3,故本选项正确;
2020-2021九年级数学下期中试卷含答案
一、选择题
1.有一块直角边AB=3cm,BC=4cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为( )
A. B. C. D.
2.如图,△ABC的三个顶点A(1,2)、B(2,2)、C(2,1).以原点O为位似中心,将△ABC扩大得到△A1B1C1,且△ABC与△A1B1C1的位似比为1 :3.则下列结论错误的是( )

2020-2021九年级数学下期中试卷附答案(4)

2020-2021九年级数学下期中试卷附答案(4)

D. 2 : 3
4.如图,在正方形 ABCD 中,N 为边 AD 上一点,连接 BN.过点 A 作 AP⊥BN 于点 P,
连接 CP,M 为边 AB 上一点,连接 PM,∠PMA=∠PCB,连接 CM,有以下结论:
①△PAM∽△PBC;②PM⊥PC;③M、P、C、B 四点共圆;④AN=AM.其中正确的个数
18.学校校园内有块如图所示的三角形空地,计划将这块空地建成一个花园,以美化环
境,预计花园每平方米造价为 30 元,学校建这个花园至少需要投资________元.
19.如图,小军、小珠之间的距离为 2.7 m,他们在同一盏路灯下的影长分别为 1.8 m,1.5 m,已知小军、小珠的身高分别为 1.8 m,1.5 m,则路灯的高为____m.
10.B
解析:B 【解析】
【分析】
根据反比例函数 y k 中 k 的几何意义,过双曲线上任意一点引 x 轴、y 轴垂线,所得矩 x
形面积为|k|解答即可. 【详解】 解:A、图形面积为|k|=4; B、阴影是梯形,面积为 6;
C、D 面积均为两个三角形面积之和,为 2×( 1 |k|)=4. 2
D、如果两个三角形相似,相似比为 4:9,那么这两个三角形的面积比为 16:81,是假命 题;
故选 B. 【点睛】
此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和
定理.
8.C
解析:C 【解析】
【分析】
根据题意可知反比例函数 y 2 的图象上的点关于 y 轴的对称的点在函数 y 2 上,由
20.如图所示的网格是正方形网格,点 P 到射线 OA 的距离为 m,点 P 到射线 OB 的距离 为 n,则 m __________ n.(填“>”,“=”或“<”)

2020-2021初三数学下期中试卷(及答案)(1)

2020-2021初三数学下期中试卷(及答案)(1)

2020-2021初三数学下期中试卷(及答案)(1)一、选择题1.如图,△ABC中,DE∥BC,若AD:DB=2:3,则下列结论中正确的()A.23DEBC=B.25DEBC=C.23AEAC=D.25AEEC=2.在反比例函数y=1kx-的每一条曲线上,y都随着x的增大而减小,则k的值可以是()A.-1B.1C.2D.33.如图,在△ABC中,DE∥BC ,12ADDB=,DE=4,则BC的长是()A.8 B.10 C.11 D.124.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=51-BC D.BC=51-AC5.在△ABC中,若=0,则∠C的度数是()A.45°B.60°C.75°D.105°6.如图,过反比例函数的图像上一点A作AB⊥轴于点B,连接AO,若S△AOB=2,则的值为()A.2 B.3 C.4 D.57.下列命题是真命题的是( )A .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:98.河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比1:3,则AC 的长是( )A .10米B .53米C .15米D .103米9.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A .35︒B .38︒C .40︒D .42︒10.如图,在矩形ABCD 中,DE AC ⊥于E ,设ADE α∠=,且3cos 5α=,5AB =,则AD 的长为( )A .3B .163C .203D .165 11.如图,在平行四边形中,点在边上, 与相交于点,且,则与的周长之比为( )A .1 : 2B .1 : 3C .2 : 3D .4 : 912.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为( )A .12B .24C .14D .13二、填空题13.如图,等腰△ABC 中,底边BC 长为8,腰长为6,点D 是BC 边上一点,过点B 作AC 的平行线与过A 、B 、D 三点的圆交于点E ,连接DE ,则DE 的最小值是___.14.在▱ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC 相交于F ,则AEF CBF S S ∆∆:是_______.15.如图,在平面直角坐标系中,已知点A 、B 的坐标分别为(8,0)、(0,23),C 是AB 的中点,过点C 作y 轴的垂线,垂足为D ,动点P 从点D 出发,沿DC 向点C 匀速运动,过点P 作x 轴的垂线,垂足为E ,连接BP 、EC .当BP 所在直线与EC 所在直线垂直时,点P 的坐标为____16.学校校园内有块如图所示的三角形空地,计划将这块空地建成一个花园,以美化环境,预计花园每平方米造价为30元,学校建这个花园至少需要投资________元.17.如果点P 把线段AB 分割成AP 和PB 两段(AP PB >),其中AP 是AB 与PB 的比例中项,那么:AP AB 的值为________.18.如图,在平行四边形ABCD 中,点E 在边BC 上,2EC BE =,联结AE 交BD 于点F ,若BFE ∆的面积为2,则AFD ∆的面积为______.19.已知线段a=2厘米,c=8厘米,则线段a和c的比例中项b是______厘米.20.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)三、解答题21.如图,AB是⊙O直径,BC⊥AB于点B,点C是射线BC上任意一点,过点C作CD 切⊙O于点D,连接AD.(1)求证:BC=CD;(2)若∠C=60°,BC=3,求AD的长.22.如图,一次函数y=kx+2的图象与反比例函数y=mx的图象交于点P,点P在第一象限.P A⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,12 OCOA.(1)求点D的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.23.自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡200AB =米,坡度为1:3;将斜坡AB 的高度AE 降低20AC =米后,斜坡AB 改造为斜坡CD ,其坡度为1:4.求斜坡CD 的长.(结果保留根号)24.如图,AB 与CD 相交于点O ,△OBD ∽△OAC ,OD OC =35,OB =6,S △AOC =50, 求:(1)AO 的长;(2)求S △BOD25.如图,某市郊外景区内一条笔直的公路l 经过A 、B 两个景点,景区管委会又开发了风景优美的景点C .经测量,C 位于A 的北偏东60︒的方向上,B 的北偏东30°的方向上,且10AB km =.(1)求景点B 与C 的距离.(2)求景点A 与C 的距离.(结果保留根号)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】运用平行线分线段成比例定理对各个选项进行判断即可.∵AD:DB=2:3,∴ADAB=25.∵DE∥BC,∴DEBC=ADAB=25,A错误,B正确;AE AC =ADAB=25,C错误;AE EC =ADDB=23,D错误.故选B.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.2.A解析:A【解析】【分析】利用反比例函数的增减性,y随x的增大而减小,则求解不等式1-k>0即可.【详解】∵反比例函数y=1−kx图象的每一条曲线上,y随x的增大而减小,∴1−k>0,解得k<1.故选A.【点睛】此题考查反比例函数的性质,解题关键在于根据其性质求出k的值.3.D解析:D【解析】【分析】根据ADDB=12,可得ADAB=13,再根据DE∥BC,可得DEBC=ADAB;接下来根据DE=4,结合上步分析即可求出BC的长.【详解】∵ADDB=12,∴ADAB=13,∵在△ABC中,DE∥BC,∴DEBC=ADAB=13.∴BC=3DE=12.故答案选D.【点睛】本题考查了平行线分线段成比例的知识,解题的关键是熟练的掌握平行线分线段成比例定理.4.D解析:D【解析】【分析】根据黄金分割的定义得出51BC ACAC AB-==,从而判断各选项.【详解】∵点C是线段AB的黄金分割点且AC>BC,∴51BC ACAC AB-==,即AC2=BC•AB,故A、B错误;∴AC=512-AB,故C错误;BC=51-AC,故D正确;故选D.【点睛】本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.5.C解析:C【解析】【分析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【详解】由题意,得 cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.6.C解析:C【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.7.B解析:B【解析】【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.8.B解析:B【解析】【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1;∴AC=BC÷故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.9.C解析:C【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可,连接CD ,如图所示:∵BC 是半圆O 的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°-∠A=20°,∴∠DOE=2∠ACD=40°,故选C .【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.10.C解析:C【解析】【分析】根据矩形的性质可知:求AD 的长就是求BC 的长,易得∠BAC =∠ADE ,于是可利用三角函数的知识先求出AC ,然后在直角△ABC 中根据勾股定理即可求出BC ,进而可得答案.【详解】解:∵四边形ABCD 是矩形,∴∠B =∠BAC =90°,BC=AD ,∴∠BAC +∠DAE =90°, ∵DE AC ⊥,∴∠ADE +∠DAE =90°,∴∠BAC =ADE α∠=,在直角△ABC 中,∵3cos 5α=,5AB =,∴25cos 3AB AC α==, ∴AD=BC 22222520533AC AB ⎛⎫-=-= ⎪⎝⎭. 故选:C.【点睛】本题考查了矩形的性质、勾股定理和解直角三角形的知识,属于常考题型,熟练掌握矩形的性质和解直角三角形的知识是解题关键.11.C解析:C【解析】【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的周长比等于相似比就可得到答案.∵四边形ABCD是平行四边形,∴DC∥AB,CD=AB.∴△DFE∽△BFA,∵DE:EC=1:2,∴EC:DC=CE:AB=2:3,∴C△CEF:C△ABF=2:3.故选C.12.D解析:D【解析】【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.二、填空题13.【解析】【分析】如图连接AEADOEOD作AJ⊥BC于JOK⊥DE于K首先证明∠EOD=2∠C=定值推出⊙O的半径最小时DE的值最小推出当AB是直径时DE 的值最小【详解】如图连接AEADOEOD作A5【解析】【分析】如图,连接AE,AD,OE,OD,作AJ⊥BC于J,OK⊥DE于K.首先证明∠EOD=2∠C =定值,推出⊙O的半径最小时,DE的值最小,推出当AB是直径时,DE的值最小.【详解】如图,连接AE ,AD ,OE ,OD ,作AJ ⊥BC 于J ,OK ⊥DE 于K .∵BE ∥AC ,∴∠EBC+∠C =180°,∵∠EBC+∠EAD =180°,∴∠EAD =∠C ,∵∠EOD =2∠EAD ,∴∠EOD =2∠C =定值,∴⊙O 的半径最小时,DE 的值最小,∴当AB 是⊙O 的直径时,DE 的值最小,∵AB =AC =6,AJ ⊥BC ,∴BJ =CJ =4,∴AJ 22A C CJ -2264-5∵OK ⊥DE ,∴EK =DK ,∵AB =6,∴OE =OD =3,∵∠EOK =∠DOK =∠C ,∴sin ∠EOK =sin ∠C =256, ∴3EK 25, ∴EK 5∴DE =5∴DE 的最小值为5故答案为5【点睛】本题考查三角形的外接圆,解直角三角形,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题.14.或【解析】【分析】分两种情况根据相似三角形的性质计算即可【详解】解:①当时∵四边形ABCD 是平行四边形②当时同理可得故答案为:或【点睛】考查的是相似三角形的判定和性质平行四边形的性质掌握相似三角形的 解析:425:或925:【解析】【分析】分2332AE ED AE ED :=:、:=:两种情况,根据相似三角形的性质计算即可.【详解】解:①当23AE ED :=:时,∵四边形ABCD 是平行四边形,//25AD BC AE BC ∴,:=:,AEF CBF ∴∆∆∽,224255AEF CBF S S ∆∆∴:=()=:; ②当32AE ED :=:时,同理可得,239255AEF CBF S S ∆∆:=()=:, 故答案为:425:或925:.【点睛】考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.15.(1)【解析】【分析】先根据题意求得CD 和PE 的长再判定△EPC∽△PDB 列出相关的比例式求得DP 的长最后根据PEDP 的长得到点P 的坐标【详解】由题意可知OB=2AO=8∵CD⊥BOC 是AB 的中点∴解析:(1,3)【解析】【分析】先根据题意求得CD 和PE 的长,再判定△EPC ∽△PDB ,列出相关的比例式,求得DP 的长,最后根据PE 、DP 的长得到点P 的坐标.【详解】由题意可知,OB=23,AO=8,∵CD ⊥BO ,C 是AB 的中点,∴BD=DO=12BO==PE ,CD=12AO=4. 设DP=a ,则CP=4﹣a ,当BP 所在直线与EC 所在直线第一次垂直时,∠FCP=∠DBP , 又∵EP ⊥CP ,PD ⊥BD ,∴∠EPC=∠PDB=90°,∴△EPC∽△PDB.DP DBPE PC∴=∴343aa=-,∴a1=1,a2=3(舍去).∴DP=1,∵PE=3,∴P(1,3).考点:1相似三角形性质与判定;2平面直角坐标系.16.【解析】【分析】如图所示作BD⊥CA于D则在直角△ABD中可以求出BD然后求出△ABC面积;根据单价可以求出总造价【详解】如图所示AB=10AC=30∠B AC=120°作BD⊥CA于D则在直角△AB解析:6750【解析】【分析】如图所示,作BD⊥CA于D,则在直角△ABD中可以求出BD,然后求出△ABC面积;根据单价可以求出总造价.【详解】如图所示,AB=103,AC=30,∠BAC=120°,作BD⊥CA于D,则在直角△ABD中,∠BAD=60°,∴BD=ABsin60°=15,∴△ABC面积=12×AC×BD=225.又因为每平方米造价为30元,∴总造价为30×225=6750(元).【点睛】此题主要考查了运用三角函数定义解直角三角形,关键是通过作辅助线把实际问题转化为数学问题,抽象到解直角三角形中解题.17.【解析】【分析】根据黄金分割的概念和黄金比是解答即可【详解】∵点把线段分割成和两段()其中是与的比例中项∴点P 是线段AB 的黄金分割点∴=故填【点睛】此题考察黄金分割是与的比例中项即点P 是线段AB 的黄【解析】【分析】解答即可. 【详解】∵点P 把线段AB 分割成AP 和PB 两段(AP PB >),其中AP 是AB 与PB 的比例中项, ∴点P 是线段AB 的黄金分割点,∴:AP AB ,. 【点睛】此题考察黄金分割,AP 是AB 与PB 的比例中项即点P 是线段AB 的黄金分割点,即可得到:AP AB . 18.18【解析】【分析】根据求得BC=3BE 再由平行四边形得到AD ∥BC 判定△ADF ∽△EBF 再根据相似三角形的面积的比等于相似比的平方求得结果【详解】∵∴BC=3BE ∵四边形ABCD 是平行四边形∴AD解析:18【解析】【分析】根据2EC BE =求得BC=3BE,再由平行四边形ABCD 得到AD ∥BC,判定△ADF ∽△EBF,再根据相似三角形的面积的比等于相似比的平方求得结果.【详解】∵2EC BE =,∴BC=3BE,∵四边形ABCD 是平行四边形,∴AD ∥BC,AD=BC,∴△ADF ∽△EBF,∴AD=3BE,∴AFD ∆的面积=9S △EBF =18,【点睛】此题考查相似三角形的判定与性质,由平行四边形ABCD 得到AD ∥BC,判定△ADF ∽△EBF 是解题的关键,再求得对应边的关系AD=3BE,即可求得AFD ∆的面积. 19.4【解析】∵线段b 是ac 的比例中项∴解得b =±4又∵线段是正数∴b =4点睛:本题考查了比例中项的概念利用比例的基本性质求两条线段的比例中项的时候负数应舍去解析:4【解析】∵线段b 是a 、c 的比例中项,∴216b ac ==,解得b =±4,又∵线段是正数,∴b =4. 点睛:本题考查了比例中项的概念,利用比例的基本性质求两条线段的比例中项的时候,负数应舍去.20.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与 解析:24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.三、解答题21.(1)证明见解析;【解析】【分析】(1)根据切线的判定定理得到BC 是⊙O 的切线,再利用切线长定理证明即可;(2)根据含30°的直角三角形的性质、正切的定义计算即可.【详解】(1)∵AB 是⊙O 直径,BC ⊥AB ,∴BC 是⊙O 的切线,∵CD 切⊙O 于点D ,∴BC =CD ;(2)连接BD ,∵BC =CD ,∠C =60°,∴△BCD 是等边三角形,∴BD =BC =3,∠CBD =60°,∴∠ABD =30°,∵AB 是⊙O 直径,∴∠ADB =90°,∴AD =BD •tan ∠ABD =3.【点睛】本题考查了切线的性质、直角三角形的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.22.(1)D (0,2); (2)22y x =+;12y x =;(3)2x > 【解析】【分析】(1)在y=kx+2中,只要x=0得y=2即可得点D 的坐标为(0,2).(2)由AP ∥OD 得Rt △PAC ∽Rt △DOC ,又12OC OA =,可得13OD OC AP AC ==,故AP=6,BD=6-2=4,由S △PBD =4可得BP=2,把P (2,6)分别代入y=kx+2与m y x =可得一次函数解析式为y=2x+2反比例函数解析式为12y x=; (3)当x >0时,一次函数的值大于反比例函数的值的x 的取值范围由图象能直接看出x >2.【详解】解:(1)在y=kx+2中,令x=0得y=2,∴点D 的坐标为(0,2)(2)∵AP ∥OD ,∴∠CDO=∠CPA ,∠COD=∠CAP ,∴Rt △PAC ∽Rt △DOC ,∵12OC OA =,即13OD OC AP AC ==, ∴13OD OC AP AC == ∴AP=6,又∵BD=6-2=4,∴由142PBD S BP BD =⋅=V ,可得BP=2, ∴P (2,6)(4分)把P (2,6)分别代入y=kx+2与m y x =可得一次函数解析式为:y=2x+2, 反比例函数解析式为:12y x=(3)由图可得x >2.【点睛】 考查反比例函数和一次函数解析式的确定、图形的面积求法、相似三角形等知识及综合应用知识、解决问题的能力.有点难度.23.斜坡CD 的长是【解析】【分析】根据题意和锐角三角函数可以求得AE 的长,进而得到CE 的长,再根据锐角三角函数可以得到ED 的长,最后用勾股定理即可求得CD 的长.【详解】∵90AEB =︒∠,200AB =,坡度为∴tan3ABE ∠==, ∴30ABE ∠=︒, ∴11002AE AB ==, ∵20AC =,∴80CE =,∵90CED ∠=︒,斜坡CD 的坡度为1:4, ∴14CE DE =, 即8014ED =, 解得,320ED =,∴CD =米,答:斜坡CD 的长是【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.24.(1)10;(2)18.【解析】【分析】(1)根据相似三角形对应边之比相等可得BO AO =DO CO =35,再代入BO =6可得AO 长; (2)根据相似三角形的面积的比等于相似比的平方可得BOD AOC S S V V =925,进而可得S △BOD . 【详解】解:(1)∵△OBD ∽△OAC , ∴BO AO =DO CO =35∵BO =6,∴AO =10; (2)∵△OBD ∽△OAC ,DO CO =35 ∴BOD AOC S S V V =925∵S △AOC =50,∴S △BOD =18.【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的面积之比等于相似比的平方.25.(1)BC=10km ;【解析】【分析】(1)由题意可求得∠C =30°,进一步根据等角对等边即可求得结果;(2)分别在Rt BCD ∆和Rt ACD ∆中利用锐角三角函数的知识解直角三角形即可求得结果.【详解】解:(1)过点C 作CD ⊥直线l ,垂足为D ,如图所示.根据题意,得:30CAD ∠=︒,60CBD ∠=︒,∴∠C =∠CBD -∠CAD =30°,∴∠CAD =∠C ,∴BC =AB =10km .(2) 在Rt BCD ∆中,sin CD CBD BC ∠=,∴sin 60CD BC ==o g , 在Rt ACD ∆中,1sin 2CD CAD AC ∠==,∴2AC CD ==.【点睛】本题考查了解直角三角形的应用,属于基本题型,熟练掌握锐角三角函数的知识是解题的关键.。

2020-2021学年度第二学期九年级数学期中试卷及答案

2020-2021学年度第二学期九年级数学期中试卷及答案

x x-1 m-1 x-1 1 2kx2020-2021学年度第二学期九年级数学期中测试卷题号 一 二 三 四 总分 评卷人 复核人本试卷满分150分(前三大题100分,第四大题50分)考试时间120分钟。

一、本大题有10个小题,每小题3分,共30分。

每小题给出的四个选项中只有一个是正确的,请将题后的代号填入题后的括弧内。

1、在代数式3m+n, -2mn, p, 0, 中单项式的个数为 ( ) A 、 5 B 、4 C 、3 D 、 22、下列选项中不是正六棱柱三视图的是 ( )A B C D3、若关于x 的方程 - =0有增根,则m 的值为 ( ) A 、 3 B 、 2 C 、 1 D 、 -14、函数y=√x-3中,自变量x 的取值范围是 ( ) A 、x>3 B 、x ≥3 C 、x>-3 D 、x ≥-35、1nm 为十亿分之一米,而个体中红细胞的直径约为 0.0000077m ,那么人体中红细胞直径的纳米数用科学记数法表示为 ( )A 、7.7×103mmB 、7.7×102mmC 、7.7×104mm D 、以上都不对 6、如图1,□ABCD 中,对角线AC 和BD 相交于点O ,如果AC=12、BD=10、AB=m ,那么m 的取值范围是 ( )A 、1< m <11B 、2< m <22C 、10< m <12D 、5< m <67、一组数据的方差为s 2,将这组数据的每个数据 都乘以2,所得到的一组新数据的方差是 ( ) A 、 S 2B 、S 2C 、2S 2D 、4S 28、若一个圆的内接正三角形、正方形、正六边形的边心距分别为r 1,r 2,r 3,则r 1:r 2:r 3等于 ( )A 、1:2:3B 、 √3 :√2:1C 、1:√2:√3D 、3:2:1 9、如图2,在高为2m ,坡角为30°的楼梯上铺地毯,地毯的长度至少应计( ) A 、 4m B 、 6m C 、4√2m D 、 2+2√3m10在同一直角坐标系中,函数y =kx -k 与y= (k ≠0)的图象大致 ( )二、填空题:本大题共10个小题,每小题3分,共30分。

无锡市新吴区2020-2021学年第二学期初三数学期中试卷(含答案)

无锡市新吴区2020-2021学年第二学期初三数学期中试卷(含答案)

15 15= 2020—2021 学年度第二学期九年级期中测试数学试卷本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为 120 分钟.试卷满分 130 分. 注意事项:1. 答卷前,考生务必用 0.5 毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2. 答选择题必须用 2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用 0.5 毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3. 作图必须用 2B 铅笔作答,并请加黑加粗,描写清楚.4. 卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题所给出的四个选项中,只有一个是正确的,请将正确的选项编号填写在答.卷.纸.相.应.的.位.置.处.) 1.-15 的相反数为 …………………………………………………………………………………( ▲ ) A .15B .-15C .1D .- 12.函数 y 1中自变量x 的取值范围是 …………………………………………………………( ▲ ) x -2 A .x >2B .x ≥2C .x ≠2D .x ≤23.下列运算正确的是…………………………………………………………………………………( ▲ )A .a 3 -a 2 =aB .(-x 2)3=x 6C .x 2+x 3=x 5D .x 3÷x 2=x4.某组数据-5、3、-8、9、0、3 的极差和众数分别是 ………………………………………( ▲ )A .-8,9B .17,3C .17,9D .0,35. 一个正多边形的每一个外角都等于 36°,则这个多边形的边数为 …………………………( ▲ )A .4B .6C .8D .106. 下列图形:线段、等边三角形、平行四边形、圆,其中是中心对称图形的个数为…………( ▲ )A .1B .2C .3D .47. 已知某圆锥的底面半径为 3cm ,母线长 5cm ,则它的侧面展开图的面积为…………………( ▲ )A .15πcm 2B .15 cm 2C .30πcm 2D .30 cm 28. 若双曲线 y k y =x +1 的一个交点的横坐标为-2,则 k 的值为 ……………………( ▲ )=x 与直线A .-1B .1C .-2D .29.如图,点 E 、F 、G 、H 分别为□ABCD 四边的中点,连接 AG 、BH 、CE 、DF ,分别相交于点 M 、N 、P 、QEPGMNBQ ,若四边形 MNPQ 的面积为 4,则□ABCD 的面积为……………………………………………( ▲ ) A .16B .20C .24D . 2510.如图,AB 是⊙O 的直径,AB =4,C 为半圆 AB 的中点,P 为弧 AC 上一动点,连接 PC 并延长,作BQ ⊥PC 于点Q ,若点P 从点A 运动到点C ,则点Q 运动的路径长为……………………………( ▲ )AB .πDH CD .4APO ·CQ(第 9 题图)(第 10 题图)二、填空题(本大题共 8 小题,每小题 2 分,共 16 分.不需写出解答过程,只需把答案填写在答.卷.纸.的. 相.应.位.置.处.) 11.8 的立方根是 ▲ .12.分解因式:2x 2-18= ▲ .13.春节假期,无锡市某影院共接待观众约 18000 人次,将数 18000 用科学记数法表示为 ▲ .14.如图,已知 a ∥b ,∠1=68°,则∠2= ▲ .15. 已知二次函数 y =x 2+2x -3 与坐标轴交于 A 、B 、C 三点,则△ABC 的面积为 ▲ .16. 命题“四边都相等的四边形是菱形”的逆命题是 ▲.17. 中国古代数学名著《孙子算经》中有个问题,原文:今有四人共车,二车空;三人共车,五人步,问人与车各几何?译文为:今有若干人乘车,每 4 人共乘一车,最终剩余 2 辆车,若每 3 人共乘一车, 最终剩余 5 个人无车可乘,问共有 ▲ 辆车.18. 如图,在□ABCD 中,∠B =135°,AB = 2BC ,将△ABC 沿对角线 AC 翻折至△EAC ,AE 与 CD 相交于点 F ,连接 DE DE ▲ .,则AC 的值为aEDFb(第 14 题图)AB(第 18 题图)C . 2πc 12A三、解答题(本大题共 10 小题,共 84 分.请在答卷纸上指定区域内作答,解答时应写出文字说明、证明DE FB(2) 过程或演算步骤)19.(本题满分 8 分,每小题 4 分) (1)计算:2sin45°- 8+ 1 -1 ;(2)化简:(a +2b ) (a -2b )+(a -2b )2.20.(本题满分 8 分,每小题 4 分)x +3 2 (1 )解方程: x - =1 ;(2)解不等式:3x -5<2(2+3x ).x -221.(本题满分 8 分)如图,AD =CB ,AB =CD ,BE ⊥AC ,垂足为 E ,DF ⊥AC ,垂足为 F .求证:(1)△ABC ≌△CDA ;C(2)BE =DF .A22.(本题满分 8 分)为推动实施健康中国战略,树立国家健康形象.手机 APP 推出多款健康运动软件,如“微信运动”.王老师随机调查了我校 50 名教师某日“微信运动”中的步数,并进行统计整理,绘制了如下不完整的统计图表.步 数请根据以上信息,解答下列问题:(1)a = ▲ ,b = ▲ ;(2) 补全频数分布直方图;(3) 若某人一天的走路步数不低于 16000 步,将被“微信运动”评为“运动达人”.我市市区约有 4000名初中教师,根据此项调查请估计市区被评为“运动达人”教师有多少名?语文老师要求学生们在寒假期间精读四大名著中的一本.(1)小明选择精读《水浒传》的概率是▲;(2)求小明与小刚选择精读同一本名著的概率.(请用“画树状图”或“列表”等方法写出分析过程)24.(本题满分8 分)如图,在平面直角坐标系中,以线段AB 为直径作⊙C,与x 轴相交于A(2,0)、B(8,0)两点,在第一象限内的圆上存在一点D,使得△ACD 为等边三角形.(2)求由线段AE、DE、劣弧AD 围成的图形面积.在一次趣味数学的社团活动中,有这样的一道数学探究性问题.(1) 问题情境:如图 1,在△ABC 中,∠A =30°,BC =4,则△ABC 的外接圆的半径为 ▲;(2) 操作实践: 如图 2,用无刻度直尺与圆规在矩形 ABCD 的内部作出一点 P ,使得∠BPC =∠BEC ,且 PB =PC (不写作法,保留作图痕迹);(3) 迁移应用:已知,在△ABC 中,∠A >∠B ,∠C =60°,AB =6,求 BC 的取值范围.DECAB图 1图 226.(本题满分 8 分)疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况, 发现学生到校的累计人数 y (单位:人)随时间 x (单位:分钟)的变化情况如图所示,当 0≤x ≤10 时,y 可看作是 x 的二次函数,其图象经过原点,且顶点坐标为(10,500);当 10<x ≤12 时,累计人数保持不变.(1) 求 y 与 x 之间的函数表达式;(2) 如果学生一进校就开始测量体温,校门口有 2 个体温检测棚,每个检测点每分钟可检测 20 人. 校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间 ?(3) 在(2)的条件下,如果要在 8 分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?AO· BC+如图,已知菱形ABCD 的三个顶点A(-2,0)、B(2,0)、D(0,2 3),连接AC,P 为AC 的中点,点E 为AD 延长线上(异于点D)一动点,连接EP 并延长与CD、AB 分别交于G、F 两点.(1)P 点的坐标为▲;(2)求1 1的值;AE AF(3)连接EC,若∠CEF=60°,求ED 的长.28.(本题满分10 分)如图,在平面直角坐标系中,抛物线y=ax2+bx-4a 经过A(-1,0)、C(0,4)两点,与x 轴交于另一点B,点D 为该抛物线的顶点.(1)顶点D 的坐标为▲;(215)将该抛物线向下平移4 个单位长度,再向左平移m(m>0)个单位长度,得到新抛物线.若新抛物线的顶点D′在△ABC 内,求m 的取值范围;(3)若点P、点Q(n,n+1)为该抛物线上两点,连接BQ,且tan∠QBP=2,求点P 的坐标.2020-2021 学年度第二学期九年级期中测试数学参考答案和评分标准二、填空题(每小题 2 分,共 16 分)11.212.2(x +3)(x -3) 13.1.8×10414.112°15.616.菱形的四边都相等17.1318 1 .5三、解答题(共 10 大题,共 84 分)19. (1)=222 2+2 ……2 分 (2) =a 2-4b 2+a 2-4ab +4b 2………2 分2 -=2- 2 ................................. 4 分=2a 2-4ab…… 4 分 20. (1) x 2+x -6-2x =x 2-2x……1 分(2)3x -5<4+6x……2 分 x =6……3 分经检验,x =6 是原方程的解 …… 4 分x >-3…… 4 分21. (1)在△ABC 和△CDA 中⎪⎧ AD =CB ⎨ AB =CD ⎩⎪ AC =CA………………………………………………………………………2 分∴ △ABC ≌△CDA (SSS ) .............................................. 4 分 (2)证△ ABE ≌△ CDF (AAS )(或面积法) ................................. 8 分(其他方法酌情给分)22.(1)0.16;12; ....................................................... 2 分(2)条形统计图补到 12,标出数字 12; ................................... 4 分 (3)人数为:(0.06+0.04)×4000=400(名) ........................... 7 分答:估计市区被评选为“运动达人”的教师有 400 名 ...................... 8 分23.(1 1 ................................................................2 分)4(2) 画对树状图或表格 ................................................. 5 分列出所有结果..................................................... 7 分P 4 1(精读同一本名著)=16=4....................................... 8 分25.(本题满分 8 分)24.解:(1)∵OA =2,OB =8,∴AB =6,∴AC =3 ............................. 1 分∵△ACD 是等边三角形 ,∴AC =CD =3∵CD ⊥DE ,且∠DCA =60°,∴EC =6,∴EO =1∴E (-1,0) ............ 2 分作 DH ⊥OC 于点 H ,在 Rt △DCH 中,CH 3 DH 3 3∴ 7 33) ……3 分=2, =2 D (2,2求出函数关系式:y 4 分3 3 (2)S 93,S 3 分△EDC=2扇形 ACD=2π (6)∴S32 -2π ............................................... 8 分25.解:(1)4 ................................................................. 2 分(2) 作 BC 的垂直平分线 l 1 ...................................................................................... 3 分作 CE 的垂直平分线 l 2 与 BE 交于点 O ............................ 4 分 以 BE 为直径作⊙O ,与 l 1 交于点 P 即为所求 ....................... 5 分(3) 作△ABC 的外接圆,∵∠BAC >∠ABC ,AB =6,当∠BAC =90°时,BC 是直径最长,∵∠C =60°,∴AC =2 3,∴BC =4 3; ........................ 6 分 当∠BAC =∠ABC 时,△ABC 是等边三角形,BC =AC =AB =6, ........ 7 分 ∵∠BAC >∠ABC ,∴BC 长的取值范围是 6<BC ≤4 3 ............... 8 分 (其他方法酌情给分)26.解:(1)设 y 与 x 之间的函数关系式为:y =a (x -10)2+500, ........... 1 分把(0,0)代入上式得:0=a (0-10)2+500,解得:a =-5,故函数关系式为:y =-5(x -10)2+500(0≤x ≤10) ............. 2 分 即 y =﹣5x 2+100x (0≤x ≤10),y =500 (10<x ≤12) .......... 3 分(2) 设第 x 分钟时的排队等待人数为 w 人,由题意可得:w =y -40x①0≤x ≤10 时,w =-5x 2+100x -40x =-5x 2+60x =-5(x -6)2+180, ∴当 x =6 时,w 的最大值=180, .............................. 4 分 ②当 10<x ≤12 时,w =500-40x ,w 随 x 的增大而减小,∴20≤w <100, ∴排队人数最多时是 180 人, .........................................................................5 分 要全部学生都完成体温检测,根据题意得:500﹣40x =0 解 得 :x =12.5 答:排队人数最多时有 180 人,全部考生都完成体温检测需要 12.5 分钟; ……6 分(3) 设从一开始就应该增加 m 个检测点,由题意得:8×20(m +2)≥500, ............................... 7 分 解得 m 9m 的最小整数是 2,≥8 ,∴25.(本题满分8 分)∴一开始就应该至少增加2 个检测点...............................................8分(其他方法酌情给分)25.(本题满分 8 分)27.(1) P (1,3) ................................................................. 2 分(2) ∵DC ∥ABDG DE …………………………………………………………3 分∴ AF =AE∵DG =BF BF DE …………………………………………………………4 分 ∴AF =AEAB -AF AE -AD AB AD AB AD∴ AF = AE , AF -1=1-AE , AF +AE =2 ..................... 5 分1 1 2 1 + 分 AF AE =4=2 (6)(3) 以 CP 为底边构造顶角为 120°的等腰△PQC ,点 Q 恰好为 CD 的中点,……7 分以 CD 为半径作⊙Q ,与 AD 的延长线交于点 E ,得∠CEF =60° ........... 8 分 此时:DE =CD ·cos60°=2 ............................................ 10 分 (其他方法酌情给分)第 27 题28.(1)顶点 D3 25 …………………………………………………………2 分 的坐标为(2,4 ) (2)由题意得 D '(3-25m , ) 2, l AC : y = 4x+ 4 ∴4( 3 - m ) + 4 = 52 215m =15…3 分8∵新抛物线顶点 D ′在△ABC 内∴0 < m <4 分8(3)由题意得: -n 2+ 3n + 4 = n +1 得n = 3, n = -1 ∴Q (3, 4) 或(-1, 0) …5 分12当 Q 1(-1,0)时, ①点 P 在 x 轴上方时,P 1 (1,6) ................... 6 分②点 P 在 x 轴下方时,P 2(-3,-14) ............... 8 分如图,当 Q (3,4)时,P ( 7 86 分∴2(其他方法酌情给分)-9,81) (10)3。

2020-2021九年级数学下期中试卷含答案(6)

2020-2021九年级数学下期中试卷含答案(6)
【解析】
【分析】
先根据反比例函数的解析式判断出函数图象所在的象限ห้องสมุดไป่ตู้再根据x1<0<x2<x3即可得出结论.
【详解】
∵反比例函数y=﹣ 中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.
∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.
A.小红小学毕业时的照片和初中毕业时的照片相似
B.商店新买来的一副三角板是相似的
C.所有的课本都是相似的
D.国旗的五角星都是相似的
3.若反比例函数 (x<0)的图象如图所示,则k的值可以是( )
A.-1B.-2C.-3D.-4
4.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()
7.如图, 是半圆 的直径, , 是 上两点,连接 , 并延长交于点 ,连接 , ,如果 ,那么 的度数为( )
A. B. C. D.
8.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF的面积之比为( )
A.1:2B.1:4C.1:5D.1:6
9.如图,在 中, , , , ,则 的长为( )
A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,4)C.(2,﹣1)D.(8,﹣4)
二、填空题
13.如图,P(m,m)是反比例函数 在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.
14.在△ABC中,∠ABC=90°,已知AB=3,BC=4,点Q是线段AC上的一个动点,过点Q作AC的垂线交直线AB于点P,当△PQB为等腰三角形时,线段AP的长为_____.

2020-2021九年级数学下期中试卷带答案

2020-2021九年级数学下期中试卷带答案

2020-2021九年级数学下期中试卷带答案一、选择题1.若点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数1yx=-的图象上,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y1<y2 2.下列说法正确的是( )A.小红小学毕业时的照片和初中毕业时的照片相似B.商店新买来的一副三角板是相似的C.所有的课本都是相似的D.国旗的五角星都是相似的3.反比例函数kyx=与1(0)y kx k=-+≠在同一坐标系的图象可能为()A.B.C.D.4.如图,校园内有两棵树,相距8米,一棵树树高13米,另一棵树高7米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞()A.8米B.9米C.10米D.11米5.已知线段a、b、c、d满足ab=cd,把它改写成比例式,错误的是()A.a:d=c:b B.a:b=c:d C.c:a=d:b D.b:c=a:d6.若反比例函数2yx=-的图象上有两个不同的点关于y轴的对称点都在一次函数y=-x+m的图象上,则m的取值范围是()A.22m>B.-22m<C.22-22m m>或<D.-2222m<<7.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()A.12m B.13.5m C.15m D.16.5m8.在△ABC中,若|sinA-32|+(1-tanB)2=0,则∠C的度数是( )A.45°B.60°C.75°D.105°9.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C.D.10.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m11.如图,在△ABC中,M是AC的中点,P,Q为BC边上的点,且BP=PQ=CQ,BM与AP,AQ分别交于D,E点,则BD∶DE∶EM等于A.3∶2∶1B.4∶2∶1C.5∶3∶2D.5∶2∶112.在小孔成像问题中,如图所示,若为O到AB的距离是18 cm,O到CD的距离是6 cm,则像CD的长是物体AB长的()A .13B .12C .2倍D .3倍二、填空题13.若反比例函数y =﹣的图象经过点A(m ,3),则m 的值是_____.14.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段 AC 的长为________.15.如图,已知点A ,C 在反比例函数(0)a y a x=>的图象上,点B ,D 在反比例函(0)b y b x=<的图象上,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB=5,CD=4,AB 与CD 的距离为6,则a −b 的值是_______.16.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y =3x的图象经过A 、B 两点,则菱形ABCD 的面积是_____;17.已知AB ∥CD ,AD 与BC 相交于点O.若BO OC =23,AD =10,则AO =____.18.如图,在平面直角坐标系中,点A 是函数k y x=(x <0)图象上的点,过点A 作y 轴的垂线交y 轴于点B ,点C 在x 轴上,若△ABC 的面积为1,则k 的值为 ______ .19.将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知AB="AC=8" cm,将△MED 绕点A(M)逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积是 cm2.20.若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 三、解答题21.在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A 4 的打印纸等,这些矩形的长与宽之比都为2:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 AP =AD .(1)求证:PD =AB .(2)如图(2),若在“完美矩形“ABCD 的边 BC 上有一动点 E ,当BE CE的值是多少时,△PDE 的周长最小?(3)如图(3),点 Q 是边 AB 上的定点,且 BQ =BC .已知 AD =1,在(2)的条件下连接 DE 并延长交 AB 的延长线于点 F ,连接 CF ,G 为 CF 的中点,M 、N 分别为线段 QF 和 CD 上的动点,且始终保持 QM =CN ,MN 与 DF 相交于点 H ,请问 GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.22.如图所示,双曲线()10,0k y x k x=>>与直线()20y kx b k =+≠(b 为常数)交于()2,4A ,(),2B a 两点.(1)求双曲线()10,0k y x k x=>>的表达式; (2)根据图象观察,当21y y <时,求x 的取值范围; (3)求AOB ∆的面积.23.如图,M 、N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M 、N 两点之间的直线距离,选择测量点A 、B 、C ,点B 、C 分别在AM 、AN 上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M 、N 两点之间的距离.24.如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC=14,AD=12,tan ∠BAD=,求sinC 的值.25.如图,l 1∥l 2∥l 3,AB=3,AD=2,DE=4,EF=7.5.求BC 、BE 的长?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3即可得出结论.【详解】∵反比例函数y=﹣1x中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.故选B.【点睛】本题考查了反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.本题也可以通过图象法求解.2.D解析:D【解析】【分析】观察图形,看它们的形状是否相同,形状相同的两个图形是相似图形.【详解】A.小明上幼儿园时的照片和初中毕业时的照片,形状不相同,不相似;B.商店新买来的一副三角板,形状不相同,不相似;C.所有的课本都是相似的,形状不相同,不相似;D.国旗的五角星都是相似的,形状相同,相似.故选D.【点睛】本题考查了相似图形,相似图形是指形状相同的图形,仔细观察看每组图形是否相同,如果相同就相似,否则就不相似.3.B解析:B【解析】【分析】根据反比例函数和一次函数的性质逐个对选项进行分析即可.【详解】A 根据反比例函数的图象可知,k>0,因此可得一次函数的图象应该递减,但是图象是递增的,所以A错误;B根据反比例函数的图象可知,k>0,,因此一次函数的图象应该递减,和图象吻合,所以B正确;C根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,并且过(0,1)点,但是根据图象,不过(0,1),所以C错误;D根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,但是根据图象一次函数的图象递减,所以D错误.故选B【点睛】本题主要考查反比例函数和一次函数的性质,关键点在于系数的正负判断,根据系数识别图象.4.C解析:C【解析】如图所示,AB,CD为树,且AB=13,CD=8,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=8,AE=AB-CD=6,在直角三角形AEC中,AC=10米,答:小鸟至少要飞10米.故选C.5.B解析:B【解析】【分析】根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.【详解】解:A、a:d=c:b⇒ab=cd,故正确;B、a:b=c:d⇒ad=bc,故错误;C、d:a=b:c⇒dc=ab,故正确;D、a:c=d:b⇒ab=cd,故正确.故选B.【点睛】本题考查比例的基本性质,解题关键是根据比例的基本性质实现比例式和等积式的互相转换.6.C解析:C【解析】【分析】 根据题意可知反比例函数2y x =-的图象上的点关于y 轴的对称的点在函数2y x =上,由此可知反比例函数2y x=的图象与一次函数y=-x+m 的图象有两个不同的交点,继而可得关于x 的一元二次方程,再根据根的判别式即可求得答案.【详解】 ∵反比例函数2y x =-上有两个不同的点关于y 轴对称的点在一次函数y =-x +m 图象上, ∴反比例函数2y x=与一次函数y =-x +m 有两个不同的交点, 联立得2y x y x m⎧=⎪⎨⎪=-+⎩,消去y 得:2x m x =-+, 整理得:220x mx -+=,∵有两个不同的交点∴220x mx -+=有两个不相等的实数根,∴△=m 2-8>0,∴m >m <故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,关于x 轴、y 轴对称的点的坐标,熟练掌握相关内容、正确理解题意是解题的关键.7.D解析:D【解析】【分析】利用直角三角形DEF 和直角三角形BCD 相似求得BC 的长后加上小明同学的身高即可求得树高AB .【详解】∵∠DEF=∠BCD=90°,∠D=∠D ,∴△DEF ∽△DCB , ∴BC DC EF DE=, ∵DF=50cm=0.5m ,EF=30cm=0.3m ,AC=1.5m ,CD=20m ,∴由勾股定理求得DE=40cm,∴20 0.30.4 BC,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.8.C解析:C【解析】【分析】先根据非负数的性质求出sinA及tanB的值,再根据特殊角的三角函数值求出∠A及∠B的值,由三角形内角和定理即可得出结论.【详解】∵|sin A−3|+(1−tan B)2=0,∴sinA=32,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.【点睛】(1)非负数的性质:几个非负数的和等0,这几个非负数都为0;(2)三角形内角和等于180°.9.C解析:C【解析】【分析】【详解】利用如图所示的计算器计算2cos55°,按键顺序正确的是.故答案选C.10.A解析:A【解析】∵BE∥AD,∴△BCE∽△ACD,∴CB CE AC CD =,即 CB CE AB BC DE EC=++, ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++ ∴1.2AB=1.8,∴AB=1.5m .故选A . 11.C 解析:C 【解析】【分析】过A 作AF ∥BC 交BM 延长线于F ,设BC=3a ,则BP=PQ=QC=a ;根据平行线间的线段对应成比例的性质分别求出BD 、BE 、BM 的长度,再来求BD ,DE ,EM 三条线段的长度,即可求得答案. 【详解】过A 作AF ∥BC 交BM 延长线于F ,设3BC a =,则BP PQ QC a ===;∵AM CM =,AF ∥BC ,∴1AF AM BC CM==, ∴3AF BC a ==,∵AF ∥BP ,∴133BD BP a DF AF a ===, ∴34DF BF BD ==, ∵AF ∥BQ , ∴2233BE BQ a EF AF a ===, ∴23EF BE =,即25BF BE =, ∵AF ∥BC ,∴313BM BC a MF AF a ===, ∴BM MF =,即2BF BM =, ∴235420BF BF BF DE BE BD =-=-=,22510BF BF BF EM BM BE =-=-=, ∴3::::?53242010BF BF BF BD DE EM ==::. 故选:C .【点睛】 本题考查了平行线分线段成比例定理以及比例的性质,正确作出辅助线是关键.12.A解析:A【解析】【分析】作OE ⊥AB 于E ,OF ⊥CD 于F ,根据题意得到△AOB ∽△COD ,根据相似三角形的对应高的比等于相似比计算即可.【详解】作OE ⊥AB 于E ,OF ⊥CD 于F ,由题意得,AB ∥CD ,∴△AOB ∽△COD ,∴CD AB =OF OE =13, ∴像CD 的长是物体AB 长的13. 故答案选:A.【点睛】 本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.二、填空题13.﹣2【解析】∵反比例函数y=-6x 的图象过点A (m3)∴3=-6m 解得=-2 解析:﹣2【解析】∵反比例函数的图象过点A (m ,3),∴,解得.14.【解析】已知BC=8AD 是中线可得CD=4在△CBA 和△CAD 中由∠B=∠DAC ∠C=∠C 可判定△CBA ∽△CAD 根据相似三角形的性质可得即可得AC2=CD•BC=4×8=32解得AC=4 解析:42 【解析】 已知BC=8, AD 是中线,可得CD=4, 在△CBA 和△CAD 中, 由∠B=∠DAC ,∠C=∠C , 可判定△CBA ∽△CAD ,根据相似三角形的性质可得AC CD BC AC= , 即可得AC 2=CD•BC=4×8=32,解得AC=42. 15.【解析】【分析】利用反比例函数k 的几何意义得出a-b=4•OEa -b=5•OF 求出=6即可求出答案【详解】如图∵由题意知:a-b=4•OEa -b=5•OF ∴OE=OF=又∵OE+OF=6∴=6∴a-解析:403【解析】【分析】利用反比例函数k 的几何意义得出a-b=4•OE ,a-b=5•OF ,求出45a b a b --+=6,即可求出答案.【详解】如图,∵由题意知:a-b=4•OE ,a-b=5•OF ,∴OE=4a b -,OF=5a b -, 又∵OE+OF=6,∴45a b a b --+=6, ∴a-b=403,故答案为:403. 【点睛】 本题考查了反比例函数图象上点的坐标特征,能求出方程45a b a b --+=6是解此题的关键. 16.【解析】【分析】作AH⊥BC 交CB 的延长线于H 根据反比例函数解析式求出A 的坐标点B 的坐标求出AHBH 根据勾股定理求出AB 根据菱形的面积公式计算即可【详解】作AH⊥BC 交CB 的延长线于H∵反比例函数y解析:42【解析】【分析】作AH ⊥BC 交CB 的延长线于H ,根据反比例函数解析式求出A 的坐标、点B 的坐标,求出AH 、BH ,根据勾股定理求出AB ,根据菱形的面积公式计算即可.【详解】作AH ⊥BC 交CB 的延长线于H ,∵反比例函数y =3x的图象经过A 、B 两点,A 、B 两点的横坐标分别为1和3, ∴A 、B 两点的纵坐标分别为3和1,即点A 的坐标为(1,3),点B 的坐标为(3,1),∴AH =3﹣1=2,BH =3﹣1=2,由勾股定理得,AB 2222+=2,∵四边形ABCD 是菱形,∴BC =AB =2,∴菱形ABCD 的面积=BC×AH =2, 故答案为2【点睛】本题考查的是反比例函数的系数k 的几何意义、菱形的性质,根据反比例函数解析式求出A 的坐标、点B 的坐标是解题的关键.17.【解析】∵AB∥CD 解得AO=4故答案是:4【点睛】运用了平行线分线段成比例定理灵活运用定理找准对应关系是解题的关键解析:【解析】∵AB ∥CD ,223103AO BO AO OD OC AO ∴===-,即, 解得,AO=4,故答案是:4.【点睛】运用了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.18.-2【解析】【分析】根据已知条件得到三角形ABC 的面积=得到|k|=2即可得到结论【详解】解:∵AB⊥y 轴∴AB∥CO∴∴∵∴故答案为:-2【点睛】本题考查了反比例函数系数k 的几何意义明确是解题的关解析:-2【解析】【分析】根据已知条件得到三角形ABC 的面积=1•=12AB OB ,得到|k|=2,即可得到结论. 【详解】解:∵AB ⊥y 轴,∴AB ∥CO , ∴111•1222ABC S AB OB x y k ====g 三角形 , ∴2k =,∵0k <,∴2k =-,故答案为:-2.【点睛】本题考查了反比例函数系数k 的几何意义,明确1•=12ABC S AB OB =V 是解题的关键. 19.【解析】【分析】分析:设BCAD 交于点G 过交点G 作GF⊥AC 与AC 交于点F 根据AC=8就可求出GF 的长从而求解【详解】解:设BCAD 交于点G 过交点G 作GF⊥AC 与AC 交于点F 设FC=x 则GF=FC=解析:【解析】【分析】分析:设BC ,AD 交于点G ,过交点G 作GF ⊥AC 与AC 交于点F ,根据AC=8,就可求出GF 的长,从而求解.【详解】解:设BC ,AD 交于点G ,过交点G 作GF ⊥AC 与AC 交于点F ,设FC=x ,则GF=FC=x ,∵旋转角为60°,即可得∠FAG=60°,∴AF=GFcot∠FAG=3x.所以x+3x=8,则x=12-43.所以S△AGC=12×8×(12-43)=48-16320.3【解析】【分析】把分式方程化为整式方程进而把可能的增根代入可得m 的值【详解】去分母得3x-(x-2)=m+3当增根为x=2时6=m+3∴m=3故答案为3【点睛】考查分式方程的增根问题;增根问题可按解析:3【解析】【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m的值.【详解】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.三、解答题21.(1)证明见解析(2)222(32【解析】【分析】(1)根据题中“完美矩形”的定义设出AD与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,表示出AB与CD,由AB-AP表示出BP,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=2,理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可.【详解】(1)在图1中,设AD=BC=a,则有AB=CD=2a,∵四边形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD=22AD PA+=2a,∵AB=2a,∴PD=AB;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,则有2,∵BP=AB-PA,∴2a-a,∵BP′∥CD,∴22222BE BP aCE CD a===;(3)2,理由为:由(2)可知BF=BP=AB-AP,∵AP=AD,∴BF=AB-AD,∵BQ=BC,∴AQ=AB-BQ=AB-BC,∵BC=AD,∴AQ=AB-AD,∴BF=AQ,∴QF=BQ+BF=BQ+AQ=AB,∵AB=CD,∴QF=CD,∵QM=CN,∴QF-QM=CD-CN ,即MF=DN ,∵MF ∥DN ,∴∠NFH=∠NDH ,在△MFH 和△NDH 中,{MFH NDHMHF NHD MF DN∠∠∠∠=== ,∴△MFH ≌△NDH (AAS ),∴FH=DH ,∵G 为CF 的中点,∴GH 是△CFD 的中位线,∴GH=12CD=12×. 【点睛】 此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.22.(1)18y x =;(2)02x <<或4x >;(3)6. 【解析】【分析】(1)把点A 坐标代入反比例函数解析式即可求得k 的值;(2)根据点B 在双曲线上可求出a 的值,再结合图象确定双曲线在直线上方的部分对应的x 的值即可;(3)先利用待定系数法求出一次函数的解析式,再用如图的△AOC 的面积减去△BOC 的面积即可求出结果.【详解】解(1):双曲线()10,0k y x k x=>>经过()2,4A ,∴248k =⨯=, ∴双曲线的解析式为18y x =. (2)∵双曲线()10,0k y x k x =>>经过(),2B a 点, ∴82a=,解得4a =,∴()4,2B , 根据图象观察,当21y y <时,x 的取值范围是02x <<或4x >.(3)设直线AB 的解析式为y mx n =+,∴2442m n m n +=⎧⎨+=⎩,解得16m n =-⎧⎨=⎩, ∴直线AB 的解析式为6y x =-+,∴直线AB 与x 轴的交点()6,0C, ∴AOB AOC BOC S S S ∆∆∆=-116462622=⨯⨯-⨯⨯=. 【点睛】本题是反比例函数与一次函数的综合题,重点考查了待定系数法求函数的解析式、一次函数与反比例函数的交点问题和三角形的面积计算,属于中档题型,熟练掌握一次函数与反比例函数的基本知识是解题的关键.23.5千米【解析】【分析】先根据相似三角形的判定得出△ABC ∽△AMN,再利用相似三角形的性质解答即可【详解】在△ABC 与△AMN 中,305549AC AB ==,151.89AM AN ==, ∴AC AM AB AN=,∵∠A=∠A , ∴△ABC ∽△ANM ,∴AC AM BC MN =,即30145MN =,解得MN=1.5(千米) ,因此,M 、N 两点之间的直线距离是1.5千米.【点睛】此题考查相似三角形的应用,解题关键在于掌握运算法则24..【解析】【分析】首先根据Rt△ABD的三角函数求出BD的长度,然后得出CD的长度,根据勾股定理求出AC的长度,从而得出∠C的正弦值.【详解】∵在直角△ABD中,tan∠BAD=,∴BD=AD•tan∠BAD=12×=9,∴CD=BC-BD=14-9=5,∴AC==13,∴sinC=.【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.25.BC=6,BE=5【解析】【分析】根据平行线分线段成比例定理得BFBE=3BC=24,则可计算出BC=6,BF=12BE,然后利用12BE+BE=7.5求出BE的长.【详解】∵l1∥l2∥l3,∴FBBE=ABBC=ADDE,即BFBE=3BC=24,∴BC=6,BF=12BE,∴12BE+BE=7.5,∴BE=5.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.。

2020-2021杭州市九年级数学下期中试卷附答案

2020-2021杭州市九年级数学下期中试卷附答案

2020-2021杭州市九年级数学下期中试卷附答案一、选择题1.如图,线段CD 两个端点的坐标分别为C (1,2)、D (2,0),以原点为位似中心,将线段CD 放大得到线段AB ,若点B 坐标为(5,0),则点A 的坐标为( )A .(2,5)B .(2.5,5)C .(3,5)D .(3,6)2.如图,在正方形ABCD 中,N 为边AD 上一点,连接BN .过点A 作AP ⊥BN 于点P ,连接CP ,M 为边AB 上一点,连接PM ,∠PMA =∠PCB ,连接CM ,有以下结论:①△PAM ∽△PBC ;②PM ⊥PC ;③M 、P 、C 、B 四点共圆;④AN =AM .其中正确的个数为( )A .4B .3C .2D .13.如图,校园内有两棵树,相距8米,一棵树树高13米,另一棵树高7米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞( )A .8米B .9米C .10米D .11米4.如图,ABC △与ADE V 相似,且ADE B ∠=∠,则下列比例式中正确的是( )A .AE AD BE DC =B .AE AB AB AC = C .AD AB AC AE = D .AE DE AC BC= 5.如图,在△ABC 中,M 是AC 的中点,P ,Q 为BC 边上的点,且BP=PQ=CQ ,BM 与AP ,AQ 分别交于D ,E 点,则BD ∶DE ∶EM 等于A .3∶2∶1B .4∶2∶1C .5∶3∶2D .5∶2∶16.如图,一张矩形纸片ABCD 的长BC =xcm ,宽AB =ycm ,以宽AB 为边剪去一个最大的正方形ABEF ,若剩下的矩形ECDF 与原矩形ABCD 相似,则x y 的值为( )A .512-B .512+C .2D .212+ 7.下列命题是真命题的是( )A .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:98.如图,在△ABC 中,cos B =22,sin C =35,AC =5,则△ABC 的面积是( )A . 212B .12C .14D .219.如图,在矩形ABCD 中,DE AC ⊥于E ,设ADE α∠=,且3cos 5α=,5AB =,则AD 的长为( )A .3B .163C .203D .16510.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条边DF =50cm ,EF =30cm ,测得边DF 离地面的高度AC =1.5m ,CD =20m ,则树高AB 为( )A .12mB .13.5mC .15mD .16.5m11.下列四个几何体中,主视图与左视图相同的几何体有( )A .1个B .2个C .3个D .4个12.给出下列函数:①y=﹣3x +2;②y=3x ;③y=2x 2;④y=3x ,上述函数中符合条作“当x >1时,函数值y 随自变量x 增大而增大“的是( )A .①③B .③④C .②④D .②③ 二、填空题13.若点A(m ,2)在反比例函数y =的图象上,则当函数值y≥-2时,自变量x 的取值范围是____.14.如图,已知AD 为ABC ∆的角平分线,DE AB ∥,如果23AE EC =,那么AE AB=______.15.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_____m .16.△ABC 与△A′B′C′是位似图形,且△ABC 与△A′B′C′的位似比是1:2,已知△ABC 的面积是3,则△A′B′C′的面积是_____.17.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 .18.如图,在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆2AB m =,它的影子 1.6BC m =,木杆PQ 的影子有一部分落在了墙上, 1.2PM m =,0.8MN m =,则木杆PQ 的长度为______m .19.如图,Rt ABC V 中,90ACB ∠=︒,直线EF BD P ,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S V 四边形,=则CF AD= .20.如果a c e b d f===k (b+d+f≠0),且a+c+e=3(b+d+f ),那么k=_____. 三、解答题21.如图,一棵大树在一次强台风中折断倒下,未折断树杆AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树杆AB 形成53︒的夹角.树杆AB 旁有一座与地面垂直的铁塔DE ,测得6BE =米,塔高9DE =米.在某一时刻的太阳照射下,未折断树杆AB 落在地面的影子FB 长为4米,且点F 、B 、C 、E 在同一条直线上,点F 、A 、D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1,参考数据:sin530.7986︒≈,cos530.6018︒≈,tan53 1.3270︒≈).22.如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE 的长(结果保留根号).23.如图,△ABC 内接于⊙O ,AB=AC ,∠BAC=36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F .(1)求∠DAF 的度数;(2)求证:AE 2=EF•ED ;24.如图,在△ABC 中,∠B=90°,AB=4,BC=2,以AC 为边作△ACE ,∠ACE=90°,AC=CE ,延长BC 至点D ,使CD=5,连接DE .求证:△ABC ∽△CED .25.如图,在ABC V 中,AB AC =,点E 在边BC 上移动(点E 不与点B ,C 重合),满足DEF B ∠=∠,且点D 、F 分别在边AB 、AC 上.(1)求证:BDE CEF △∽△.(2)当点E 移动到BC 的中点时,求证:FE 平分DFC ∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选B.考点:位似变换;坐标与图形性质.2.A解析:A【解析】【分析】根据互余角性质得∠PAM=∠PBC,进而得△PAM∽△PBC,可以判断①;由相似三角形得∠APM=∠BPC,进而得∠CPM=∠APB,从而判断②;根据对角互补,进而判断③;由△APB∽△NAB得AP ANBP AB,再结合△PAM∽△PBC便可判断④.【详解】解:∵AP⊥BN,∴∠PAM+∠PBA=90°,∵∠PBA+∠PBC=90°,∴∠PAM=∠PBC,∵∠PMA=∠PCB,∴△PAM∽△PBC,故①正确;∵△PAM∽△PBC,∴∠APM=∠BPC,∴∠CPM=∠APB=90°,即PM⊥PC,故②正确;∵∠MPC+∠MBC=90°+90°=180°,∴B、C、P、M四点共圆,∴∠MPB=∠MCB,故③正确;∵AP⊥BN,∴∠APN=∠APB=90°,∴∠PAN+∠ANB=90°,∵∠ANB+∠ABN=90°,∴∠PAN=∠ABN,∵∠APN=∠BPA=90°,∴△PAN∽△PBA,∴AN PA BA PB=,∵△PAM∽△PBC,∴Al AP BC BP=,∴AN AM AB BC=,∵AB=BC,∴AM=AN,故④正确;故选:A.【点睛】本题考查了相似三角形的判定和性质,正方形的性质、四点共圆,同角的余角相等,判断出PM⊥PC是解题的关键.3.C解析:C【解析】如图所示,AB ,CD 为树,且AB=13,CD=8,BD 为两树距离12米,过C 作CE ⊥AB 于E ,则CE=BD=8,AE=AB-CD=6,在直角三角形AEC 中,AC=10米,答:小鸟至少要飞10米.故选C .4.D解析:D【解析】【分析】利用相似三角形性质:对应角相等、对应边成比例,可得结论.【详解】由题意可得,A ABC DE ∽△△,所以AE DE AC BC=, 故选D .【点睛】在书写两个三角形相似时,注意顶点的位置要对应,即若ABC A B C '''∽△△,则说明点A 的对应点为点'A ,点B 的对应点B ',点C 的对应点为点C '. 5.C解析:C【解析】【分析】过A 作AF ∥BC 交BM 延长线于F ,设BC=3a ,则BP=PQ=QC=a ;根据平行线间的线段对应成比例的性质分别求出BD 、BE 、BM 的长度,再来求BD ,DE ,EM 三条线段的长度,即可求得答案.【详解】过A 作AF ∥BC 交BM 延长线于F ,设3BC a =,则BP PQ QC a ===;∵AM CM =,AF ∥BC , ∴1AF AM BC CM==, ∴3AF BC a ==,∵AF ∥BP , ∴133BD BP a DF AF a ===, ∴34DF BF BD ==, ∵AF ∥BQ , ∴2233BE BQ a EF AF a ===, ∴23EF BE =,即25BF BE =, ∵AF ∥BC , ∴313BM BC a MF AF a===, ∴BM MF =,即2BF BM =, ∴235420BF BF BF DE BE BD =-=-=,22510BF BF BF EM BM BE =-=-=, ∴3::::?53242010BF BF BF BD DE EM ==::. 故选:C .【点睛】 本题考查了平行线分线段成比例定理以及比例的性质,正确作出辅助线是关键.6.B解析:B【解析】【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】∵四边形ABCD 是矩形,∴AD =BC =xcm ,∵四边形ABEF 是正方形,∴EF =AB =ycm ,∴DF =EC =(x ﹣y )cm ,∵矩形FDCE 与原矩形ADCB 相似,∴DF:AB=CD:AD,即:x y y y x -=∴xy=5+12,故选B.【点睛】本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.7.B解析:B【解析】【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.8.A解析:A【解析】【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【详解】解:过点A作AD⊥BC,∵△ABC 中,cosB=2,sinC=35,AC=5,∴cosB=2=BD AB , ∴∠B=45°,∵sinC=35=AD AC =5AD , ∴AD=3,∴,∴BD=3,则△ABC 的面积是:12×AD ×BC=12×3×(3+4)=212. 故选:A .【点睛】此题主要考查了解直角三角形的知识,作出AD ⊥BC ,进而得出相关线段的长度是解决问题的关键. 9.C解析:C【解析】【分析】根据矩形的性质可知:求AD 的长就是求BC 的长,易得∠BAC =∠ADE ,于是可利用三角函数的知识先求出AC ,然后在直角△ABC 中根据勾股定理即可求出BC ,进而可得答案.【详解】解:∵四边形ABCD 是矩形,∴∠B =∠BAC =90°,BC=AD ,∴∠BAC +∠DAE =90°, ∵DE AC ⊥,∴∠ADE +∠DAE =90°,∴∠BAC =ADE α∠=,在直角△ABC 中,∵3cos 5α=,5AB =,∴25cos 3AB AC α==,∴AD=BC 203==. 故选:C.【点睛】本题考查了矩形的性质、勾股定理和解直角三角形的知识,属于常考题型,熟练掌握矩形的性质和解直角三角形的知识是解题关键.10.D解析:D【解析】【分析】利用直角三角形DEF 和直角三角形BCD 相似求得BC 的长后加上小明同学的身高即可求得树高AB.【详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴BC DC EF DE=,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴20 0.30.4 BC=,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.11.D解析:D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D.12.B解析:B【解析】分析:分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.详解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项错误;②y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项错误;③y=2x2,当x>1时,函数值y随自变量x增大而减小,故此选项正确;④y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项正确.故选B.点睛:本题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题的关键.二、填空题13.x≤-2或x>0【解析】【分析】先把点A(m2)代入解析式得A(22)再根据反比例函数的对称性求出A点关于原点的对称点A(-2-2)再根据函数图像即可求出函数值y≥-2时自变量的取值【详解】把点A (解析:x≤-2或x >0【解析】【分析】先把点A (m,2)代入解析式得A(2,2),再根据反比例函数的对称性求出A 点关于原点的对称点A ’(-2,-2),再根据函数图像即可求出函数值y≥-2时自变量的取值.【详解】把点A (m,2)代入y =,得A (2,2),∵点A (2,2)关于原点的对称点A’为(-2,-2),故当函数值y≥-2时,自变量x 的取值范围为x≤-2或x >0.【点睛】此题主要考查反比例函数的图像,解题的关键是利用反比例函数的中心对称性. 14.【解析】【分析】由证得【详解】∵∴△CED ∽△CAB ∴∵∴∵为的角平分线∴∠ADE=∠BAD=∠DAE ∴故填:【点睛】此题考查相似三角形的判定与性质根据平行线证得三角形相似由此得到边的比值关系推导出 解析:35【解析】【分析】由DE AB ∥证得【详解】∵DE AB ∥,∴△CED ∽△CAB, ∴DE CE AB AC =, ∵23AE EC =, ∴35DE CE AB AC ==, ∵AD 为ABC ∆的角平分线,DE AB ∥,∴∠ADE=∠BAD=∠DAE, ∴AE AB =35DE CE AB AC ==, 故填:35. 【点睛】 此题考查相似三角形的判定与性质,根据平行线证得三角形相似,由此得到边的比值关系,推导出AEAB的值.15.24米【解析】【分析】先设建筑物的高为h米再根据同一时刻物高与影长成正比列出关系式求出h的值即可【详解】设建筑物的高为h米由题意可得:则4:6=h:36解得:h=24(米)故答案为24米【点睛】本题解析:24米.【解析】【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可.【详解】设建筑物的高为h米,由题意可得:则4:6=h:36,解得:h=24(米).故答案为24米.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.16.12【解析】【分析】根据位似是相似的特殊形式位似比等于相似比其对应的面积比等于相似比的平方进行解答即可【详解】解:∵△ABC与△A′B′C′是位似图形位似比是1:2∴△ABC∽△A′B′C′相似比是解析:12【解析】【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【详解】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是12,故答案为12.【点睛】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.17.2【解析】【分析】【详解】如图过A点作AE⊥y轴垂足为E∵点A在双曲线上∴四边形AEOD的面积为1∵点B在双曲线上且AB∥x轴∴四边形BEOC的面积为3∴四边形ABCD为矩形则它的面积为3-1=2解析:2【解析】【分析】【详解】如图,过A 点作AE ⊥y 轴,垂足为E ,∵点A 在双曲线1y=x 上,∴四边形AEOD 的面积为1 ∵点B 在双曲线3y=x上,且AB ∥x 轴,∴四边形BEOC 的面积为3 ∴四边形ABCD 为矩形,则它的面积为3-1=218.3【解析】【分析】先根据同一时刻物高与影长成正比求出QD 的影长再根据此影长列出比例式即可【详解】解:过N 点作ND ⊥PQ 于D 又∵AB=2BC=16PM=12NM=08∴PQ=QD+DP=QD+NM=1解析:3【解析】【分析】先根据同一时刻物高与影长成正比求出QD 的影长,再根据此影长列出比例式即可.【详解】解:过N 点作ND ⊥PQ 于D ,BC DN AB QD∴= 又∵AB=2,BC=1.6,PM=1.2,NM=0.8, 1.5AB DN QD BC ⋅∴== ∴PQ=QD+DP=QD+NM=1.5+0.8=2.3(m ).故答案为:2.3.【点睛】在运用相似三角形的知识解决实际问题时,要能够从实际问题中抽象出简单的数学模型,然后列出相关数据的比例关系式,从而求出结论.19.【解析】【分析】先证△AEG∽△ABC△AGF∽△ACD再利用相似三角形的对应边成比例求解【详解】解:∵EF∥BD∴∠AEG=∠ABC∠AGE=∠ACB∴△AEG∽△A BC且S△AEG=S四边形EB解析:1 2【解析】【分析】先证△AEG∽△ABC,△AGF∽△ACD再利用相似三角形的对应边成比例求解.【详解】解:∵EF∥BD∴∠AEG=∠ABC,∠AGE=∠ACB,∴△AEG∽△ABC,且S△AEG=13S四边形EBCG∴S△AEG:S△ABC=1:4,∴AG:AC=1:2,又EF∥BD∴∠AGF=∠ACD,∠AFG=∠ADC,∴△AGF∽△ACD,且相似比为1:2,∴S△AFG:S△ACD=1:4,∴S△AFG1=3S四边形FDCGS△AFG1=4S△ADC∵AF:AD=GF:CD=AG:AC=1:2∵∠ACD=90°∴AF=CF=DF∴CF:AD=1:2.20.3【解析】∵=k∴a=bkc=dke=fk∴a+c+e=bk+dk+fk=k(a+b+c)∵a+c+e=3(b+d+f)∴k=3故答案为:3解析:3【解析】∵a c eb d f===k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),∵a+c+e=3(b+d+f),∴k=3,故答案为:3.三、解答题21.9.6米.【解析】试题分析:要求这棵大树没有折断前的高度,只要求出AB 和AC 的长度即可,根据题目中的条件可以求得AB 和AC 的长度,即可得到结论.试题解析:解:∵AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE ,∴△F AB ∽△FDE ,∴AB FB DE FE = ,∵FB =4米,BE =6米,DE =9米,∴4946AB =+,得AB =3.6米,∵∠ABC =90°,∠BAC =53°,cos ∠BAC =AB AC ,∴AC =cos AB BAC ∠ =3.60.6=6米,∴AB +AC =3.6+6=9.6米,即这棵大树没有折断前的高度是9.6米. 点睛:本题考查直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答.22.CE 的长为(4+)米【解析】【分析】由题意可先过点A 作AH ⊥CD 于H .在Rt △ACH 中,可求出CH ,进而CD=CH+HD=CH+AB ,再在Rt △CED 中,求出CE 的长.【详解】过点A 作AH ⊥CD ,垂足为H ,由题意可知四边形ABDH 为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt △ACH 中,tan ∠CAH=CH AH , ∴CH=AH•tan ∠CAH ,∴CH=AH•ta n ∠CAH=6tan30°=6×33 ∵DH=1.5,∴3,在Rt △CDE 中,∵∠CED=60°,sin ∠CED=CD CE,∴CE=23 1.53+=(4+3)(米),答:拉线CE的长为(4+)米.考点:解直角三角形的应用-仰角俯角问题23.(1)36°;(2)证明见解析【解析】【分析】(1)求出∠ABC、∠ABD、∠CBD的度数,求出∠D度数,根据三角形内角和定理求出∠BAF和∠BAD度数,即可求出答案;(2)求出△AEF∽△DEA,根据相似三角形的性质得出即可.【详解】(1)∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=12×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=12∠ABC=12×72°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;(2)∵∠CBD=36°,∠FAC=∠CBD,∴∠FAC=36°=∠D,∵∠AED=∠AEF,∴△AEF∽△DEA,∴AE ED EF AE=,∴AE2=EF×ED.【点睛】本题考查了圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.24.证明见解析【解析】【分析】由已知易证∠BAC=∠ECD,在Rt△ABC中由已知可得2225AB BC+=,结合AB=4,CD=5,可证得AB CE AC CD =,由此即可由“两边对应成比例,且夹角相等的两三角形相似”得到△ABC ∽△CED .【详解】∵ ∠B=90°,AB=4,BC=2, ∴ 2225AC AB BC =+=.∵ CE=AC ,∴ 25CE =.∵ CD=5,∴ AB AC CE CD=. ∵ ∠B=90°,∠ACE=90°,∴ ∠BAC+∠BCA=90°,∠BCA+∠DCE=90°. ∴ ∠BAC=∠DCE.∴ △ABC ∽△CED.25.见解析【解析】试题分析:(1)由三角形内角和定理可得:∠BDE=180°-∠B-∠DEB ,∠CEF=180°-∠DEF-∠DEB ,结合∠B=∠DEF ,可得∠BDE=∠CEF ;由AB=AC 可得∠B=∠C ,由此即可证得:△BDE ∽△CEF ;(2)由(1)中结论:△BDE ∽△CEF 可得:BE DE CF EF=,结合BE=EC 可得:CE DE CF EF=,再结合∠C=∠B=∠DEF ,证得:△DEF ∽△ECF ,由此可得∠DFE=∠EFC ,从而得到结论EF 平分∠DFC.试题解析:(1)∵AB AC =,∴B C ∠=∠,∵180BDE B DAB ∠=︒-∠-∠,180CEF DEF DEB ∠=︒-∠-∠,∵DEF B ∠=∠,∴BDE CEF ∠=∠, BDE CEF V V ∽.(2)∵BDE CEF V V ∽, ∴BE DE CF EF=, ∵E 是BC 中点,BE CE =, ∴CE DE CF EF=, ∵DEF B C ∠=∠=∠, ∴DEF ECF V V ∽, ∴DFE CFE ∠=∠, ∴EF 平分DFC ∠.。

2020-2021学年度第二学期九年级数学期中试卷及答案(共5套) (2)

2020-2021学年度第二学期九年级数学期中试卷及答案(共5套) (2)

2020-2021学年度第二学期九年级数学期中试卷学校__________班级___________姓名___________成绩___________考生须知1.本试卷共8页,共三道大题,29道小题,满分120分,考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、画图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡一并交回。

一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为A.96.5×107B.9.65×107 C.9.65×108 D.0.965×1092.如图是某个几何体的三视图,该几何体是A.长方体B.正方体C.圆柱D.三棱柱3.一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为A.14B.34C.15D.454.下列图形中,是轴对称图形但不是中心对称图形的是A.B.C.D.5.如图,在ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为A.5 B.4C.3 D.26.如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,1=35∠︒,则2∠的度数为A.35︒B.15︒C.10︒D.5︒7.初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如下表所示:ECDBA则这40名同学投掷实心球的成绩的众数和中位数分别是A.9,8 B.9,8.5 C.8,8 D.8,8.58.京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数(,)表示图中承德的位置,“数对”对”19043︒(,)表示图中保定的位置,则与图中张家口160238︒的位置对应的“数对”为(,)A.176145︒(,)B.17635︒(,)C.100145︒(,)D.10035︒9.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:油电混动汽车普通汽车购买价格(万元)17.48 15.98每百公里燃油成本(元)31 46某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少..为A.5 000 B.10 000 C.15 000 D.20 00010.小明在暗室做小孔成像实验.如图1,固定光源(线段MN)发出的光经过小孔(动点K)成像(线段M'N')于足够长的固定挡板(直线l)上,其中MN// l.已知点K匀速运动,其运动路径由AB,BC,CD,DA,AC,BD组成.记它的运动时间为x,M'N'的长度为y,若y关于x的函数图象大致如图2所示,则点K的运动路径可能为A.A→B→C→D→A B.B→C→D→A→BC.B→C→A→D→B D.D→A→B→C→D图1 图2二、填空题(本题共18分,每小题3分)11. 分解因式:a2b-2ab+b=________________.12. 如图,AB为⊙O的弦,OC⊥AB于点C.若AB=8,OC=3,则⊙O的半径长为________.13.埃及《纸草书》中记载:“一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.”设这个数是x,可列方程为.14.在下列函数①21y x=+;②22y x x=+;③3yx=;④3y x=-中,与众不同的一个是_____(填序号),你的理由是________.15.北京市2010~2015年高考报名人数统计如图所示.根据统计图中提供的信息,预估2016年北京市高考报名人数约为________万人,你的预估理由是____________.16.阅读下面材料:A BCO在数学课上,老师提出如下问题:小云的作法如下:老师说:“小云的作法正确.”请回答:小云的作图依据是________________________________________.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:)2016tan3012π-⎛⎫--︒++⎪⎝⎭18.解不等式组41)3(2),14,2x xxx-≤+⎧⎪⎨-<-⎪⎩(并写出它的所有整数解....19.已知250x x+-=,求代数式2(1)(3)(2)(2)x x x x x---++-的值.20.如图,在△ABC中,90BAC∠=︒,AD BC⊥于点D,DE为AC边上的中线.求证:BAD EDC∠=∠.21.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小琼步行12 000步与小博步行9 000步消耗的能量相同.若 每消耗1千卡能量小琼行走的步数比小博多10步,求小博每消耗1千卡能量需要行走多 少步.22.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点B 作AC的平行线交DC 的延长线于点E . (1)求证:BD=BE ;(2)若BE =10,CE =6,连接OE ,求tan ∠OED 的值.23.在平面直角坐标系xOy 中,直线y x =-与双曲线ky x=(0k ≠)的一个交点为(6,)P m . (1)求k 的值;(2)将直线y x =-向上平移b (b>0)个单位长度后,与x 轴,y 轴分别交于点A ,点B ,与双曲线ky x =(0k ≠)的一个交点记为Q .若2BQ AB =,求b 的值.24.如图,AB ,AD 是⊙O 的弦,AO 平分BAD ∠.过点B作⊙O 的切线交AO 的延长线于点C ,连接CD ,BO . 延长BO 交⊙O 于点E ,交AD 于点F ,连接AE ,DE . (1)求证:CD 是⊙O 的切线; (2)若3AE DE ==,求AF 的长.O ED ABC25.阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点, 票房占比为11.25%.2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影, 票房成绩为2.4亿元.而2015年中国内地动画电影市场共8部破亿,国产动画电影占3 部,分别是《大圣归来》,《熊出没2》和《十万个冷笑话》.其中,《大圣归来》以9.55 亿元票房夺冠,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》 以1.2亿元票房成绩勉强破亿.另外5部来自海外动画电影,其中美国两部全球热映的 动画电影《超能陆战队》和《小黄人大眼萌》在中国内地只拿下5.26亿元和4.36亿元 票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A 梦之伴我 同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入. 2015年中国内地动画电影市场中,国产动画电影共上映41部,其中票房在1000万元~5000万元、5000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟.根据以上材料解答下列问题:(1)2015年中国内地动画电影票房收入为亿元; (2)右图为2015年国产..动画电影票房金字塔,则B =; (3)选择统计表或.统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.26.有这样一个问题:探究函数(1)(2)(3)y x x x =---的图象与性质.小东对函数(1)(2)(3)y x x x =---的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)函数(1)(2)(3)y x x x =---的自变量x 的取值范围是全体实数; (2)下表是y 与x 的几组对应值.x … 2-1- 0 1 2 3 4 5 6 … y…m24-6-62460…①m =;②若M (7-,720-),N (n ,720)为该函数图象上的 两点,则n =;(3)在平面直角坐标系xOy 中, A (,A A x y ),B (,B A x y -)为该函数图象上的两点,且A 为23x ≤≤范围内的最低点, A 点的位置如图所示. ①标出点B 的位置;②画出函数(1)(2)(3)y x x x =---(04x ≤≤)的图象.27.在平面直角坐标系xOy 中,抛物线224y mx mx m =-+-(0m ≠)的顶点为A ,与x 轴交于B ,C 两点(点B 在点C 左侧),与y 轴交于点D . (1)求点A 的坐标; (2)若BC =4,①求抛物线的解析式;②将抛物线在C ,D 之间的部分记为图象G (包含 C ,D 两点).若过点A 的直线+(0)y kx b k =≠ 与图象G 有两个交点,结合函数的图象,求k 的取值范围.28.在△ABC 中,AB =AC ,∠BAC =90︒,点D 在射线BC 上(与B 、C 两点不重合),以AD 为边作正方形ADEF ,使点E 与点B 在直线AD 的异侧,射线BA 与射线CF 相交于点G . (1)若点D 在线段BC 上,如图1.①依题意补全图1;②判断BC 与CG 的数量关系与位置关系,并加以证明;(2)若点D 在线段BC 的延长线上,且G 为CF 中点,连接GE ,AB=2,则GE 的长为_______,并简述求GE 长的思路.图1 备用图29.在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C不重合的点,点P 关于⊙C 的限距点的定义如下:若P '为 直线PC 与⊙C 的一个交点,满足2r PP r '≤≤,则称P ' 为点P 关于⊙C 的限距点,右图为点P 及其关于⊙C 的限 距点P '的示意图.(1)当⊙O 的半径为1时.①分别判断点M (3,4),N 5(,0)2,T (1,2)关 于⊙O 的限距点是否存在?若存在,求其坐标;②点D 的坐标为(2,0),DE ,DF 分别切⊙O 于点E ,点F ,点P 在△DEF 的 边上.若点P 关于⊙O 的限距点P '存在,求点P '的横坐标的取值范围;(2)保持(1)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E →F →D →E 的方向运动,⊙C 的圆心C 的坐标为(1,0),半径为r .请从下面两个问题中任选一个作答. 温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.问题1问题2若点P 关于⊙C 的限距点P '存在,且P '随点P 的运动所形成的路径长为r π,则r 的最小值为__________.若点P 关于⊙C 的限距点P '不存在,则r 的取值范围为________.2020-2021学年度第二学期九年级数学期中试卷参考答案题号 1 2 3 4 5 6 7 8 9 10答案B D C C D C A A B B题号11 12 13答案2)1(-ab 5 33712132=+++xxxx题号14 15 16答案所填写的理由需支持你填写的结论. 如:③,理由是:只有③的自变量取值范围不是全体实数预估理由需包含统计图提供的信息,且支撑预估的数据. 如:6.53 ,理由是:最近三年下降趋势平稳四条边都相等的四边形是菱形;菱形的对边平行(本题答案不唯一)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式3164313=-⨯++-……………………4分43=-.………………………5分解不等式①,得10≤x.………………………2分解不等式②,得7>x.………………………3分∴原不等式组的解集为107≤<x.………………………4分∴原不等式组的所有整数解为8,9,10.………………………5分19.解:原式4312222-++-+-=xxxxx………………………3分32-+=xx.………………………4分∵250x x+-=,∴52=+xx.∴原式=532-=..………………………5分20.证明:∵ 90BAC ∠=︒,∴ 90BAD DAC ∠+∠=︒. ∵ AD BC ⊥, ∴ 90ADC ∠=︒.∴ 90DAC C ∠+∠=︒.∴ BAD C ∠=∠. ………………………2分 ∵ DE 为AC 边上的中线, ∴ DE EC =.∴ EDC C ∠=∠. .………………………4分 ∴ BAD EDC ∠=∠. ………………………5分21.解:设小博每消耗1千卡能量需要行走x 步.………………………1分由题意,得xx 90001012000=+ . ………………………3分 解得 30=x . ………………………4分 经检验,30=x 是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵ 四边形ABCD 为矩形,∴ AC BD =,AB ∥DC .∵ AC ∥BE ,∴ 四边形ABEC 为平行四边形. ………………………2分 ∴ AC BE =.∴ BD BE =. ………………………3分 (2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形ABCD 为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==, ∴ 6CD CE ==. 同理,可得132CF DF CD ===. ∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =. ∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分A23. 解:(1)∵(6,)P m 在直线y x =-上,∴6m =-. ………………………1分∵(6,6)P -在双曲线k y x =上, ∴6(6)6k =⨯-=-. ………………………2分图1 图2(2) ∵y x =-向上平移b (0b >)个单位长度后,与x 轴,y 轴分别交于A ,B ,∴(,0),(0,)A b B b . ………………………3分作QH ⊥x 轴于H ,可得△HAQ ∽△OAB .如图1,当点Q 在AB 的延长线上时,∵2BQ AB =,∴3===ABAQ OA HA OB HQ . ∵OA OB b ==, ∴3HQ b =,2HO b =.∴Q 的坐标为(2,3)b b -.由点Q 在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时,同理可得,Q 的坐标为(2,)b b -.由点Q 在双曲线6y x=-上,可得3b =综上所述,1b =或3b =. ………………………5分24. (1) 证明:如图,连接OD . ………………………1分∵BC 为⊙O 的切线,∴90CBO ∠=︒.∵AO 平分BAD ∠,∴12∠=∠.∵OA OB OD ==,∴1=4=2=5∠∠∠∠.∴BOC DOC ∠=∠.∴△BOC ≌△DOC .∴90CBO CDO ∠=∠=︒.∴CD 为⊙O 的切线. ……………2分(2) ∵AE DE =,∴AE DE =.∴34∠=∠. ………………………3分∵124∠=∠=∠,∴123∠=∠=∠.∵BE 为⊙O 的直径,∴90BAE ∠=︒.∴123430∠=∠=∠=∠=︒.………………………4分∴90AFE ∠=︒ .在Rt △AFE 中,∵3AE =,︒=∠303,∴332AF =. ………………………5分25. (1) 45;………………………2分(2) 21;………………………3分(3) 2.4(120%) 2.88⨯+=.2015年中国内地动画电影市场票房收入前5名的票房成绩统计表电影票房(亿元) 大圣归来9.55 哆啦A 梦之伴我同行5.3 超能陆战队5.26 小黄人大眼萌4.36 熊出没22.88 ………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分m=-;………………………1分26. (2) ①60n=;………………………2分②11(3)正确标出点B的位置,画出函数图象. …………………5分27. 解:(1)224=-+-y mx mx m2(21)4=-+-m x x2=--.m x(1)4-.………………………2分∴点A的坐标为(1,4)(2)①由(1)得,抛物线的对称轴为x=1.∵抛物线与x轴交于B,C两点(点B在点C左侧),BC=4,∴ 点B 的坐标为 (1,0)-,点C 的坐标为 (3,0).………………………3分∴ 240m m m ++-=.∴ 1m =.∴ 抛物线的解析式为223y x x =--.……4分② 由①可得点D 的坐标为 (0,3)-.当直线过点A ,D 时,解得1k =-.………5分当直线过点A ,C 时,解得2k =. ………6分结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. …………7分28. 解:(1) ①补全图形,如图1所示. ………………………1分图1②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………………2分证明: 如图1.∵︒=∠=90,BAC AC AB ,∴︒=∠=∠45ACB B ,︒=∠+∠9021.∵射线BA 、CF 的延长线相交于点G ,∴︒=∠=∠90BAC CAG .∵四边形ADEF 为正方形,∴︒=∠+∠=∠9032DAF ,AF AD =.∴31∠=∠.∴△ABD ≌△ACF .…………………3分∴︒=∠=∠45ACF B .∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分(2) 10GE =.…………………5分思路如下:a . 由G 为CF 中点画出图形,如图2所示.b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由2=AB ,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得10AD =,即10GE FE AD ===. ……7分29.解:(1)①点M ,点T 关于⊙O 的限距点不存在;点N 关于⊙O 的限距点存在,坐标为(1,0).………………………2分②∵点D 的坐标为(2,0),⊙O 半径为1,DE ,DF 分别切⊙O 于点E ,点F ,∴切点坐标为13()22,,13()22,-.……………3分 如图所示,不妨设点E 的坐标为13()2,,点F 的坐标为13()2,-,EO ,FO 的延长线分别交⊙O 于点'E ,'F ,则13'()2E --,,13'()2F -,. 设点P 关于⊙O 的限距点的横坐标为x .Ⅰ.当点P 在线段EF 上时,直线PO 与''E F 的交点'P 满足2'1≤≤PP ,故点P 关于⊙O 的限距点存在,其横坐标x 满足112x -≤≤-.………5分 Ⅱ.当点P 在线段DE ,DF (不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙O 的限距点不存在.Ⅲ.当点P 与点D 重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P 关于⊙O 的限距点存在,其横坐标x =1.综上所述,点P关于⊙O的限距点的横坐标x的范围为112x-≤≤-或x=1.……………………6分(2)问题1:39.………………8分问题2:0 < r < 16.………………7分2020-2021学年度第二学期九年级数学期中试卷一、选择题(每小题3分,共24分)1.3的相反数是()A.﹣3 B.3 C.﹣D.2.不等式组的解集是()A.x>﹣3 B.x<﹣3 C.x>2 D.x<23.如图所示,下列几何体中主视图、左视图、俯视图都相同的是()A.B.C.D.4.如图,在四边形ABCD中.AD=BC.E,F,G分别是AB,CD,AC的中点,若∠DAC=36°,∠ACB=84°,则∠FEG等于()A.20°B.24°C.26°D.15°5.下列计算正确的是()A.(﹣2a)2=2a2 B.a6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a•a2=a26.若一个圆锥的底面积为4πcm2,高为4cm,则该圆锥的侧面展开图中圆心角为()A.40°B.80°C.120°D.150°7.如图是正方形网格,除A,B两点外,在网格的格点上任取一点C,连接AC,BC,能使△ABC为等腰三角形的概率是()A.B.C.D.8.如图,点B,E是反比例函数y=﹣(x<0)图象上的两点,点C在y轴上,点A,D在x轴上,且四边形OABC和四边形ADEF均为正方形,则点D的横坐标是()A.﹣1﹣B.﹣5+C.﹣2D.﹣1﹣2二、填空题(每小题3分,共24分)9.甲型H1N1流感病毒的直径大约是0.000000081米,将0.000000081米用科学记数法表示为米.10.某校九年级(1)班8名学生的体重(单位:kg)分别为39,43,40,43,45,45,46,43,则这组数据的中位数是.11.分解因式:a3﹣4ab2=.12.甲、乙两人5次射击命中的环数如下:甲:7 9 8 6 10;乙:7 8 9 8 8.则这两人5次射击命中的环数的平均数,方差s甲2s乙2.(填“>”“<”或“=”).13.如果是整数,则正整数n的最小值是.14.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,连接AE,∠E=36°,则∠ADC 的度数是.15.如图,已知在等边△ABC中,D、E是BC,AC上的点,AE=CD,AD与BE相交于Q,BP丄AD,则的值是.16.如图,已知直线l的解析式是y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2…,按此作法继续下去,则点A2014的纵坐标为.三、解答题(每小题8分,共16分)17.先化简,再求值:(1﹣)÷,再选一个你喜欢的整数代入求值.18.如图,已知△ABC,按如下步骤作图:①分别以A,C为圆心,大于AC的长为半径画弧,两弧交于P,Q两点;②作直线PQ,分别交AB,AC于点E,D,连接CE;③过C作CF∥AB交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.四、解答下列各题(每小题10分,共20分)19.某中学开展以“我最喜欢的职业”为主题的调査活动,并根据收集的数据绘制了如图不完整的统计图.请你根据图中提供的信息,解答下面的问题:(1)求被调査的学生人数;(2)将折线统计图补充完整;(3)求出扇形统计图中公务员部分对应的圆心角的度数.20.在一个口袋里有四个完全相同的小球,把它们分别标号为1,2,3,4,小明和小强采取的摸取方法分别是:小明:随机摸取一个小球记下标号,然后放回,再随机摸取一个小球,记下标号;小强:随机摸取一个小球记下标号,不放回,再随机摸取一个小球,记下标号.(1)用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果;(2)分别求出小明和小强两次摸球的标号之和等于5的概率.五、解答下列各题(每小题10分,共20分)21.如图是某个园区部分景点(景点A,B,C,D,E)示意图,景点A,D之间是一个荷花池,景点E,D和景点B,D之间正在维修,不能通行.已知AB=400米,BC=l000米,CE=600米,CD⊥AD,∠BDC=45°,∠ABD=15°.请根据以上条件求出荷花池AD的宽度和景点E,D之间的距离.22.如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.(1)求证:MN是⊙O的切线;(2)当0B=6cm,OC=8cm时,求⊙O的半径及MN的长.六、解答下列各题(每小题10分,共20分)23.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?24.某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告.已知这种商品每月的广告费用m(千元)与销售量倍数p关系为p=﹣0.4m2+2m;试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!七、25.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G,一个等腰直角三角尺按如图①所示的位置摆放.该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察,测量BF与CG的长度,猜想BF与CG满足的数量关系是.(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交直线BC于点D,过点D作DE丄BA于点E,此时请你通过观察、测量DE、DF与CG的长度关系,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想.(3)当三角尺在(2)的基础上沿AC方向继续平移(点F在射线AC上,且点F与点A、点C不重合)时,直接写出DE、DF与CG之间满足的数量关系,不用说明理由.八、26.如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4.B 为线段OA的中点.直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合).PQ∥y轴与抛物线交于点Q.(1)求经过B、E、C三点的抛物线的解忻式;(2)判断△BDC的形状.并绐出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;(3)若抛物线的顶点为N.连接QN.探究四边形PMNQ能否为菱形?若能,请直接写出点P的坐标;若不能,请说明理由.2020-2021学年度第二学期九年级数学期中试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.3的相反数是()A.﹣3 B.3 C.﹣D.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得3的相反数是:﹣3.故选:A.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.不等式组的解集是()A.x>﹣3 B.x<﹣3 C.x>2 D.x<2【分析】先分别求出两个不等式的解集,再求出解集的公共部分即可.【解答】解:,由①得:x>﹣3,由②得:x>2,所以不等式组的解集是x>2.故选C.【点评】本题考查了解一元一次不等式组,关键是求出两个不等式的解集,找出解集的公共部分.3.如图所示,下列几何体中主视图、左视图、俯视图都相同的是()A.B.C.D.【分析】根据三视图的基本知识,分析各个几何体的三视图然后可解答.【解答】解:A、此半球的三视图分别为半圆弓形,半圆弓形,圆,不符合题意;B、圆柱的三视图分别为长方形,长方形,圆,不符合题意;C、球的三视图都是圆,符合题意;D、六棱柱的三视图分别为长方形,长方形,六边形,不符合题意.故选C.【点评】本题考查了几何体的三种视图,掌握定义是关键.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4.如图,在四边形ABCD中.AD=BC.E,F,G分别是AB,CD,AC的中点,若∠DAC=36°,∠ACB=84°,则∠FEG等于()A.20°B.24°C.26°D.15°【分析】根据三角形中位线定理和等腰三角形等边对等角的性质求解即可.【解答】解:∵AD=BC,E,F,G分别是AB,CD,AC的中点,∴GF是△ACD的中位线,GE是△ACB的中位线,∴GF AD,GE BC.又∵AD=BC,∴GF=GE,∠FGC=∠DAC=36°,∠AGE=∠ACB=84°,∴∠EFG=∠FEG,∵∠FGE=∠FGC+∠EGC=36°+(180°﹣84°)=132°,∴∠EFG=(180°﹣∠FGE)=24°.故选:B.【点评】主要考查了三角形中位线定理和等腰三角形的判定与性质.中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.5.下列计算正确的是()A.(﹣2a)2=2a2 B.a6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a•a2=a2【分析】利用同底数的幂的乘法、除法以及分配律即可求解.【解答】解:A、(﹣2a)2=4a2,选项错误;B、a6÷a3=a3,选项错误;C、正确;D、a•a2=a3,选项错误.故选C.【点评】本题考查同底数幂的除法,分配律,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.6.若一个圆锥的底面积为4πcm2,高为4cm,则该圆锥的侧面展开图中圆心角为()A.40°B.80°C.120°D.150°【分析】根据圆锥底面积求得圆锥的底面半径,然后利用勾股定理求得母线长,根据圆锥的母线长等于展开图扇形的半径,求出圆锥底面圆的周长,也即是展开图扇形的弧长,然后根据弧长公式可求出圆心角的度数.【解答】解:∵圆锥的底面积为4πcm2,∴圆锥的底面半径为2cm,∴底面周长为4π,∵高为4cm,∴由勾股定理得圆锥的母线长为6cm,设侧面展开图的圆心角是n°,根据题意得:=4π,解得:n=120.故选C.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.7.如图是正方形网格,除A,B两点外,在网格的格点上任取一点C,连接AC,BC,能使△ABC为等腰三角形的概率是()A.B.C.D.【分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.【解答】解:解:如图,∵AB==,∴①若AB=BC,则符合要求的有:C1,C2,C3,C4,C5,共5个点;②若AB=AC,则符合要求的有:C6,C7,C8共3个点;若AC=BC,则不存在这样格点.∴这样的C点有8个.∴能使△ABC为等腰三角形的概率是.故选D.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.如图,点B,E是反比例函数y=﹣(x<0)图象上的两点,点C在y轴上,点A,D在x轴上,且四边形OABC和四边形ADEF均为正方形,则点D的横坐标是()A.﹣1﹣B.﹣5+C.﹣2D.﹣1﹣2【分析】易得点B的坐标,设点E的纵坐标为y,可表示出点E的横纵坐标,代入所给反比例函数即可求得点E的纵坐标,也就求得了点E的横坐标.【解答】解:∵四边形OABC是正方形,点B在反比例函数y=﹣的图象上,∴点B的坐标为(﹣2,2).设点E的纵坐标为y,∴点E的横坐标为(﹣2+y),∴y×(﹣2+y)=﹣4,即y2﹣2y+4=0,即y=﹣1±,∵y>0,∴y=﹣1+,∴点E的横坐标为﹣1++2=﹣1﹣,则点E的横坐标为﹣1﹣,故选:A.【点评】此题主要考查了反比例函数的综合应用中反比例函数的比例系数的意义,突破点是得到点B的坐标,用到的知识点为:在反比例函数图象上的点的横纵坐标的积等于反比例函数的比例系数.二、填空题(每小题3分,共24分)9.甲型H1N1流感病毒的直径大约是0.000000081米,将0.000000081米用科学记数法表示为8.1×10﹣8米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00 000 008 1=8.1×10﹣8,故答案为:8.1×10﹣8.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.某校九年级(1)班8名学生的体重(单位:kg)分别为39,43,40,43,45,45,46,43,则这组数据的中位数是43.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:将这组数据从小到大的顺序排列:39,40,43,43,43,45,45,46,处于中间位置的那两个数是43,那么由中位数的定义可知,这组数据的中位数是=43.故答案为:43.【点评】本题主要考查了将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错,难度适中.11.分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).【分析】观察原式a3﹣4ab2,找到公因式a,提出公因式后发现a2﹣4b2符合平方差公式的形式,再利用平方差公式继续分解因式.【解答】解:a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b).故答案为:a(a+2b)(a﹣2b).【点评】本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.12.甲、乙两人5次射击命中的环数如下:甲:7 9 8 6 10;乙:7 8 9 8 8.则这两人5次射击命中的环数的平均数,方差s甲2>s乙2.(填“>”“<”或“=”).【分析】分别计算出甲、乙两人的方差,再比较.。

2020-2021苏州市初三数学下期中试卷(带答案)

2020-2021苏州市初三数学下期中试卷(带答案)

2020-2021苏州市初三数学下期中试卷(带答案)一、选择题1.有一块直角边AB=3cm,BC=4cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A.67B.3037C.127D.60372.若反比例函数kyx(x<0)的图象如图所示,则k的值可以是()A.-1B.-2C.-3D.-43.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB.则cos∠AOB的值等于()A.B.C.D.4.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为()A.a B.a C.a D.a5.如图,在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣1(k为常数,且k>0)的图象可能是()A.B.C.D.6.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A.43B.42C.6D.47.反比例函数kyx=与1(0)y kx k=-+≠在同一坐标系的图象可能为()A.B.C.D.8.如图,校园内有两棵树,相距8米,一棵树树高13米,另一棵树高7米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞()A.8米B.9米C.10米D.11米9.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为()A.9B.8C.15D.14.510.如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A.△PAB∽△PCA B.△ABC∽△DBA C.△PAB∽△PDA D.△ABC∽△DCA 11.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为 ( )A.1:2B.1:4C.1:5D.1:612.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.12B.24C.14D.13二、填空题13.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FE⊥AD,EG=15里,HG经过A点,则FH=__里.14.在△ABC中,∠ABC=90°,已知AB=3,BC=4,点Q是线段AC上的一个动点,过点Q作AC的垂线交直线AB于点P,当△PQB为等腰三角形时,线段AP的长为_____.15.如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=3x的图象经过A、B两点,则菱形ABCD的面积是_____;16.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心,若AB=2,则DE=______.17.如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为_____.18.在平面直角坐标系中,O为坐标原点,B在x轴上,四边形OACB为平行四边形,且∠AOB=60°,反比例函数y=kx(k>0)在第一象限内过点A,且与BC交于点F.当F为BC的中点,且S△AOF=123时,OA的长为__________.19.如图,l1∥l2∥l3,AB=25AC,DF=10,那么DE=_________________.20.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为____m.三、解答题21.如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,•景区管委会又开发了风景优美的景点D,经测量,景点D位于景点A的北偏东30′方向8km处,•位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.(1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考试其他因素,求出这条公路的长.(结果精确到0.1km).(2)求景点C与景点D之间的距离.(结果精确到1km)(参考数据:3=1.73,5=2.24,sin53°=0.80,sin37°=0.60,tan53°=1.33,tan37°=0.75,sin38°=0.62,sin52°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73).22.已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图①,若四边形ABCD是矩形,且DE⊥CF,求证:DE AD CF CD=;(2)如图②,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时,使得DE ADCF CD=成立?并证明你的结论.23.马路两侧有两根灯杆AB、CD,当小明站在点N处时,在灯C的照射下小明的影长正好为NB,在灯A的照射下小明的影长为NE,测得BD=24m,NB=6m,NE=2m.(1)若小明的身高MN=1.6m,求AB的长;(2)试判断这两根灯杆的高度是否相等,并说明理由.24.已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:(1)△BCE∽△ADE;(2)AB•BC=BD•BE.25.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).(1)以原点O为位似中心,位似比为1∶2,在y轴的左侧,画出△ABC放大后的图形△A1B1C1,并直接写出C1点的坐标;(2)如果点D(a,b)在线段AB上,请直接写出经过(1)的变化后点D的对应点D1的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题解析:如图,过点B作BP⊥AC,垂足为P,BP交DE于Q.∵S△ABC=12AB•BC=12AC•BP,∴BP=·341255 AB BCAC⨯==.∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴DE BQ AC BP=.设DE=x,则有:1251255xx-=,解得x=6037,故选D.2.C解析:C【解析】【分析】由图像可知,反比例函数与线段AB相交,由A、B的坐标,可求出k的取值范围,即可得到答案.【详解】如图所示:由题意可知A(-2,2),B(-2,1),∴1-2⨯2<<-2⨯k,即4-<<-2k故选C.【点睛】本题考查反比例函数的图像与性质,由图像性质得到k的取值范围是解题的关键.3.B解析:B【解析】【分析】根据作图可以证明△AOB是等边三角形,则∠AOB=60°,据此即可求解.【详解】连接AB,由图可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB为等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.故选B.【点睛】本题主要考查了特殊角的三角函数值,正确理解△ABC是等边三角形是解题的关键.4.C解析:C【解析】【分析】【详解】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为a,∴△ACD的面积为a,故选C.【点睛】本题考查相似三角形的判定与性质,掌握相关性质是本题的解题关键.5.B解析:B【解析】当k>0时,直线从左往右上升,双曲线分别在第一、三象限,故A、C选项错误;∵一次函数y=kx-1与y轴交于负半轴,∴D选项错误,B选项正确,故选B.6.B解析:B【解析】【分析】由已知条件可得ABC DAC ~,可得出AC BC DC AC =,可求出AC 的长. 【详解】 解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=42, 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答. 7.B解析:B【解析】【分析】根据反比例函数和一次函数的性质逐个对选项进行分析即可.【详解】A 根据反比例函数的图象可知,k >0,因此可得一次函数的图象应该递减,但是图象是递增的,所以A 错误;B 根据反比例函数的图象可知,k >0,,因此一次函数的图象应该递减,和图象吻合,所以B 正确;C 根据反比例函数的图象可知,k <0,因此一次函数的图象应该递增,并且过(0,1)点,但是根据图象,不过(0,1),所以C 错误;D 根据反比例函数的图象可知,k <0,因此一次函数的图象应该递增,但是根据图象一次函数的图象递减,所以D 错误.故选B【点睛】本题主要考查反比例函数和一次函数的性质,关键点在于系数的正负判断,根据系数识别图象.8.C解析:C【解析】如图所示,AB ,CD 为树,且AB=13,CD=8,BD 为两树距离12米,过C 作CE ⊥AB 于E ,则CE=BD=8,AE=AB-CD=6,在直角三角形AEC 中,AC=10米,答:小鸟至少要飞10米.故选C.9.A解析:A【解析】【分析】由勾股定理可求AM的长,通过证明△ABM∽△EMA,可求AE=10,可得DE=6,由平行线分线段成比例可求DF的长,即可求解.【详解】解:∵AB=4,BM=2,∴AM===,∵四边形ABCD是正方形,∴AD∥BC,∠B=∠C=90°,∴∠EAM=∠AMB,且∠B=∠AME=90°,∴△ABM∽△EMA,∴BM AM AM AE=AE=∴AE=10,∴DE=AE﹣AD=6,∵AD∥BC,即DE∥MC,∴△DEF∽△CMF,∴DE DF MC CF=,∴642DFCF=-=3,∵DF+CF=4,∴DF=3,∴S△DEF=12DE×DF=9,故选:A.【点睛】本题考查了相似三角形的判定与性质,正方形的性质,勾股定理;熟练掌握相似三角形的性质,并能进行推理计算是解决问题的关键.10.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD=90°,而∠P AB≠∠PCA,∠PBA≠∠P AC,∴无法判定△P AB与△PCA相似,故A错误;同理,无法判定△P AB与△PDA,△ABC与△DCA相似,故C、D错误;∵∠APD=90°,AP=PB=BC=CD,∴AB=P A,AC=P A,AD=P A,BD=2P A,∴=,∴,∴△ABC∽△DBA,故B正确.故选B.【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.11.B解析:B【解析】试题分析:利用位似图形的性质首先得出位似比,进而得出面积比.∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故选B.考点:位似变换.12.D解析:D【解析】【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.二、填空题13.05【解析】∵EG⊥ABFH⊥ADHG经过A点∴FA∥EGEA∥FH∴∠HFA=∠AEG=90°∠FHA=∠EAG∴△GEA∽△AFH∴∵AB=9里DA=7里EG=15里∴FA=35里EA=45里∴解析:05【解析】∵EG⊥AB,FH⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴EG EA AF FH=.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴15 4.5 3.5FH=,解得FH=1.05里.故答案为1.05.14.或6【解析】【分析】当△PQB为等腰三角形时有两种情况需要分类讨论:①当点P在线段AB上时如图1所示由三角形相似(△AQP∽△ABC)关系计算AP的长;②当点P在线段AB的延长线上时如图2所示利用角解析:53或6.【解析】【分析】当△PQB为等腰三角形时,有两种情况,需要分类讨论:①当点P在线段AB上时,如图1所示.由三角形相似(△AQP∽△ABC)关系计算AP的长;②当点P在线段AB的延长线上时,如图2所示.利用角之间的关系,证明点B为线段AP 的中点,从而可以求出AP.【详解】解:在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.∵∠QPB为钝角,∴当△PQB为等腰三角形时,当点P在线段AB上时,如题图1所示:∵∠QPB为钝角,∴当△PQB 为等腰三角形时,只可能是PB =PQ ,由(1)可知,△AQP ∽△ABC , ∴,PA PQ AC BC = 即3,54PB PB -= 解得:43PB =, ∴45333AP AB PB =-=-=; 当点P 在线段AB 的延长线上时,如题图2所示:∵∠QBP 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =BQ .∵BP =BQ ,∴∠BQP =∠P ,∵90,90BQP AQB A P ,∠+∠=∠+∠= ∴∠AQB =∠A ,∴BQ =AB ,∴AB =BP ,点B 为线段AP 中点,∴AP =2AB =2×3=6. 综上所述,当△PQB 为等腰三角形时,AP 的长为53或6. 故答案为53或6.【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.【解析】【分析】作AH⊥BC 交CB 的延长线于H 根据反比例函数解析式求出A 的坐标点B 的坐标求出AHBH 根据勾股定理求出AB 根据菱形的面积公式计算即可【详解】作AH⊥BC 交CB 的延长线于H∵反比例函数y解析:2【解析】【分析】作AH ⊥BC 交CB 的延长线于H ,根据反比例函数解析式求出A 的坐标、点B 的坐标,求出AH 、BH ,根据勾股定理求出AB ,根据菱形的面积公式计算即可.【详解】作AH⊥BC交CB的延长线于H,∵反比例函数y=3x的图象经过A、B两点,A、B两点的横坐标分别为1和3,∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB2222=2,∵四边形ABCD是菱形,∴BC=AB=2,∴菱形ABCD的面积=BC×AH=2,故答案为2【点睛】本题考查的是反比例函数的系数k的几何意义、菱形的性质,根据反比例函数解析式求出A的坐标、点B的坐标是解题的关键.16.6【解析】【分析】利用位似的性质得到AB:DE=OA:OD然后把OA=1OD=3AB=2代入计算即可【详解】解:∵△ABC与△DEF位似原点O是位似中心∴AB:DE=OA:OD即2:DE=1:3∴D解析:6【解析】【分析】利用位似的性质得到AB:DE=OA:OD,然后把OA=1,OD=3,AB=2代入计算即可.【详解】解:∵△ABC与△DEF位似,原点O是位似中心,∴AB:DE=OA:OD,即2:DE=1:3,∴DE=6.故答案是:6.【点睛】考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.17.2+3【解析】【分析】连接OA过点A作AC⊥OB于点C由题意知AC=1OA=OB=2从而得出OC=OA2-AC2=3BC=OB ﹣OC=2﹣3在Rt△ABC 中根据tan∠ABO=ACBC 可得答案【详解解析:2+.【解析】【分析】连接OA ,过点A 作AC⊥OB 于点C ,由题意知AC=1、OA=OB=2,从而得出OC==、BC=OB ﹣OC=2﹣,在Rt△ABC 中,根据tan∠ABO=可得答案. 【详解】如图,连接OA ,过点A 作AC⊥OB 于点C ,则AC=1,OA=OB=2,∵在Rt△AOC 中,OC==, ∴BC=OB﹣OC=2﹣,∴在Rt△ABC 中,tan∠ABO==2+. 故答案是:2+.【点睛】 本题考查了解直角三角形,根据题意构建一个以∠ABO 为内角的直角三角形是解题的关键.18.8【解析】分析:过点A 作AH⊥OB 于点H 过点F 作FM⊥OB 于点M 设OA=x 在由已知易得:AH=OH=由此可得S△AOH=由点F 是平行四边形AOBC 的BC 边上的中点可得BF=BM=FM=由此可得S△B解析:8【解析】分析:过点A 作AH ⊥OB 于点H ,过点F 作FM ⊥OB 于点M ,设OA=x ,在由已知易得:3x ,OH=12x ,由此可得S △AOH =238x 由点F 是平行四边形AOBC 的BC 边上的中点,可得BF=12x ,BM=14x ,FM=34x ,由此可得S △BMF =2332x ,由S △OAF =123可得S △OBF =3S △OMF =2363x +,由点A 、F 都在反比例函数k y x =的图象上可得S △AOH =S △BMF ,由此即可列出关于x 的方程,解方程即可求得OA 的值. 详解:如下图,点A 作AH ⊥OB 于点H ,过点F 作FM ⊥OB 于点M ,设OA=x ,∵四边形AOBC 是平行四边形,∠AOB=60°,点F 是BC 的中点,S △OAF =123, ∴AH=32x ,OH=12x ,BF=12x ,∠FBM=60°,S △OBF =63, ∴S △AOH =238x ,BM=14x ,FM=34x , ∴S △BMF =23x , ∴S △OMF =236332x +, ∵由点A 、F 都在反比例函数k y x =的图象上, ∴S △AOH =S △BMF ,∴23x =2363x +, 化简得:23192x =,解得:1288x x ==-,(不合题意,舍去),∴OA=8.故答案为:8.点睛:本题是一道考查“反比例函数的图象和性质及平行四边形的性质”的综合题,熟记“反比例函数的图象和性质及平行四边形的性质”是解答本题的关键.19.【解析】试题解析::∵l1∥l2∥l3∴∵AB=AC ∴∴∵DF=10∴∴DE=4 解析:【解析】试题解析::∵l 1∥l 2∥l 3,∴AB DE AC DF=. ∵AB=25AC , ∴25AB AC =, ∴25DE DF =. ∵DF=10,∴2105DE =, ∴DE=4. 20.3【解析】试题分析:如图∵CD ∥AB ∥MN ∴△ABE ∽△CDE △ABF ∽△MNF ∴即解得:AB=3m 答:路灯的高为3m 考点:中心投影解析:3【解析】试题分析:如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF ,∴,CD DE FN MN AB BE FB AB ==, 即1.8 1.8 1.5 1.5,1.8 1.5 2.7AB BD AB BD==++-, 解得:AB=3m ,答:路灯的高为3m .考点:中心投影.三、解答题21.(1)景点D 向公路a 修建的这条公路的长约是3.1km ;(2)景点C 与景点D 之间的距离约为4km .【解析】【详解】解:(1)如图,过点D 作DE ⊥AC 于点E ,过点A 作AF ⊥DB ,交DB 的延长线于点F ,在Rt △DAF 中,∠ADF=30°,∴AF=12AD=12×8=4,∴22228443AD AF -=-= 在Rt △ABF 中2222AB AF 54-=-, ∴BD=DF ﹣33,sin ∠ABF=45AF AB =, 在Rt △DBE 中,sin ∠DBE=DB BD ,∵∠ABF=∠DBE ,∴sin ∠DBE=45,∴DE=BD•sin∠DBE=45×(43﹣3)=163125-≈3.1(km),∴景点D向公路a修建的这条公路的长约是3.1km;(2)由题意可知∠CDB=75°,由(1)可知sin∠DBE=45=0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°,在Rt△DCE中,sin∠DCE=DBDC,∴DC=3.1sin520.79DE︒=≈4(km),∴景点C与景点D之间的距离约为4km.22.(1)详见解析;(2)当∠B+∠EGC=180°时,DE ADCF DC=成立,理由详见解析.【解析】【分析】(1)根据矩形的性质可得∠A=∠ADC=90°,由DE⊥CF可得∠ADE=∠DCF,即可证得△ADE∽△DCF,从而证得结论;(2)在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM.根据平行线的性质可得∠A=∠CDM,再结合∠B+∠EGC=180°,可得∠AED=∠FCB,进而得出∠CMF=∠AED即可证得△ADE∽△DCM,从而证得结论;【详解】解:(1)∵四边形ABCD是矩形,∴∠A=∠ADC=90°,∵DE⊥CF,∴∠ADE=∠DCF,∴△ADE∽△DCF,∴DE AD CF DC=(2)当∠B+∠EGC=180°时,DE ADCF DC=成立,证明如下:在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM.∵AB∥CD.∴∠A=∠CDM.∵AD∥BC,∴∠CFM=∠FCB.∵∠B+∠EGC=180°,∴∠AED=∠FCB,∴∠CMF=∠AED,∴△ADE∽△DCM,∴DE ADCM DC=,即DE ADCF DC=.【点睛】本题是相似形综合题目,考查了相似三角形的判定与性质、等腰三角形的性质以及平行线的性质,熟练掌握等腰三角形的性质,证明三角形相似是解决问题的关键.23.(1)AB=6.4m;(2)AB=CD,理由见解析.【解析】【分析】(1)直接利用相似三角形的判定与性质分析得出答案;(2)直接利用平行线分线段成比例定理分析得出答案.【详解】(1)∵MN∥AB,∴△MNE∽ABE,∴MNAB=NEBE.∵NB=6,NE=2,MN=1.6,∴1.6AB=28,∴AB=6.4(m);(2)这两根灯杆的高度相等,理由如下:∵MN∥CD,BD=24,∴MNAB=NEBE=28=14,∴MNCD=BNBD=624=14,∴AB=CD.【点睛】本题考查了相似三角形的应用,正确得出相似三角形是解题的关键.24.(1)见解析;(2)见解析.【解析】【分析】(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.【详解】证明:(1)∵AD=DC,∴∠DAC=∠DCA,∵DC2=DE•DB,∴=,∵∠CDE=∠BDC,∴△CDE∽△BDC,∴∠DCE=∠DBC,∴∠DAE=∠EBC,∵∠AED=∠BEC,∴△BCE∽△ADE,(2)∵DC2=DE•DB,AD=DC∴AD2=DE•DB,同法可得△ADE∽△BDA,∴∠DAE=∠ABD=∠EBC,∵△BCE∽△ADE,∴∠ADE=∠BCE,∴△BCE∽△BDA,∴=,∴AB•BC=BD•BE.【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.25.(1)图见解析,C1(-6,4);(2)D1(2a,2b).【解析】【分析】(1)连接OB并延长,使BB1=OB,连接OA并延长,使AA1=OA,连接OC并延长,使CC1=OC,确定出△A1B1C1,并求出C1点坐标即可;(2)根据A与A1坐标,B与B1坐标,以及C与C1坐标的关系,确定出变化后点D的对应点D1坐标即可.【详解】(1)根据题意画出图形,如图所示:则点C1的坐标为(-6,4);(2)变化后D的对应点D1的坐标为:(2a,2b).【点睛】运用了作图-位似变换,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.。

2020-2021九年级数学下期中试卷附答案

2020-2021九年级数学下期中试卷附答案

2020-2021九年级数学下期中试卷附答案一、选择题1.如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边界与原图形对应边平行,则外框与原图不一定相似的是( )A .B .C .D .2.下列说法正确的是( )A .小红小学毕业时的照片和初中毕业时的照片相似B .商店新买来的一副三角板是相似的C .所有的课本都是相似的D .国旗的五角星都是相似的3.如图,123∠∠∠==,则图中相似三角形共有( )A .1对B .2对C .3对D .4对4.已知线段a 、b ,求作线段x ,使22b x a=,正确的作法是( ) A .B .C .D .5.在Rt ABC ∆中,90,2,1C AC BC ∠=︒==,则cos A 的值是( )A 25B 5C 5D .126.如图,D 是△ABC 的边BC 上一点,已知AB=4,AD=2.∠DAC=∠B ,若△ABD 的面积为a ,则△ACD 的面积为( )A .aB .aC .aD .a7.如图,点D ,E 分别在△ABC 的AB ,AC 边上,增加下列条件中的一个:①∠AED =∠B ,②∠ADE =∠C ,③AE DE AB BC=,④AD AE AC AB =,⑤AC 2=AD •AE ,使△ADE 与△ACB 一定相似的有( )A .①②④B .②④⑤C .①②③④D .①②③⑤8.如图,正方形ABCD 中,M 为BC 上一点,ME ⊥AM ,ME 交CD 于点F ,交AD 的延长线于点E ,若AB =4,BM =2,则△DEF 的面积为( )A .9B .8C .15D .14.59.如图所示,在△ABC 中,AB =6,AC =4,P 是AC 的中点,过 P 点的直线交AB 于点Q ,若以 A 、P 、Q 为顶点的三角形和以A 、B 、C 为顶点的三角形相似,则AQ 的长为 ( )A .3B .3或43C .3或34D .4310.如图,ABC △与ADE V 相似,且ADE B ∠=∠,则下列比例式中正确的是( )A .AE AD BE DC =B .AE AB AB AC = C .AD AB AC AE = D .AE DE AC BC= 11.如图,∠APD=90°,AP=PB=BC=CD ,则下列结论成立的是( )A .△PAB ∽△PCA B .△ABC ∽△DBA C .△PAB ∽△PDAD .△ABC ∽△DCA12.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252- B .25- C .251- D .52-二、填空题13.若点A(m ,2)在反比例函数y =的图象上,则当函数值y≥-2时,自变量x 的取值范围是____.14.如图,P (m ,m )是反比例函数9y x=在第一象限内的图象上一点,以P 为顶点作等边△PAB ,使AB 落在x 轴上,则△POB 的面积为_____.15.若反比例函数y =﹣的图象经过点A(m ,3),则m 的值是_____.16.如图,CAB BCD ∠=∠,2AD =,4BD =,则BC =______.17.如图,在平面直角坐标系中,点P 的坐标为(0,4),直线y =34x -3与x 轴、y 轴分别交于点A 、B ,点M 是直线AB 上的一个动点,则PM 的最小值为________.18.如图,点A 在双曲线y=2x 上,点B 在双曲线y= 5x上,且AB ∥y 轴,C ,D 在y 轴上,若四边形ABCD 为平行四边形,则它的面积为________.19.已知点(,)P m n 在直线2y x =-+上,也在双曲线1y x=-上,则m 2+n 2的值为______. 20.如图,圆柱形容器高为18cm ,底面周长为24cm ,在杯内壁离杯底4cm 的点B 处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外币A 处到达内壁B 处的最短距离为_______.三、解答题21.如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm .长度均为20cm 的连杆BC ,CD 与AB 始终在同一水平面上.(1)旋转连杆BC ,CD ,使BCD ∠成平角,150ABC ∠=︒,如图2,求连杆端点D 离桌面l 的高度DE .(2)将(1)中的连杆CD 绕点C 逆时针旋转,使165BCD ∠=︒,如图3,问此时连杆端点D 离桌面l 的高度是增加了还是减少?增加或减少了多少?(精确到0.1cm ,参考数据:2 1.41≈,3 1.73≈)22.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).(1)将△ABC 各顶点的横纵坐标都缩小为原来的12得到△A 1B 1C 1,请在图中画出△A 1B 1C 1;(2)求A 1C 1的长.23.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小华在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己的影长FG =4m .如果小华的身高为1.5m ,求路灯杆AB 的高度.24.如图所示,双曲线()10,0k y x k x=>>与直线()20y kx b k =+≠(b 为常数)交于()2,4A ,(),2B a 两点.(1)求双曲线()10,0k y x k x=>>的表达式; (2)根据图象观察,当21y y <时,求x 的取值范围;(3)求AOB ∆的面积.25.已知:如图,在正方形ABCD 中,P 是BC 上的点,Q 是CD 上的点,且∠AQP =900, 求证:△ADQ ∽△QCP .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.【详解】正五边形相似,因为它们的边长都对应成比例、对应角都相等,符合相似的条件,故A 不符合题意;锐角三角形、菱形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件,故B 、D 不符合题意;矩形不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件,故A 符合题意;故选C .【点睛】本题主要考查了相似图形判定,解决本题的关键是要注意边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.2.D解析:D【解析】【分析】观察图形,看它们的形状是否相同,形状相同的两个图形是相似图形.【详解】A .小明上幼儿园时的照片和初中毕业时的照片,形状不相同,不相似;B .商店新买来的一副三角板,形状不相同,不相似;C.所有的课本都是相似的,形状不相同,不相似;D.国旗的五角星都是相似的,形状相同,相似.故选D.【点睛】本题考查了相似图形,相似图形是指形状相同的图形,仔细观察看每组图形是否相同,如果相同就相似,否则就不相似.3.D解析:D【解析】【分析】根据已知及相似三角形的判定定理,找出题中存在的相似三角形即可.【详解】∵∠1=∠2,∠C=∠C,∴△ACE∽△ECD,∵∠2=∠3,∴DE∥AB,∴△BCA∽△ECD,∵△ACE∽△ECD,△BCA∽△ECD,∴△ACE∽△BCA,∵DE∥AB,∴∠AED=∠BAE,∵∠1=∠2,∴△AED∽△BAE,∴共有4对,故此选D 选项.【点睛】本题考查学生对相似三角形判断依据的理解掌握,也考察学生的看图分辨能力.4.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a、b和2b,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x.【详解】解:由题意,22b xa =∴2a bb x =,∵线段x没法先作出,根据平行线分线段成比例定理,只有C符合.故选C.5.A解析:A【解析】【分析】根据勾股定理,可得AB的长,根据余弦函数等于邻边比斜边,可得答案.【详解】如图,在Rt △ABC 中,∠C=90°,由勾股定理,得 AB=22=5AC BC +,∴cosA=2555AC AB ==, 故选A .【点睛】本题考查了锐角三角函数的定义以及勾股定理,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.6.C解析:C【解析】【分析】【详解】解:∵∠DAC=∠B ,∠C=∠C ,∴△ACD ∽△BCA ,∵AB=4,AD=2,∴△ACD 的面积:△ABC 的面积为1:4,∴△ACD 的面积:△ABD 的面积=1:3,∵△ABD 的面积为a ,∴△ACD 的面积为a ,故选C .【点睛】本题考查相似三角形的判定与性质,掌握相关性质是本题的解题关键.7.A解析:A【解析】①AED B ∠=∠,且DAE CAB ∠=∠,∴ADE ACB V V ∽,成立.②ADE C ∠=∠且DAE CAB ∠=∠,∴ADE ACB V V ∽,成立.③AE DE AB BC =,但AED V 比一定与B Ð相等,故ADE V 与ACD V 不一定相似. ④AD AE AC AB=且DAE CAB ∠=∠,∴ADE ACB V V ∽,成立.⑤由2AC AD AE =⋅,得AC AE AD AC=无法确定出ADE V , 故不能证明:ADE V 与ABC V 相似.故答案为A .点睛:本题考查了相似三角形的判定定理:(1)两角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.8.A解析:A【解析】【分析】由勾股定理可求AM 的长,通过证明△ABM ∽△EMA ,可求AE=10,可得DE=6,由平行线分线段成比例可求DF 的长,即可求解.【详解】解:∵AB =4,BM =2,∴AM ===,∵四边形ABCD 是正方形,∴AD ∥BC ,∠B =∠C =90°,∴∠EAM =∠AMB ,且∠B =∠AME =90°,∴△ABM ∽△EMA , ∴BM AM AM AE=AE=∴AE =10,∴DE =AE ﹣AD =6,∵AD ∥BC ,即DE ∥MC ,∴△DEF ∽△CMF , ∴DE DF MC CF =, ∴642DF CF =-=3, ∵DF+CF =4,∴DF =3,∴S △DEF =12DE×DF =9, 故选:A .【点睛】本题考查了相似三角形的判定与性质,正方形的性质,勾股定理;熟练掌握相似三角形的性质,并能进行推理计算是解决问题的关键.9.B解析:B【解析】 AP AQ AB AC =,264AQ =,AQ=43,AP AQ AC AB =,246AQ =,AQ =3.故选B.点睛:相似常见图形(1)称为“平行线型”的相似三角形(如图,有“A 型”与“X 型”图)(2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形,有“反A 共角型”、“反A 共角共边型”、 “蝶型”,如下图:10.D解析:D【解析】【分析】利用相似三角形性质:对应角相等、对应边成比例,可得结论.【详解】由题意可得,A ABC DE ∽△△,所以AE DE AC BC=, 故选D .【点睛】 在书写两个三角形相似时,注意顶点的位置要对应,即若ABC A B C '''∽△△,则说明点A 的对应点为点'A ,点B 的对应点B ',点C 的对应点为点C '. 11.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD =90°,而∠P AB ≠∠PCA ,∠PBA ≠∠P AC ,∴无法判定△P AB 与△PCA 相似,故A 错误;同理,无法判定△P AB 与△PDA ,△ABC 与△DCA 相似,故C 、D 错误;∵∠APD =90°,AP =PB =BC =CD ,∴AB =P A ,AC =P A ,AD =P A ,BD =2P A ,∴=,∴,∴△ABC ∽△DBA ,故B 正确.故选B .【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法. 12.A解析:A 【解析】根据黄金比的定义得:512APAB-=,得5142522AP-=⨯=- .故选A.二、填空题13.x≤-2或x>0【解析】【分析】先把点A(m2)代入解析式得A(22)再根据反比例函数的对称性求出A点关于原点的对称点A(-2-2)再根据函数图像即可求出函数值y≥-2时自变量的取值【详解】把点A(解析:x≤-2或x>0【解析】【分析】先把点A(m,2)代入解析式得A(2,2),再根据反比例函数的对称性求出A点关于原点的对称点A’(-2,-2),再根据函数图像即可求出函数值y≥-2时自变量的取值.【详解】把点A(m,2)代入y=,得A(2,2),∵点A(2,2)关于原点的对称点A’为(-2,-2),故当函数值y≥-2时,自变量x的取值范围为x≤-2或x>0.【点睛】此题主要考查反比例函数的图像,解题的关键是利用反比例函数的中心对称性. 14.【解析】【详解】如图过点P作PH⊥OB于点H∵点P(mm)是反比例函数y=在第一象限内的图象上的一个点∴9=m2且m>0解得m=3∴PH=OH=3∵△PAB是等边三角形∴∠PAH=60°∴根据锐角三解析:933+.【解析】【详解】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=9x在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△P AB是等边三角形,∴∠P AH=60°.∴根据锐角三角函数,得AH=3.∴OB=3+3∴S△POB=12OB•PH=933.15.﹣2【解析】∵反比例函数y=-6x的图象过点A(m3)∴3=-6m解得=-2解析:﹣2【解析】∵反比例函数的图象过点A(m,3),∴,解得.16.【解析】【分析】角对应相等的两个三角形相似可证得△ABC∽△CBD再根据相似三角形的性质可解【详解】解:∵∠B=∠B∠CAB=∠BCD∴△ABC∽△CB D∴BC:BD=AB:BC∴BC:BD=(AD解析:6【解析】【分析】角对应相等的两个三角形相似可证得△ABC∽△CBD,再根据相似三角形的性质可解.【详解】解:∵∠B=∠B,∠CAB=∠BCD,∴△ABC∽△CBD,∴BC:BD=AB:BC,∴BC:BD=(AD+BD):BC,即BC:4=(2+4):BC,∴6.故答案为:6.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.17.【解析】【分析】认真审题根据垂线段最短得出PM⊥AB时线段PM最短分别求出PBOBOAAB的长度利用△PBM∽△ABO即可求出本题的答案【详解】解:如图过点P作PM⊥AB则:∠PMB=90°当PM⊥解析:28 5【解析】【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB 的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=34x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,22345+=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴PB PM AB AO=,即:754PM =,所以可得:PM=285.18.3【解析】试题分析:由AB∥y轴可知AB两点横坐标相等设A(m)B(m)求出AB=﹣=再根据平行四边形的面积公式进行计算即可得=•m=3考点:反比例函数系数k的几何意义解析:3【解析】试题分析:由AB∥y轴可知,A、B两点横坐标相等,设A(m,2m),B(m,5m),求出AB=5m﹣2m=3m,再根据平行四边形的面积公式进行计算即可得ABCDSY=3m•m=3.考点:反比例函数系数k的几何意义19.6【解析】分析:直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m以及mn的值再利用完全平方公式将原式变形得出答案详解:∵点P(mn)在直线y=-x+2上∴n+m=2∵点P(m解析:6【解析】分析:直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m以及mn的值,再利用完全平方公式将原式变形得出答案.详解:∵点P(m,n)在直线y=-x+2上,∴n+m=2,∵点P(m,n)在双曲线y=-1x上,∴mn=-1,∴m2+n2=(n+m)2-2mn=4+2=6.故答案为6.点睛:此题主要考查了一次函数图象上点的坐标特征以及反比例函数图象上点的特征,正确得出m,n之间的关系是解题关键.20.cm【解析】【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF的对称点A′连接A′B则A′B即为最短距离根据勾股解析:cm.【解析】【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得(cm).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.三、解答题21.(1)39.6DE cm ≈;(2)下降了,约3.2cm .【解析】【分析】(1)如图2中,作BO ⊥DE 于O .解直角三角形求出OD 即可解决问题.(2)作DF ⊥l 于F ,CP ⊥DF 于P ,BG ⊥DF 于G ,CH ⊥BG 于H .则四边形PCHG 是矩形,求出DF ,再求出DF-DE 即可解决问题.【详解】(1)过点B 作BO DE ⊥,垂足为O ,如图2,则四边形ABOE 是矩形,1509060OBD =-=o o o ∠, ∴sin 6040sin 60203DO BO =⋅=⨯=o o ,∴203539.6DE DO OE DO AB cm =+=+=+≈.(2)下降了.如图3,过点D 作DF l ⊥于点F ,过点C 作CP DF ⊥于点P ,过点B 作BG DF ⊥于点G ,过点C 作CH BG ⊥于点H ,则四边形PCHG 为矩形,∵60CBH ︒∠=,∴30BCH ︒∠=,又∵165BCD ︒∠=,∴45DCP ︒∠=, ∴sin 60103CH BC ︒==*sin 45102DP CD ==,∴DF DP PG GF DP CH AB =++=++1021035=.∴下降高度:20351021035DE DF -=-103102=-3.2cm ≈.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.(1)作图见解析;(2)10【解析】【分析】(1)直接利用位似图形的性质求解即可;(2)根据题意利用勾股定理解答即可.【详解】(1)如图所示:△A 1B 1C 1,△A 2B 2C 2,都是符合题意的图形;(2)A 1C 1的长为:10.【点睛】本题考查了位似变换及勾股定理的知识点,解题的关键是由题意正确得出对应点的位置.23.路灯杆AB 的高度是6m .【解析】【分析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,∴,CD DF FE FG AB BF AB BG==, 又∵CD =EF , ∴DF FG BF BG=, ∵DF =3m ,FG =4m ,BF =BD +DF =BD +3,BG =BD +DF +FG =BD +7, ∴3437DB BD =++,∴BD =9,BF =9+3=12, ∴1.5312AB =, 解得AB =6. 答:路灯杆AB 的高度是6m .【点睛】考查了相似三角形的应用和中心投影.只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.24.(1)18y x =;(2)02x <<或4x >;(3)6. 【解析】【分析】(1)把点A 坐标代入反比例函数解析式即可求得k 的值;(2)根据点B 在双曲线上可求出a 的值,再结合图象确定双曲线在直线上方的部分对应的x 的值即可;(3)先利用待定系数法求出一次函数的解析式,再用如图的△AOC 的面积减去△BOC 的面积即可求出结果.【详解】解(1):双曲线()10,0k y x k x=>>经过()2,4A ,∴248k =⨯=, ∴双曲线的解析式为18y x =. (2)∵双曲线()10,0k y x k x =>>经过(),2B a 点, ∴82a=,解得4a =,∴()4,2B , 根据图象观察,当21y y <时,x 的取值范围是02x <<或4x >.(3)设直线AB 的解析式为y mx n =+,∴2442m n m n +=⎧⎨+=⎩,解得16m n =-⎧⎨=⎩, ∴直线AB 的解析式为6y x =-+,∴直线AB 与x 轴的交点()6,0C, ∴AOB AOC BOC S S S ∆∆∆=-116462622=⨯⨯-⨯⨯=. 【点睛】本题是反比例函数与一次函数的综合题,重点考查了待定系数法求函数的解析式、一次函数与反比例函数的交点问题和三角形的面积计算,属于中档题型,熟练掌握一次函数与反比例函数的基本知识是解题的关键.25.证明见解析【解析】试题分析:本题利用等角的余角相等得出一对相等的角,加上直角得出相似三角形. 试题解析:在Rt △ADQ 与Rt △QCP 中,∵∠AQP =90°, ∴∠AQP +∠PQC =90°, 又∵∠PQC +∠QPC =90°, ∴∠AQP =∠QPC ,∴Rt △ADQ ∽Rt △QCP .。

2020-2021初三数学下期中试卷(带答案)

2020-2021初三数学下期中试卷(带答案)

2020-2021初三数学下期中试卷(带答案)一、选择题1.如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边界与原图形对应边平行,则外框与原图不一定相似的是()A.B.C.D.2.如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶点所得的四个三角形中是相似三角形的是()A.①和②B.②和③C.①和③D.①和④3.若反比例函数kyx(x<0)的图象如图所示,则k的值可以是()A.-1B.-2C.-3D.-44.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为()A.a B.a C.a D.a5.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32OBCD=B.32αβ=C.1232SS=D.1232CC=6.如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是()A.1:3B.1:4C.1:6D.1:97.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为()A.9B.8C.15D.14.58.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:3,则AC的长是( )A.10米B.53米C.15米D.103米9.如图,在矩形ABCD中,DE AC⊥于E,设ADEα∠=,且3cos5α=,5AB=,则AD的长为()A.3B.163C.203D.16510.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A .3 B .5 C .23D .2511.给出下列函数:①y=﹣3x +2;②y=3x;③y=2x 2;④y=3x ,上述函数中符合条作“当x >1时,函数值y 随自变量x 增大而增大“的是( ) A .①③ B .③④ C .②④ D .②③12.如图,在△ABC 中,M 是AC 的中点,P ,Q 为BC 边上的点,且BP=PQ=CQ ,BM 与AP ,AQ 分别交于D ,E 点,则BD ∶DE ∶EM 等于A .3∶2∶1B .4∶2∶1C .5∶3∶2D .5∶2∶1二、填空题13.如图,在▱ABCD 中,EF ∥AB ,DE :EA=2:3,EF=4,则CD 的长为___________.14.计算:cos 245°-tan30°sin60°=______. 15.如图,在平面直角坐标系内有一点()5,12P ,那么OP 与x 轴正半轴的夹角α的余弦值为______.16.如图,在平面直角坐标系中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则点C 的坐标为________.17.如图,已知△ABC 中,D 为边AC 上一点,P 为边AB 上一点,AB=12,AC=8,AD=6,当AP 的长度为__时,△ADP 和△ABC 相似.18.如图,在平面直角坐标系中,点A 是函数ky x=(x <0)图象上的点,过点A 作y 轴的垂线交y 轴于点B ,点C 在x 轴上,若△ABC 的面积为1,则k 的值为 ______ .19.在 ABC V 中, 6AB = , 5AC = ,点D 在边AB 上,且 2AD = ,点E 在边AC 上,当 AE = ________时,以A 、D 、E 为顶点的三角形与 ABC V 相似. 20.如果a c eb d f===k (b+d+f≠0),且a+c+e=3(b+d+f ),那么k=_____. 三、解答题21.如图,在Rt △ABC 中,CD ,CE 分别是斜边AB 上的高,中线,BC =a ,AC =b . (1)若a =3,b =4,求DE 的长;(2)直接写出:CD = (用含a ,b 的代数式表示); (3)若b =3,tan ∠DCE=13,求a 的值.22.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).(1)将△ABC 各顶点的横纵坐标都缩小为原来的12得到△A 1B 1C 1,请在图中画出△A 1B 1C 1; (2)求A 1C 1的长.23.在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A 4 的打印纸等,这些矩形的长与宽之比都为2:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 AP =AD .(1)求证:PD =AB .(2)如图(2),若在“完美矩形“ABCD 的边 BC 上有一动点 E ,当BECE的值是多少时,△PDE 的周长最小?(3)如图(3),点 Q 是边 AB 上的定点,且 BQ =BC .已知 AD =1,在(2)的条件下连接 DE 并延长交 AB 的延长线于点 F ,连接 CF ,G 为 CF 的中点,M 、N 分别为线段 QF 和 CD 上的动点,且始终保持 QM =CN ,MN 与 DF 相交于点 H ,请问 GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.24.如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC=14,AD=12,tan ∠BAD=,求sinC 的值.25.如图,已知在ABC V 中,4AB =,8BC =,D 为BC 边上一点,2BD =.(1)求证:ABD CBA V :V ;(2)过点D 作//DE AB 交AC 于点E ,请再写出另一个与ABD △相似的三角形,并直接写出DE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案. 【详解】正五边形相似,因为它们的边长都对应成比例、对应角都相等,符合相似的条件,故A 不符合题意;锐角三角形、菱形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件,故B 、D 不符合题意;矩形不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件,故A 符合题意;故选C . 【点睛】本题主要考查了相似图形判定,解决本题的关键是要注意边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.2.D解析:D 【解析】 【分析】设小长方形的长为2a ,宽为a .利用勾股定理求出三角形的三边长即可判断. 【详解】由题意可知:小长方形的长是宽的2倍, 设小长方形的宽为a ,则长为2a ,∴图①中的三角形三边长分别为2a 2222(2)(2)22(2)(4)25a a a a a a +=+=; 图②中的三角形三边长分别为2222(2)(3)13(3)(4)5a a a a a a +=+=; 图③中的三角形三边长分别为2222(2)(4)25(4)(4)42a a a a a a +=+=;图④中的三角形三边长分别为2222(2)()5,()(3)10a a a a a a +=+=、22(3)(4)5a a a +=,∴①和②图中三角形不相似; ∵21322542a a a a a ≠≠ ∴②和③图中三角形不相似; ∵2222522542a a a a a a≠≠ ∴①和③图中三角形不相似; ∵22252555510a a a a a===∴①和④图中三角形相似. 故选D 【点睛】本题考查相似三角形的判定,勾股定理等知识,解题的关键是熟练掌握熟练掌握基本知识.3.C解析:C 【解析】 【分析】由图像可知,反比例函数与线段AB 相交,由A 、B 的坐标,可求出k 的取值范围,即可得到答案. 【详解】 如图所示:由题意可知A (-2,2),B (-2,1), ∴1-2⨯2<<-2⨯k ,即4-<<-2k 故选C. 【点睛】本题考查反比例函数的图像与性质,由图像性质得到k 的取值范围是解题的关键.4.C解析:C【解析】【分析】【详解】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为a,∴△ACD的面积为a,故选C.【点睛】本题考查相似三角形的判定与性质,掌握相关性质是本题的解题关键.5.D解析:D【解析】A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;=,所以B选项不成立;B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此αβC选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.6.A解析:A【解析】∵两个相似三角形对应边之比是1:3,∴它们的对应中线之比为1:3.故选A.点睛: 本题考查相似三角形的性质,相似三角形的对应边、对应周长,对应高、中线、角平分线的比,都等于相似比,掌握相似三角形的性质及灵活运用它是解题的关键.7.A解析:A【解析】【分析】由勾股定理可求AM的长,通过证明△ABM∽△EMA,可求AE=10,可得DE=6,由平行线分线段成比例可求DF的长,即可求解.【详解】解:∵AB=4,BM=2,∴AM===,∵四边形ABCD是正方形,∴AD∥BC,∠B=∠C=90°,∴∠EAM=∠AMB,且∠B=∠AME=90°,∴△ABM∽△EMA,∴BM AM AM AE==∴AE=10,∴DE=AE﹣AD=6,∵AD∥BC,即DE∥MC,∴△DEF∽△CMF,∴DE DF MC CF=,∴642DFCF=-=3,∵DF+CF=4,∴DF=3,∴S△DEF=12DE×DF=9,故选:A.【点睛】本题考查了相似三角形的判定与性质,正方形的性质,勾股定理;熟练掌握相似三角形的性质,并能进行推理计算是解决问题的关键.8.B解析:B【解析】【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1;∴AC=BC÷故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.9.C解析:C 【解析】 【分析】根据矩形的性质可知:求AD 的长就是求BC 的长,易得∠BAC =∠ADE ,于是可利用三角函数的知识先求出AC ,然后在直角△ABC 中根据勾股定理即可求出BC ,进而可得答案. 【详解】解:∵四边形ABCD 是矩形,∴∠B =∠BAC =90°,BC=AD ,∴∠BAC +∠DAE =90°, ∵DE AC ⊥,∴∠ADE +∠DAE =90°,∴∠BAC =ADE α∠=, 在直角△ABC 中,∵3cos 5α=,5AB =,∴25cos 3AB AC α==,∴AD=BC =22222520533AC AB ⎛⎫-=-= ⎪⎝⎭. 故选:C. 【点睛】本题考查了矩形的性质、勾股定理和解直角三角形的知识,属于常考题型,熟练掌握矩形的性质和解直角三角形的知识是解题关键.10.D解析:D 【解析】 【分析】 【详解】过B 点作BD ⊥AC ,如图,由勾股定理得,AB=221310+=,AD=222222+=, cosA=AD AB =2210=25,故选D .11.B解析:B 【解析】分析:分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.详解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项错误;②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项错误; ③y =2x 2,当x >1时,函数值y 随自变量x 增大而减小,故此选项正确;④y =3x ,当x >1时,函数值y 随自变量x 增大而减小,故此选项正确.故选B . 点睛:本题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题的关键. 12.C解析:C【解析】【分析】过A 作AF ∥BC 交BM 延长线于F ,设BC=3a ,则BP=PQ=QC=a ;根据平行线间的线段对应成比例的性质分别求出BD 、BE 、BM 的长度,再来求BD ,DE ,EM 三条线段的长度,即可求得答案.【详解】过A 作AF ∥BC 交BM 延长线于F ,设3BC a =,则BP PQ QC a ===;∵AM CM =,AF ∥BC ,∴1AF AM BC CM==, ∴3AF BC a ==,∵AF ∥BP ,∴133BD BP a DF AF a ===, ∴34DF BF BD ==, ∵AF ∥BQ , ∴2233BE BQ a EF AF a ===, ∴23EF BE =,即25BF BE =, ∵AF ∥BC ,∴313BM BC a MF AF a===, ∴BM MF =,即2BF BM =, ∴235420BF BF BF DE BE BD =-=-=,22510BF BF BF EM BM BE =-=-=, ∴3::::?53242010BF BF BF BD DE EM ==::. 故选:C .【点睛】 本题考查了平行线分线段成比例定理以及比例的性质,正确作出辅助线是关键.二、填空题13.【解析】【分析】【详解】解:∵EF∥AB∴△DEF∽△DAB∴EF:AB=DE :DA=DE :(DE+EA )=2:5∴AB=10∵在▱ABCD 中AB=CD∴CD=10故答案为:10【点睛】本题考查①相解析:【解析】【分析】【详解】解:∵EF ∥AB,∴△DEF ∽△DAB,∴EF :AB=DE :DA=DE :(DE+EA )=2:5,∴AB=10,∵在▱ABCD 中AB=CD .∴CD=10.故答案为:10【点睛】本题考查①相似三角形的判定;②相似三角形的性质;③平行四边形的性质.14.0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案【详解】=故答案为0【点睛】此题主要考查了特殊角的三角函数值正确记忆相关数据是解题关键解析:0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案.【详解】2cos 45tan30sin60︒-︒︒=211023222-=-= . 故答案为0.【点睛】 此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.15.【解析】【详解】如图过点P 作PA⊥x 轴于点A∵P(512)∴OA=5PA=12由勾股定理得OP=∴故填:【点睛】此题考查锐角三角函数的定义先构建直角三角形确定边长即可得到所求的三角函数值 解析:513 【解析】 【详解】如图,过点P 作PA ⊥x 轴于点A ,∵P(5,12),∴OA=5,PA=12,由勾股定理得OP=222251213OA PA +=+=,∴5cos 13OA OP α==, 故填:513.【点睛】此题考查锐角三角函数的定义,先构建直角三角形,确定边长即可得到所求的三角函数值. 16.【解析】【分析】直接利用位似图形的性质结合相似比得出AB 的长进而得出△OAD ∽△OBG 进而得出AO 的长即可得出答案【详解】∵正方形BEFG 的边长是6∴∵两个正方形的相似比为∴∴∵AD ∥BG ∴△OAD解析:(3,2)【解析】【分析】直接利用位似图形的性质结合相似比得出AB 的长,进而得出△OAD ∽△OBG ,进而得出AO 的长,即可得出答案.【详解】.∵正方形BEFG 的边长是6,∴6BE EF ==.∵两个正方形的相似比为13, ∴163CB CB EF ==.∴2AB BC ==,.∵AD ∥BG ,∴△OAD ∽△OBG , ∴13OA OB =,即213OB OB -=. ∴3OB =.∴点C 的坐标为(3,2). 【点睛】本题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO 的长是解题关键. 17.4或9【解析】当△ADP ∽△ACB 时需有∴解得AP =9当△ADP ∽△ABC 时需有∴解得AP =4∴当AP 的长为4或9时△ADP 和△ABC 相似解析:4或9.【解析】当△ADP ∽△ACB 时,需有AP AD AB AC =,∴6128AP =,解得AP =9.当△ADP ∽△ABC 时,需有AP AD AC AB =,∴6812AP =,解得AP =4.∴当AP 的长为4或9时,△ADP 和△ABC 相似.18.-2【解析】【分析】根据已知条件得到三角形ABC 的面积=得到|k|=2即可得到结论【详解】解:∵AB ⊥y 轴∴AB ∥CO ∴∴∵∴故答案为:-2【点睛】本题考查了反比例函数系数k 的几何意义明确是解题的关解析:-2【解析】【分析】根据已知条件得到三角形ABC 的面积=1•=12AB OB ,得到|k|=2,即可得到结论. 【详解】解:∵AB ⊥y 轴,∴AB ∥CO , ∴111•1222ABC S AB OB x y k ====g 三角形 , ∴2k =,∵0k <,∴2k =-,故答案为:-2.【点睛】本题考查了反比例函数系数k 的几何意义,明确1•=12ABC S AB OB =V 是解题的关键.19.【解析】当时∵∠A=∠A∴△AED∽△ABC 此时AE=;当时∵∠A=∠A∴△ADE∽△ABC 此时AE=;故答案是: 解析:51235或 【解析】 当AE AB AD AC=时, ∵∠A=∠A , ∴△AED ∽△ABC ,此时AE=·621255AB AD AC ⨯==; 当AD AB AE AC=时, ∵∠A=∠A ,∴△ADE ∽△ABC ,此时AE=·52563AC AD AB ⨯==; 故答案是:12553或. 20.3【解析】∵=k ∴a=bkc=dke=fk ∴a+c+e=bk+dk+fk=k(a+b+c)∵a+c+e=3(b+d+f)∴k=3故答案为:3解析:3【解析】 ∵a c e b d f===k ,∴a=bk,c=dk ,e=fk ,∴a+c+e=bk+dk+fk=k(a+b+c), ∵a+c+e=3(b+d+f),∴k=3,故答案为:3.三、解答题21.(1)710;(2)22a b+;(31. 【解析】【分析】(1)求出BE ,BD 即可解决问题.(2)利用勾股定理,面积法求高CD 即可.(3)根据CD =3DE ,构建方程即可解决问题.【详解】解:(1)在Rt △ABC 中,∵∠ACB =90°,a =3,b =4,∴2235,cos 5BC AB a b B AC ∴=+===. ∵CD ,CE 是斜边AB 上的高,中线, ∴∠BDC =90°,15BE AB 22==. ∴在Rt △BCD 中, 39cos 355BD BC B =⋅=⨯= 5972510DE BE BD ∴=-=-=(2)在Rt △ABC 中,∵∠ACB =90°,BC =a ,AC =b , 2222AB BC AC a b ∴=+=+ABC 11S AB CD AC BC 22=⋅=⋅V Q 2222AC BC ab a b CD AB a b⋅+∴===+2222a b a b ++. (3)在Rt △BCD 中,22222cos BD BC B a a b a b =⋅==++∴222222222122DE BE BD a b a b a b=-=+=++, 又1tan 3DE DCE CD ∠==, ∴CD =3DE 22222232a b a b =++.∵b =3, ∴2a =9﹣a 2,即a 2+2a ﹣9=0.由求根公式得110a =-±即所求a 101-.【点睛】本题考查解直角三角形的应用,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(1)作图见解析;(210【解析】【分析】(1)直接利用位似图形的性质求解即可;(2)根据题意利用勾股定理解答即可.【详解】(1)如图所示:△A 1B 1C 1,△A 2B 2C 2,都是符合题意的图形;(2)A1C1的长为:10.【点睛】本题考查了位似变换及勾股定理的知识点,解题的关键是由题意正确得出对应点的位置.23.(1)证明见解析(2)222-(3)2【解析】【分析】(1)根据题中“完美矩形”的定义设出AD与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,表示出AB与CD,由AB-AP表示出BP,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=2,理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可.【详解】(1)在图1中,设AD=BC=a,则有AB=CD=2a,∵四边形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD=22AD PA+=2a,∵AB=2a,∴PD=AB;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a ,则有AB=CD=2a , ∵BP=AB-PA , ∴BP′=BP=2a-a ,∵BP′∥CD ,∴2222BE BP a a CE CD a--=== ; (3)GH=2,理由为:由(2)可知BF=BP=AB-AP ,∵AP=AD ,∴BF=AB-AD ,∵BQ=BC ,∴AQ=AB-BQ=AB-BC ,∵BC=AD ,∴AQ=AB-AD ,∴BF=AQ ,∴QF=BQ+BF=BQ+AQ=AB ,∵AB=CD ,∴QF=CD ,∵QM=CN ,∴QF-QM=CD-CN ,即MF=DN ,∵MF ∥DN ,∴∠NFH=∠NDH ,在△MFH 和△NDH 中,{MFH NDHMHF NHD MF DN∠∠∠∠=== ,∴△MFH ≌△NDH (AAS ),∴FH=DH ,∵G 为CF 的中点,∴GH 是△CFD 的中位线,∴GH=12CD=122⨯×2=2. 【点睛】 此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.24..【解析】【分析】首先根据Rt △ABD 的三角函数求出BD 的长度,然后得出CD 的长度,根据勾股定理求出AC 的长度,从而得出∠C 的正弦值.【详解】∵在直角△ABD 中,tan ∠BAD=, ∴BD=AD•tan ∠BAD=12×=9,∴CD=BC-BD=14-9=5,∴AC==13, ∴sinC=. 【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.25.(1)证明见解析;(2)△CDE ,3DE =.【解析】【分析】(1)中根据图中B Ð为公共角,找到三角形相似的“夹角相等”的条件,只要证明AB BD BC AB=,依据是“两边对应成比例,且夹角相等,两三角形相似 ;(2)由//DE AB 可得出C ABD ED V V ∽,在(1)中ABD CBA V :V ,所以可得EDC CBA V :V ,于是可构建与线段DE 有关的比例式,即可求出DE 的长 .【详解】(1)【证明】∵4AB =,8BC =,2BD =,12AB BD CB BA ∴==. ∵ABD CBA ∠=∠,∴ABD CBA V :V . (2)【解】由(1)知,ABD CBA V :V .∵//DE AB ,∴CDE CBA V :V ,∴V :V ABD CDE .由CDE CBA V :V ,得DE DC BA BC =, 即8248DE -=, 解得3DE =.【点睛】本题考查的知识点是相似三角形的判定,关键是根据题中的线段的长和图形的特点,通过仔细观察和计算寻找缺少的条件.。

2020-2021深圳市景秀中学九年级数学下期中试卷附答案

2020-2021深圳市景秀中学九年级数学下期中试卷附答案

2020-2021深圳市景秀中学九年级数学下期中试卷附答案一、选择题1.若反比例函数kyx(x<0)的图象如图所示,则k的值可以是()A.-1B.-2C.-3D.-42.如图,用放大镜看△ABC,若边BC的长度变为原来的2倍,那么下列说法中,不正确的是().A.边AB的长度也变为原来的2倍;B.∠BAC的度数也变为原来的2倍;C.△ABC的周长变为原来的2倍;D.△ABC的面积变为原来的4倍;3.在Rt△ABC中,∠ACB=90°,AB=5,tan∠B=2,则AC的长为()A.1B.2C.5D.254.如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()A.7B.7.5C.8D.8.55.如图,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,反比例函数y=kx(x>0)的图象经过顶点B,则反比例函数的表达式为()A.y=12xB.y=24xC.y=32xD.y=40x6.如图,在△ABC中,DE∥BC ,12ADDB=,DE=4,则BC的长是()A.8 B.10 C.11 D.127.对于反比例函数y=1x,下列说法正确的是()A.图象经过点(1,﹣1)B.图象关于y轴对称C.图象位于第二、四象限D.当x<0时,y随x的增大而减小8.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③AE DEAB BC=,④AD AEAC AB=,⑤AC2=AD•AE,使△ADE与△ACB一定相似的有()A.①②④B.②④⑤C.①②③④D.①②③⑤9.下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:910.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+11.若反比例函数2yx=-的图象上有两个不同的点关于y轴的对称点都在一次函数y=-x+m的图象上,则m的取值范围是()A.22m>B.-22m<C.22-22m m>或<D.-2222m<<12.给出下列函数:①y=﹣3x+2;②y=3x;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③二、填空题13.若点A(m,2)在反比例函数y=的图象上,则当函数值y≥-2时,自变量x的取值范围是____.14.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_____m.15.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.16.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为____m.17.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.18.如图所示,在Rt △ABC 中,∠C=90°,BC=1,AC=4,把边长分别为1x ,2x ,3x ,…,n x 的n ()1n ≥个正方形依次放入△ABC 中,则第n 个正方形的边长n x =_______________(用含n 的式子表示).19.已知线段AB 的长为10米,P 是AB 的黄金分割点(AP >BP ),则AP 的长_____米.(精确到0.01米)20.若a b =34,则a b b+=__________. 三、解答题21.如图,在Rt ABC 中,90BAC ∠=,AD BC ⊥于点D ,求证:2AD CD BD =⋅.22.已知:如图,四边形ABCD 的对角线AC 和BD 相交于点E ,AD=DC ,DC 2=DE•DB ,求证:(1)△BCE ∽△ADE ;(2)AB•BC=BD•BE .23.如图,直线y=12x+2与双曲线y=k x相交于点A (m ,3),与x 轴交于点C . (1)求双曲线的解析式;(2)点P 在x 轴上,如果△ACP 的面积为3,求点P 的坐标.24.如图,平面直角坐标系xOy 中,A (2,1),B (3,﹣1),C (﹣2,1),D (0,2).已知线段AB 绕着点P 逆时针旋转得到线段CD ,其中C 是点A 的对应点.(1)用尺规作图的方法确定旋转中心P ,并直接写出点P 的坐标;(要求保留作图痕迹,不写作法)(2)若以P 为圆心的圆与直线CD 相切,求⊙P 的半径25.如图,已知在ABC 中,4AB =,8BC =,D 为BC 边上一点,2BD =.(1)求证:ABD CBA ;(2)过点D 作//DE AB 交AC 于点E ,请再写出另一个与ABD △相似的三角形,并直接写出DE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由图像可知,反比例函数与线段AB 相交,由A 、B 的坐标,可求出k 的取值范围,即可得到答案.【详解】如图所示:由题意可知A (-2,2),B (-2,1),∴1-2⨯2<<-2⨯k ,即4-<<-2k故选C.【点睛】本题考查反比例函数的图像与性质,由图像性质得到k 的取值范围是解题的关键.2.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC ,若边BC 的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB 的长度也变为原来的2倍,故A 正确;∴∠BAC 的度数与原来的角相等,故B 错误;∴△ABC 的周长变为原来的2倍,故C 正确;∴△ABC 的面积变为原来的4倍,故D 正确;故选B【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.3.B解析:B【解析】【分析】根据正切的定义得到BC=12AC,根据勾股定理列式计算即可.【详解】在Rt△ABC中,∠ACB=90°,tan∠B=2,∴ACBC=2,∴BC=12 AC,由勾股定理得,AB2=AC2+BC2)2=AC2+(12AC)2,解得,AC=2,故选B.【点睛】本题考查的是锐角三角函数的定义、勾股定理,掌握锐角A的对边a与邻边b的比叫做∠A的正切是解题的关键.4.B解析:B【解析】【分析】由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由AC=4,CE=6,BD=3,即可求得DF的长,则可求得答案.【详解】解:∵a∥b∥c,∴AC BD CE DF=,∵AC=4,CE=6,BD=3,∴436DF =,解得:DF=92,∴937.52BF BD DF=+=+=.故选B.考点:平行线分线段成比例.5.C解析:C【解析】【分析】过A 作AM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,根据菱形性质得出OA=BC=AB=OC ,AB ∥OC ,OA ∥BC ,求出∠AOM=∠BCN ,OM=3,AM=4,OC=OA=AB=BC=5,证△AOM ≌△BCN ,求出BN=AM=4,CN=OM=3,ON=8,求出B 点的坐标,把B 的坐标代入y=kx 求出k 即可.【详解】过A 作AM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,则∠AMO=∠BNC=90°,∵四边形AOCB 是菱形,∴OA=BC=AB=OC,AB ∥OC,OA ∥BC ,∴∠AOM=∠BCN ,∵A(3,4),∴OM=3,AM=4,由勾股定理得:OA=5,即OC=OA=AB=BC=5,在△AOM 和△BCN 中AMO BNC AOM BCN OA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BCN(AAS),∴BN=AM=4,CN=OM=3,∴ON=5+3=8,即B 点的坐标是(8,4),把B 的坐标代入y=kx 得:k=32,即y=32x, 故答案选C.【点睛】 本题考查了菱形的性质,解题的关键是熟练的掌握菱形的性质.6.D解析:D【解析】【分析】根据AD DB =12,可得AD AB =13,再根据DE ∥BC ,可得DE BC =AD AB ; 接下来根据DE=4,结合上步分析即可求出BC 的长.【详解】 ∵AD DB =12, ∴AD AB =13, ∵在△ABC 中,DE ∥BC , ∴DE BC =AD AB =13. ∵DE=4,∴BC=3DE=12.故答案选D.【点睛】 本题考查了平行线分线段成比例的知识,解题的关键是熟练的掌握平行线分线段成比例定理.7.D解析:D【解析】A 选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=1x的图象上,故本选项错误;B 选项:反比例函数的图象关于原点中心对称,故本选项错误;C 选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;D 选项:∵k=1>0,∴当x <0时,y 随x 的增大而减小,故是正确的.故选B . 8.A解析:A【解析】①AED B ∠=∠,且DAE CAB ∠=∠,∴ADE ACB ∽,成立.②ADE C ∠=∠且DAE CAB ∠=∠,∴ADE ACB ∽,成立. ③AE DE AB BC=,但AED 比一定与B 相等,故ADE 与ACD 不一定相似. ④AD AE AC AB=且DAE CAB ∠=∠, ∴ADE ACB ∽,成立.⑤由2AC AD AE =⋅,得AC AE AD AC=无法确定出ADE , 故不能证明:ADE 与ABC 相似.故答案为A .点睛:本题考查了相似三角形的判定定理:(1)两角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.9.B解析:B【解析】【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A 、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B 、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C 、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D 、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B .【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.10.D解析:D【解析】【分析】设点B 的横坐标为x ,然后表示出BC 、B′C 的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B 的横坐标为x ,则B 、C 间的横坐标的长度为﹣1﹣x ,B′、C 间的横坐标的长度为a+1,∵△ABC 放大到原来的2倍得到△A′B′C ,∴2(﹣1﹣x )=a+1,解得x =﹣12(a+3), 故选:D .本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.11.C解析:C【解析】【分析】 根据题意可知反比例函数2y x =-的图象上的点关于y 轴的对称的点在函数2y x =上,由此可知反比例函数2y x=的图象与一次函数y=-x+m 的图象有两个不同的交点,继而可得关于x 的一元二次方程,再根据根的判别式即可求得答案.【详解】 ∵反比例函数2y x =-上有两个不同的点关于y 轴对称的点在一次函数y =-x +m 图象上, ∴反比例函数2y x=与一次函数y =-x +m 有两个不同的交点, 联立得2y x y x m ⎧=⎪⎨⎪=-+⎩,消去y 得:2x m x =-+, 整理得:220x mx -+=,∵有两个不同的交点∴220x mx -+=有两个不相等的实数根,∴△=m 2-8>0,∴m >m <故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,关于x 轴、y 轴对称的点的坐标,熟练掌握相关内容、正确理解题意是解题的关键.12.B解析:B【解析】分析:分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案. 详解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项错误;②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项错误; ③y =2x 2,当x >1时,函数值y 随自变量x 增大而减小,故此选项正确;④y =3x ,当x >1时,函数值y 随自变量x 增大而减小,故此选项正确.点睛:本题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题的关键.二、填空题13.x≤-2或x>0【解析】【分析】先把点A(m2)代入解析式得A(22)再根据反比例函数的对称性求出A点关于原点的对称点A(-2-2)再根据函数图像即可求出函数值y≥-2时自变量的取值【详解】把点A(解析:x≤-2或x>0【解析】【分析】先把点A(m,2)代入解析式得A(2,2),再根据反比例函数的对称性求出A点关于原点的对称点A’(-2,-2),再根据函数图像即可求出函数值y≥-2时自变量的取值.【详解】把点A(m,2)代入y=,得A(2,2),∵点A(2,2)关于原点的对称点A’为(-2,-2),故当函数值y≥-2时,自变量x的取值范围为x≤-2或x>0.【点睛】此题主要考查反比例函数的图像,解题的关键是利用反比例函数的中心对称性.14.24米【解析】【分析】先设建筑物的高为h米再根据同一时刻物高与影长成正比列出关系式求出h的值即可【详解】设建筑物的高为h米由题意可得:则4:6=h:36解得:h=24(米)故答案为24米【点睛】本题解析:24米.【解析】【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可.【详解】设建筑物的高为h米,由题意可得:则4:6=h:36,解得:h=24(米).故答案为24米.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.15.3:2【解析】因为DE∥BC所以因为EF∥AB所以所以故答案为:3:2解析:3:2【解析】因为DE ∥BC,所以32AD AE DB EC ==,因为EF ∥AB ,所以23CE CF EA BF ==,所以32BF FC =,故答案为: 3:2. 16.3【解析】试题分析:如图∵CD ∥AB ∥MN ∴△ABE ∽△CDE △ABF ∽△MNF ∴即解得:AB=3m 答:路灯的高为3m 考点:中心投影解析:3【解析】试题分析:如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF ,∴,CD DE FN MN AB BE FB AB ==, 即1.8 1.8 1.5 1.5,1.8 1.5 2.7AB BD AB BD==++-, 解得:AB=3m ,答:路灯的高为3m .考点:中心投影.17.cm 【解析】【分析】将杯子侧面展开建立A 关于EF 的对称点A′根据两点之间线段最短可知A′B 的长度即为所求【详解】解:如答图将杯子侧面展开作A 关于EF 的对称点A′连接A′B 则A′B 即为最短距离根据勾股解析:cm .【解析】【分析】将杯子侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A 关于EF 的对称点A′,连接A′B ,则A′B 即为最短距离.根据勾股定理,得(cm ).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.18.【解析】【分析】根据正方形的对边平行证明△BDF∽△BCA 然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长同理利用前两个小正方形上方的三角形相似根据相似三角形对应边成比例列出比例式 解析:4()5n 【解析】【分析】根据正方形的对边平行证明△BDF ∽△BCA ,然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长,同理利用前两个小正方形上方的三角形相似,根据相似三角形对应边成比例列出比例式即可求出前两个小正方形的边长的关系,以此类推,找出规律便可求出第n 个正方形的边长.【详解】解:如下图所示,∵四边形DCEF 是正方形,∴DF ∥CE ,∴△BDF ∽△BCA ,∴DF :AC=BD :BC ,即x 1:4=(1-x 1):1解得x 1= 45, 同理,前两个小正方形上方的三角形相似,112121-=-x x x x x同理可得,113231,-=-x x x x x 解得:33121==x x x x以此类推,第n 个正方形的边长1n 45=⎛⎫= ⎪⎝⎭n n x x . 故答案为:4()5n【点睛】本题考查了正方形的性质,相似三角形的判定与性质,解题的关键是根据相似三角形对应边成比例找出后面正方形的边长与第一个正方形的边长的关系. 19.18【解析】【分析】根据黄金分割定义:列方程即可求解【详解】解:设AP 为x 米根据题意得整理得x2+10x ﹣100=0解得x1=5﹣5≈618x2=﹣5﹣5(不符合题意舍去)经检验x =5﹣5是原方程的解析:18【解析】【分析】 根据黄金分割定义:AP BP AB AP=列方程即可求解. 【详解】解:设AP 为x 米,根据题意,得 x 1010x x-= 整理,得x 2+10x ﹣100=0解得x 1=﹣5≈6.18,x 2=﹣5(不符合题意,舍去)经检验x =5是原方程的根,∴AP 的长为6.18米.故答案为6.18.【点睛】本题考查了黄金分割的概念,熟练掌握黄金比是解答本题的关键.20.【解析】【分析】由比例的性质即可解答此题【详解】∵∴a=b ∴=故答案为【点睛】此题考查了比例的基本性质熟练掌握这个性质是解答此题的关键 解析:74【解析】【分析】由比例的性质即可解答此题.∵34a b =, ∴a=34b , ∴a b b +=3744b b b b b+= , 故答案为74【点睛】 此题考查了比例的基本性质,熟练掌握这个性质是解答此题的关键.三、解答题21.见解析【解析】【分析】根据相似三角形的判定方法证明Rt △ABD ∽Rt △ADC ,即可得到BD :AD=AD :CD , 再利用比例性质可得.【详解】∵BD AC ⊥,∴ADB CDB 90∠∠==,∴BAD 90∠∠+=B∵90BAC ∠=∴90B C ∠+∠=∴BAD ∠∠=C∴Rt ABD Rt CAD ∽,∴BD :AD=AD :CD ,∴2AD CD BD =⋅.【点睛】考查了直角三角形性质的应用,判定三角形相似是解题的关键.22.(1)见解析;(2)见解析.【解析】【分析】(1)由∠DAC =∠DCA ,对顶角∠AED =∠BEC ,可证△BCE ∽△ADE .(2)根据相似三角形判定得出△ADE ∽△BDA ,进而得出△BCE ∽△BDA ,利用相似三角形的性质解答即可.【详解】证明:(1)∵AD=DC ,∴∠DAC=∠DCA,∵DC2=DE•DB,∴=,∵∠CDE=∠BDC,∴△CDE∽△BDC,∴∠DCE=∠DBC,∴∠DAE=∠EBC,∵∠AED=∠BEC,∴△BCE∽△ADE,(2)∵DC2=DE•DB,AD=DC∴AD2=DE•DB,同法可得△ADE∽△BDA,∴∠DAE=∠ABD=∠EBC,∵△BCE∽△ADE,∴∠ADE=∠BCE,∴△BCE∽△BDA,∴=,∴AB•BC=BD•BE.【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.23.(1)6yx(2)(-6,0)或(-2,0).【解析】分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t 的方程,则可求得P点坐标.详解:(1)把A点坐标代入y=12x+2,可得:3=12m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=6x;(2)在y=12x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=12×3|t+4|.∵△ACP的面积为3,∴12×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.24.(1)如图点P即为所求.见解析;(2)以P为圆心的圆与直线CD相切,⊙P的半径为655.【解析】【分析】(1)作相对AC,BD的垂直平分线,两条垂直平分线的交点P即为所求.(2)作PE⊥CD于E,求出点E的坐标,利用相似三角形的性质求出PE即可.【详解】(1)如图点P即为所求.(2)作PE⊥CD于E,设AC交PD于K.∵∠CDO=∠PDE,∠CKD=∠PED=90°,∴△COD∽△PED,∴COPE=CDPD,∴2PE=53,∴PE 65,∵以P为圆心的圆与直线CD相切,∴⊙P的半径为655.【点睛】本题考查作图,相似三角形的判定和性质,切线的性质等知识,解题的关键是熟练掌握基本知识.25.(1)证明见解析;(2)△CDE ,3DE =.【解析】【分析】(1)中根据图中B 为公共角,找到三角形相似的“夹角相等”的条件,只要证明AB BD BC AB=,依据是“两边对应成比例,且夹角相等,两三角形相似 ;(2)由//DE AB 可得出C ABD ED ∽,在(1)中ABD CBA ,所以可得EDC CBA ,于是可构建与线段DE 有关的比例式,即可求出DE 的长 .【详解】(1)【证明】∵4AB =,8BC =,2BD =,12AB BD CB BA ∴==. ∵ABD CBA ∠=∠, ∴ABD CBA . (2)【解】由(1)知,ABD CBA .∵//DE AB , ∴CDE CBA ,∴ABD CDE . 由CDE CBA ,得DE DC BA BC =, 即8248DE -=, 解得3DE =.【点睛】本题考查的知识点是相似三角形的判定,关键是根据题中的线段的长和图形的特点,通过仔细观察和计算寻找缺少的条件.。

2020-2021学年度第二学期九年级数学期中试卷及答案(共2套) (2)

2020-2021学年度第二学期九年级数学期中试卷及答案(共2套) (2)

2020-2021学年度第二学期九年级数学期中试卷及答案(本检测题满分:120分,时间:120分钟)一、选择题(每小题3分,共36分)1.(2015·江苏苏州中考)若点A (a ,b )在反比例函数y =的图象上,则代数式ab -4的值为( )A.0B.-2C.2D.-62.已知函数xk y =的图象经过点,则函数2-=kx y 的图象不经过第( )象限.A .一 B.二 C.三 D.四 3.在同一坐标系中,函数x ky =和3+=kx y 的图象大致是( )4.对于反比例函数3y x=,下列说法正确的是( ) A.图象经过点(1,-3) B.图象在第二、四象限C.当0x >时,y 随x 的增大而增大D.当0x <时,y 随x 的增大而减小5.如图所示,△ABC 中,AE 交BC 于点D ,∠C =∠E ,AD =4,BC =8,BD ∶DC =5∶3,则DE 的长等于( )A. B. C. D.y x O Oy x O y xO x y 第5题图6.(2015·武汉中考)如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1) 第6题图7.如图所示,D是△ABC的边BC上任一点,已知AB=4,AD=2,∠DAC=∠B.若△ABD的面积为则△ACD的面积为()A. B. C. D.8.已知反比例函数10yx=,当12x<<时,y的取值范围是( )A.0<y<5B.1<y<2C.5<y<10D.y>109.若=,则()A. B. C. D.10.在下列四组三角形中,一定相似的是()A.两个等腰三角形B.两个等腰直角三角形C.两个直角三角形D.两个锐角三角形11.若△∽△且相似比为△∽△且相似比为则△与△的相似比为()A. B. C.或 D.12.如图,DE是△ABC的中位线,延长DE至使EF=DE,连接CF,第7题图第12题图则的值为( ) A.1∶3B.2∶3C.1∶4D.2∶5二、填空题(每小题3分,共24分)13.(2015·广东中考)若两个相似三角形的周长比为2∶3,则它们的面积比是 .14.已知111(,)P x y ,222(,)P x y 是同一个反比例函数图象上的两点.若212x x =+,且211112y y =+,则这个反比例函数的解析式为 . 15.在比例尺为1∶500 000的某省地图上,量得A 地到B 地的距离约为46厘米,则A 地到B 地的实际距离约为 千米. 16.如图是一个边长为1的正方形组成的网格,△与△都是格点三角形(顶点在网格交点处),并且△∽△则△△的相似比是 .17.如图所示,EF 是△ABC 的中位线,将沿AB 方向平移到△EBD 的位置,点D 在BC 上,已知△AEF 的面积为5,则图中阴影部分的面积为 . 18.若5.0===f e d c b a ,则fd b ec a +-+-2323=__________. 19.如图所示,AC ⊥CD ,垂足为点C ,BD ⊥CD ,垂足为点D ,AB与CD 交于点O .若AC =1,BD =2,CD =4,则AB = . 第19题图 20.(2015•山东临沂中考)定义:给定关于x 的函数y ,对于该函数图象上任意两点(x 1,y 1),(x 2,y 2),当x 1<x 2时,都有y 1﹤y 2,称该函数为增函数. 根据以上定义,可以 判断下面所给的函数中,是增函数的有____________(填上所有正确答案的序号). ① y = 2x ; ② y = -x +1; ③ y = x 2 (x >0); ④三、解答题(共60分)A1B1C 1A C第16题图第17题图21.(10分)(2015·湖北咸宁中考)如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.22.(8分)(2015•湖北襄阳中考)如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,-2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.23.(8分)如图所示,直线y=mx与双曲线kyx相交于A,B两点,A点的坐标为(1,2).(1)求反比例函数的解析式;(2)根据图象直接写出当mx>kx时,x的取值范围;(3)计算线段AB的长.24.(8分)如图所示,在平面直角坐标系中,点A,B分别在x轴、y轴的正半轴上,OA =4,AB=5,点D在反比例函数kyx (k>0)的图象上,DA OA⊥,点P在y轴负半轴上,OP=7.第22题图第23题图第21题图(1)求点B 的坐标和线段PB 的长;(2)当90PDB =∠时,求反比例函数的解析式.25.(8分)在比例尺为1∶50 000的地图上,一块多边形地区的周长是72 cm ,多边形的两个顶点、之间的距离是25 cm ,求这个地区的实际边界长和、两地之间的实际距离. 26.(8分)已知:如图所示,在△中∥点在边上与相交于点且∠.求证:(1)△∽△;(2)27.(10分) 已知反比例函数ky x=(k 为常数,0k ≠)的图象经过点23A (,).(1)求这个函数的解析式;(2)判断点1632B C -(,),(,)是否在这个函数的图象上,并说明理由; (3)当31x --<<时,求y 的取值范围.期中检测题参考答案1. B 解析:∵ 点A (a ,b )在反比例函数y =2x的图象上,∴ ab =2,∴ ab -4=2-4=-2. 2. A 解析:因为函数xk y =的图象经过点(1,)1-,所以k =-1,所以y=kx -2=-x -2,根据一次函数的图象可知不经过第一象限.3.A 解析:由于不知道k 的符号,此题可以分类讨论.当k >0时,反比例函数xk y =的图象在第一、三象限,一次函数3+=kx y 的图象经过第一、二、三象限,可知A 项符合;同理可讨论当k <0时的情况.4.D 解析:A.∵ 反比例函数3y x=,∴ 3xy =,故图象经过点(1,3),故此选项错误; B.∵ 0k >,∴ 图象在第一、三象限,故此选项错误;C.∵ 0k >,∴ 当0x >时,y 随x 的增大而减小,故此选项错误;第26题图D.∵ 0k >,∴ 当0x <时,y 随x 的增大而减小,故此选项正确.故选D .5.B 解析:∵ BC =BD +DC =8,BD ∶DC =5∶3,∴ BD =5,DC =3.∵ ∠=∠∠ADC =∠BDE ,∴△ACD ∽△BED ,∴即∴ DE =.6. A 解析:方法一:∵ 线段CD 和线段AB 关于原点位似, ∴ △ODC ∽△OBA ,∴ 13OD CD OB AB ==, 即3136==CD OD ,∴ CD =1,OD =2,∴ C (2,1). 方法二:设C (x ,y ),∵ 线段CD 和线段AB 关于原点位似, ∴3136==y x ,∴ x =2,y =1,∴ C (2,1). 7.C 解析:∵ ∠DAC =∠∠ACD =∠BCA ,∴ △ABC ∽△DAC ,∴ ==4,即∴ ∴ .点拨:相似三角形的面积比等于对应边的比的平方.不要错误地认为相似三角形的面积比等于对应边的比.8.C 解析:当x =1时,y =10;当x =2时,y =5.因为当0x >时,y 随x 的增大而减小,所以当12x <<时y 的取值范围是510y <<.9.D 解析:∵=∴∴∴故选D .10.B 解析:根据相似图形的定义对各选项分析判断后再利用排除法进行求解.A.两个等腰三角形,两腰对应成比例,夹角不一定相等,所以两个等腰三角形不一定相似,故本选项错误;B. 两个等腰直角三角形,两腰对应成比例,夹角都是直角,一定相等,所以两个等腰直角三角形一定相似,故本选项正确;C. 两个直角三角形,只有一直角相等,其余两锐角不一定对应相等,所以两个直角三角形不一定相似,故本选项错误;D. 两个锐角三角形,不具备相似的条件,所以不一定相似,故本选项错误.故选B . 11.A 解析:∵ △∽△相似比为又∵ △∽△相似比为∴ △ABC 与△的相似比为.故选A .12.A 解析:先利用“SAS ”证明△ADE ≌△CFE ,得出,再由DE 为中位线,得到△ADE ∽△ABC ,且相似比为1∶2,利用相似三角形的面积比等于相似比的平方,得到=14,则=13,进而得出=13.13. 4∶9 解析:直接根据相似三角形的性质得,相似三角形的面积比等于周长比的平方,因为相似三角形的周长比为2∶3,所以它们的面积比是4∶9.14.4y x =解析;设反比例函数的解析式为k y x=, 因为1212,k ky y x x ==,211112+=y y ,所以2112x x k =+.因为212+=x x ,所以122k =,解得k =4, 所以反比例函数的解析式为xy 4=. 15.230 解析:根据比例尺=图上距离︰实际距离,列比例式直接求得实际距离.设地到地实际距离约为则解得厘米=230千米.∴地到地实际距离约为230千米.16.解析: 先利用勾股定理求出那么即是相似比.由图可知∴ △与△的相似比是.17.10 解析:∵ 是△的中位线,∴∥∴ △∽△∵ ∴.∵ △的面积为5,∴ .∵ 将△沿方向平移到△的位置,∴.∴ 图中阴影部分的面积为:.18.解析:由5.0===fed c b a ,得,,,所以f d b e c a +-+-2323.5.0235.05.1=+-+-=f d b f d b19.5 解析:∵ ∠=∠=90°,∠AOC =∠BOD ,∴ △AOC ∽△BOD ,∴,∴ DO =2CO ,BO =2AO .∵ CD =4,∴ CO =,DO =.根据勾股定理可得AO =,BO =,∴ AB =5.点拨:根据相似三角形的对应边成比例列出比例式和解直角三角形,是求线段长度的两种重要的方法.同学们在解题时注意应用.20. ①③ 解析:y =2x ,2>0,当x 1<x 2时,y 1<y 2,∴ ①是增函数. y =-x +1,-1<0,当x 1<x 2时,y 1>y 2,∴ ②不是增函数. y =x 2(x >0),当x 1<x 2时,y 1<y 2,∴ ③是增函数.1y x =-, 当x 1=-1,x 2=1时,x 1<x 2,y 1>y 2.∴ ④不是增函数.故答案为①③.21. (1)解:△ADE ≌△BDE ,△ABC ∽△BDC .(2)证明:∵ AB =AC ,∠A =36°,∴ ∠ABC =∠C =72°. ∵ BD 为角平分线, (证全等)∴ ∠ABD =12∠ABC =36°=∠A . ∵ ∠AED =∠BED =90°,DE =DE , ∴ △ADE ≌△BDE . (证相似)∴ ∠DBC =12∠ABC =36°=∠A . ∵ ∠C =∠C ,∴ △ABC ∽△BDC .22. 解:(1)∵ 反比例函数y = 的图象过点A (1,4),∴ m =4.∴ 反比例函数的解析式为y = .∵ 反比例函数y = 的图象过点B (n ,-2),∴ =-2, ∴ n =-2. ∴ B 点坐标为(-2,-2).∵ 直线y =ax +b 经过点A (1,4)和点B (-2,-2),∴ 4,22,a b a b +=⎧⎨-+=-⎩解这个方程组,得2,2.a b =⎧⎨=⎩∴ 一次函数的解析式为y =2x +2.(2)x <-2或0<x <1. 23. 解:(1)把A (1,2)代入ky x =中,得2k =. ∴ 反比例函数的解析式为2y x=. (2)10x -<<或1x >.(3)如图所示,过点A 作AC ⊥x 轴,垂足为C . ∵ A (1,2),∴ AC =2,OC =1.∴ OA 22215+.∴ AB =2OA 5 24.解:(1)在Rt △OAB 中,OA =4,AB =5, ∴ OB 2222543AB OA -=-=,第23题答图∴ 点B 的坐标为()0,3.∵ OP =7,∴ PB =OB +OP =3+7=10.(2)如图所示,过点D 作DE ⊥OB ,垂足为E ,由DA ⊥OA 可得 矩形OADE .∴ DE =OA =4,90BED =∠,∴ 90.BDE EBD +=∠∠又∵ ∠BDP =90,∴ 90,BDE EDP +=∠∠.EBD EDP =∴ ∠∠ 又∵ ∠BED =∠DEP ,∴ △BED ∽△DEP ,∴.BE DEDE EP= 设点D 的坐标为(4,m ),由k >0得m >0, 则有OE =AD =m , BE =3-m ,EP =m +7,34,47m m -=+∴解得m =1或m =-5(不合题意,舍去). ∴ m =1,点D 的坐标为(4,1). ∴ k =4,反比例函数的解析式为4.y x= 25.解:∵ 实际距离=图上距离÷比例尺, ∴ 、两地之间的实际距离 这个地区的实际边界长26. 证明:(1)∵∴ ∠.∵∥∴.∴.∵∴ △∽△.(2)由△∽△得EFDEDE DB =.∴ EF DB DE ⋅=2. 由△∽△得.∵∠∠∴ △∽△.∴ DFDEDE DG =.∴DF DG DE ⋅=2. ∴ EF DB DF DG ⋅=⋅.27. 解:(1)∵ 反比例函数ky x=(k 为常数,0k ≠)的图象经过点23A (,),∴ 把点A 的坐标代入解析式,得32k =,解得6k =,∴ 这个函数的解析式为6y x=. 第24题答图(2)∵ 反比例函数的解析式6y x=,∴ 6xy =. 分别把点B C 、的坐标代入,得1666-⨯=-≠(),则点B 不在该函数的图象上; 326⨯=,则点C 在该函数的图象上. (3)∵ 当3x =-时,2y =-,当1x =-时,6y =-, 又∵ 0k >,∴当0x <时,y 随x 的增大而减小, ∴ 当31x --<<时,62y --<<.2020-2021学年度第二学期九年级数学期中试卷及答案时间:120分 满分:120分一、选择题(每题3分,共30分) 1.下列函数是二次函数的是( )A .12+=x yB .221y x=-+ C .22+=x yD .221-=x y 2.已知二次函数y=ax 2+bx+c (a ≠0)的图像如图所示,下列说法错误的是( )A .图像关于直线x=1对称B .函数y=ax 2+bx+c (a ≠0)的最小值是-4C .-1和3是方程ax 2+bx+c=0(a ≠0)的两个根D .当x <1时,y 随x 的增大而增大3.已知二次函数y=x2-3x+m(m为常数)的图像与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是()A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=34.如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()A.3B.5C.15D.175.如图,□ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=70°,连接AE,则∠AEB的度数为()A.26°B.24°C.25°D.20°6.在直角坐标系中,⊙P、⊙Q的位置如图所示.下列四个点中,在⊙P外部且在⊙Q内部的是()A.(1,2)B.(2,1)C.(2,-1)D.(3,1)7.已知⊙O的半径为5,圆心O到直线l的距离为3,则反映直线l与⊙O的位置关系的图形是()8.用反证法证明“三角形的三个外角中至少有两个钝角”时,假设正确的是()A.假设三个外角都是锐角B.假设至少有一个钝角C.假设三个外角都是钝角D.假设三个外角中只有一个钝角9.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sin∠E的值为()A .21B .22C . 23D .33 10.下列调查适合作普查的是( )A .对和甲型H7N9的流感患者同一车厢的乘客进行医学检查B .了解全国手机用户对废手机的处理情况C .了解全球人类男女比例情况D .了解怀化市中小学生压岁钱的使用情况二、填空题(每题4分,共24分)11.如图,分别以A 、B 为圆心,线段AB 的长为半径的两个圆相交于C 、D 两点,则∠CAD 的度数为_______度.12.某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是_______.13.如图,在△ABC 中,点P 是△ABC 的内心,则∠PBC+∠PCA+∠PAB=_____度.14.二次函数y=x2-2x-3的图象如图所示.当y<0时,自变量x的取值范围是_______. 15.将抛物线y=2x2-1沿x轴向右平移3个单位后,与原抛物线交点的坐标为_______. 16.如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧AC的长为_______.(结果保留π)三、解答题(17至19题,每题6分;20至22题,每题8分;23至24题,每题12分;共66分)17.已知扇形的半径是12厘米,圆心角为30°,求:扇形的面积和周长.(保留π)18.如图所示,有一圆锥形粮仓,其轴截面△SAB为正三角形,边长为6m,母线SB 的中点P处有一老鼠正偷吃粮食,小猫从A处沿圆锥的表面偷袭老鼠,则小猫经过的最短路程是多少米?19.如图,抛物线y=x2+bx+c过点A(-4,-3),与y轴交于点B,对称轴是x=-3,请解答下列问题:(1)求抛物线的解析式.(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.20.如图AB 是⊙O 的直径,AP 是⊙O 的切线,A 是切点,BP 与⊙O 交于点C .(1)若AB=2,∠P=30°,求AP 的长;(2)若D 为AP 的中点,求证:直线CD 是⊙O 的切线.21.如图,已知直线l 1:2833y x =+与直线 l 2:y=﹣2x+16相交于点C ,直线l 1、l 2分别交x 轴于A 、B 两点,矩形DEFG 的顶点D 、E 分别在l 1、l 2上,顶点F 、G 都在x 轴上,且点G 与B 点重合,求S 矩形DEFG 与S △ABC 的比值.22.“校园安全”受到全社会的广泛关注,某校政教处对部分学生及家长就校园安全知识的了解程度,进行了随机抽样调查,并绘制成如图所示的两幅统计图,请根据统计图中的信息,解答下列问题:(1)参与调查的学生及家长共有_______人;(2)在扇形统计图中,“基本了解”所对应的圆心角的度数是_____度;(3)在条形统计图中,“非常了解”所对应的学生人数是____人;(4)若全校有1200名学生,请你估计对“校园安全”知识达到“非常了解”和“基本了解”的学生共有多少人?23.如图,已知直线y=13x+1与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°后得到△COD.(1)点C的坐标是______,线段AD的长等于________;(2)点M在CD上,且CM=OM,抛物线y=x2+bx+c经过点C,M,求抛物线的解析式;(3)如果点E在y轴上,且位于点C的下方,点F在直线AC上,那么在(2)中的抛物线上是否存在点P,使得以C,E,F,P为顶点的四边形是菱形?若存在,请求出该菱形的周长l;若不存在,请说明理由.2020-2021学年度第二学期九年级数学期中试卷及答案参考答案一、选择题1、C2、D3、B4、B5、D6、C7、B8、D9、A 10、A二、填空题11、120 12、100 13、90 14、-1<x <3 15、(2723,) 16、23三、解答题×122=12π(平方厘米);答:扇形的面积是12π平方厘米,周长是(24+2π)厘米.18、解:设圆锥底面圆半径为r ,将该圆锥侧面沿母线SA 、SB 剪开,再展开得扇形SAB ,则有122AB l r π=⨯,∴61231802n ππ⨯=⨯⨯,90n =.在RT △ASP 中,AP ==m.19、解:(1)把点A (-4,-3)代入y=x 2+bx+c 得:164b c 3-+=-, ∴c 4b 19-=-,∵对称轴是x=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x 2+6x+5;(2)∵CD ∥x 轴,∴点C 与点D 关于x=-3对称,∵点C 在对称轴左侧,且CD=8,∴点C 的横坐标为-7,∴点C 的纵坐标为(-7)2+6×(-7)+5=12,∵点B 的坐标为(0,5),∴△BCD 中CD 边上的高为12-5=7,20、(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵AB=2,∠P=30°,(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.21、解:由x+=0,得x=﹣4.∴A点坐标为(﹣4,0),由﹣2x+16=0,得x=8.∴B点坐标为(8,0),∴AB=8﹣(﹣4)=12.由,解得,∴C点的坐标为(5,6),∴S△ABC=AB•y=×12×6=36.c∵点D在l1上且x D=x B=8,∴y=×8+=8,D∴D点坐标为(8,8),又∵点E在l2上且y E=y D=8,∴﹣2x E+16=8,∴x E=4,∴E点坐标为(4,8),∴DE=8﹣4=4,EF=8.∴矩形面积为:4×8=32,∴S矩形DEFG:S△ABC=32:36=8:9.故答案为:8:9.22、解:(1)参与调查的学生及家长总人数是:(16+4)÷5%=400(人);(2)基本了解的人数是:73+77=150(人),则对应的圆心角的底数是:360°×150400=135°;(3)“非常了解”所对应的学生人数是:400-83-77-73-54-31-16-4=62;(4)调查的学生的总人数是:62+73+54+16=205(人),对“校园安全”知识达到“非常了解”和“基本了解”的学生是62+73=135(人),则全校有1200名学生中,达到“非常了解”和“基本了解”的学生是:1200×135205≈790(人).23、解:(1)∵直线y=13x+1与x轴交于点A,与y轴交于点B,∴y=0时,x=-3,x=0时,y=1,∴A点坐标为:(-3,0),B点坐标为:(0,1),∴OC=3,DO=1,∴点C的坐标是(0,3),线段AD的长等于4;(2)∵CM=OM,∴∠OCM=∠COM.∵∠OCM+∠ODM=∠COM+∠MOD=90°,∴∠ODM=∠MOD,∴OM=MD=CM,∴点M是CD的中点,∴点M的坐标为(12,32).∵抛物线y=x2+bx+c经过点C,M,∴3113 422 cb c=⎧⎪⎨++=⎪⎩解得723 bc⎧=-⎪⎨⎪=⎩∴抛物线y=x2+bx+c的解析式为:y=x2-72x+3.(3)抛物线上存在点P,使得以C,E,F,P为顶点的四边形是菱形.情形1:如图1,当点F在点C的左边时,四边形CFEP为菱形.∴∠FCE=∠PCE,由题意可知,OA=OC,∴∠ACO=∠PCE=45°,∴∠FCP=90°,∴菱形CFEP为正方形.过点P作PH⊥CE,垂足为H,则Rt△CHP为等腰直角三角形.设点P为(x,x2-72x+3),则OH=x2-72x+3,PH=x,∵PH=CH=OC-OH,∴3-(x2-72x+3)=x,解得:x=52,∴CP=522,2CH=∴菱形CFEP的周长l为5241022⨯=.情形2:如图2,当点F在点C的右边时,四边形CFPE 为菱形.∴CF=PF,CE∥FP.∵直线AC过点A(-3,0),点C(0,3),∴直线AC的解析式为:y=x+3.过点C作CM⊥PF,垂足为M,则Rt△CMF为等腰直角三角形,CM=FM.延长PF交x轴于点N,则PN⊥x轴,∴PF=FN-PN,设点P为(x,x2-72x+3),则点F为(x,x+3),24、解:(1)由于抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),可设抛物线的解析式为:y=a(x+3)(x﹣1),将C点坐标(0,﹣3)代入,得:a(0+3)(0﹣1)=5,解得a=1,则y=(x+3)(x﹣1)=x2+2x﹣3,所以抛物线的解析式为:y=x2+2x﹣3;(2)过点P作x轴的垂线,交AC于点N,交x轴于E.设直线AC的解析式为y=kx+m,由题意,得,解得,∴直线AC的解析式为:y=﹣x﹣3.设P点坐标为(x,x2+2x﹣3),则点N的坐标为(x,﹣x﹣3),∴PN=PE﹣NE=﹣(x2+2x﹣3)+(﹣x﹣3)=﹣x2﹣3x.∵S△PAC=S△PAN+S△PCN,∴S=PN•OA=×3(﹣x2﹣3x)=﹣(x+)2+,∴当x=﹣时,S有最大值,此时点P的坐标为(﹣,﹣);(3)在y轴上是否存在点M,能够使得△ADE是直角三角形.理由如下:∵y=x2+2x﹣3=y=(x+1)2﹣4,∴顶点D的坐标为(﹣1,﹣4),∵A(﹣3,0),∴AD2=(﹣1+3)2+(﹣4﹣0)2=20.设点M的坐标为(0,t),分三种情况进行讨论:①当A为直角顶点时,如图3①,由勾股定理,得AM2+AD2=DM2,即(0+3)2+(t﹣0)2+20=(0+1)2+(t+4)2,解得t=,所以点M的坐标为(0,);②当D为直角顶点时,如图3②,由勾股定理,得DM2+AD2=AM2,即(0+1)2+(t+4)2+20=(0+3)2+(t﹣0)2,解得t=﹣,所以点M的坐标为(0,﹣);③当M为直角顶点时,如图3③,由勾股定理,得AM2+DM2=AD2,即(0+3)2+(t﹣0)2+(0+1)2+(t+4)2=20,解得t=﹣1或﹣3,所以点M的坐标为(0,﹣1)或(0,﹣3);综上可知,在y轴上存在点M,能够使得△ADE是直角三角形,此时点M的坐标为(0,)或(0,﹣)或(0,﹣1)或(0,﹣3).24.如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.。

2020-2021西安市初三数学下期中试卷附答案

2020-2021西安市初三数学下期中试卷附答案

2020-2021西安市初三数学下期中试卷附答案一、选择题1.已知线段a 、b ,求作线段x ,使22b x a=,正确的作法是( ) A .B .C .D .2.P 是△ABC 一边上的一点(P 不与A 、B 、C 重合),过点P 的一条直线截△ABC,如果截得的三角形与△ABC 相似,我们称这条直线为过点P 的△ABC 的“相似线”.Rt△ABC 中,∠C=90°,∠A=30°,当点P 为AC 的中点时,过点P 的△ABC 的“相似线”最多有几条?( )A .1条B .2条C .3条D .4条 3.如图,直线12y x b =-+与x 轴交于点A ,与双曲线4(0)y x x =-<交于点B ,若2AOB S ∆=,则b 的值是( )A .4B .3C .2D .14.下列判断中,不正确的有( )A .三边对应成比例的两个三角形相似B .两边对应成比例,且有一个角相等的两个三角形相似C .斜边与一条直角边对应成比例的两个直角三角形相似D .有一个角是100°的两个等腰三角形相似5.如图,在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣1(k为常数,且k>0)的图象可能是()A.B.C.D.6.如图,已知DE∥BC,CD和BE相交于点O,S△DOE:S△COB=4:9,则AE:EC为()A.2:1 B.2:3 C.4:9 D.5:47.观察下列每组图形,相似图形是()A.B.C.D.8.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32OBCD=B.32αβ=C.1232SS=D.1232CC=9.在同一直角坐标系中,函数kyx=和y=kx﹣3的图象大致是()A.B.C.D .10.已知2x =3y ,则下列比例式成立的是( )A .B .C .D .11.下列命题是真命题的是( )A .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:912.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252- B .25- C .251- D .52-二、填空题13.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要________个小立方体.14.已知A (﹣4,y 1),B (﹣1,y 2)是反比例函数y =﹣4x图象上的两个点,则y 1与y 2的大小关系为__________. 15.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.16.如图,等腰直角三角形ABC 中, AB=4 cm.点是BC 边上的动点,以AD 为直角边作等腰直角三角形ADE.在点D 从点B 移动至点C 的过程中,点E 移动的路线长为________cm.17.如图,四边形ABCD 、CDEF 、EFGH 都是正方形,则∠1+∠2= .18.如图,在平面直角坐标系中,点A 是函数k y x=(x <0)图象上的点,过点A 作y 轴的垂线交y 轴于点B ,点C 在x 轴上,若△ABC 的面积为1,则k 的值为 ______ .19.如图所示,在Rt △ABC 中,∠C=90°,BC=1,AC=4,把边长分别为1x ,2x ,3x ,…,n x 的n ()1n ≥个正方形依次放入△ABC 中,则第n 个正方形的边长n x =_______________(用含n 的式子表示).20.已知线段a =2厘米,c =8厘米,则线段a 和c 的比例中项b 是______厘米.三、解答题21.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在它的北偏东60°方向上,在A 的正东200米的B 处,测得海中灯塔P 在它的北偏东30°方向上.问:灯塔P 到环海路的距离PC 约等于多少米?(取1.732,结果精确到1米)22.如图,在ABC ∆中,AB AC =,以AC 边为直径作⊙O 交BC 边于点D ,过点D 作DE AB ⊥于点E ,ED 、AC 的延长线交于点F .(1)求证:EF是⊙O的切线;(2)若,且,求⊙O的半径与线段的长.23.如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)求证:△ABC∽△ADE;(2)判断△ABD与△ACE是否相似?并证明.24.如图,在四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,点E为AB的中点.(1)求证:△ADC∽△ACB.(2)若AD=2,AB=3,求的值.25.如图,在△ABC中,D、E分别是边AC、BC的中点,F是BC延长线上一点,∠F=∠B.(1)若AB=10,求FD的长;(2)若AC=BC,求证:△CDE∽△DFE.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a、b和2b,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x.【详解】解:由题意,22b xa =∴2a bb x =,∵线段x没法先作出,根据平行线分线段成比例定理,只有C符合.故选C.2.C解析:C【解析】试题分析:根据相似线的定义,可知截得的三角形与△ABC有一个公共角.①公共角为∠A 时,根据相似三角形的判定:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时,根据相似三角形的判定:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,根据∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.解:①公共角为∠A时:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,∵∠CPB=∠A+∠ABP,∴PB>PC,PC=PA,∴PB>PA,∴∠PBA<∠A,∴∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.综上最多有3条.故选C .3.D解析:D【解析】 因为直线12y x b =-+与x 轴交于点A ,所以令y =0,可得:1 02x b -+=,解得2x b =, 则OA =2b ,又因为2AOB S ∆=,所以B 点纵坐标是:2b ,因为B 点在4(0)y x x =-<,所以B 点坐标为(-2b ,2b ),又因为B 点在直线12y x b =-+上,所以()2122b b b =-⨯-+,解得1b =±,因为直线12y x b =-+与y 轴交于正半轴,所以0b >,所以1b =,故选D. 4.B解析:B【解析】【分析】由相似三角形的判定依次判断可求解.【详解】解:A 、三边对应成比例的两个三角形相似,故A 选项不合题意;B 、两边对应成比例,且夹角相等的两个三角形相似,故B 选项符合题意;C 、斜边与一条直角边对应成比例的两个直角三角形相似,故C 选项不合题意;D 、有一个角是100°的两个等腰三角形,则他们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D 选项不合题意; 故选B .【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.5.B解析:B【解析】当k >0时,直线从左往右上升,双曲线分别在第一、三象限,故A 、C 选项错误; ∵一次函数y=kx-1与y 轴交于负半轴,∴D 选项错误,B 选项正确,故选B .6.A解析:A【解析】试题解析:∵ED ∥BC ,.DOE COB AED ACB ∴V V V V ∽,∽:4:9DOE BOC DOE COB S S V V Q V V ∽,,=:2:3.ED BC ∴=AED ACB QV V ∽,::.ED BC AE AC ∴=:2:3,?::ED BC ED BC AE AC Q ,==:2:3AE AC ∴=,:2:1.AE EC ∴=故选A.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.7.D解析:D【解析】【分析】根据相似图形的定义,形状相同,可得出答案.【详解】解:A 、两图形形状不同,故不是相似图形;B 、两图形形状不同,故不是相似图形;C 、两图形形状不同,故不是相似图形;D 、两图形形状相同,故是相似图形;故选:D .【点睛】本题主要考查相似图形的定义,掌握相似图形形状相同是解题的关键.8.D解析:D【解析】A 选项,在△OAB ∽△OCD 中,OB 和CD 不是对应边,因此它们的比值不一定等于相似比,所以A 选项不一定成立;B 选项,在△OAB ∽△OCD 中,∠A 和∠C 是对应角,因此αβ=,所以B 选项不成立; C 选项,因为相似三角形的面积比等于相似比的平方,所以C 选项不成立;D 选项,因为相似三角形的周长比等于相似比,所以D 选项一定成立.故选D.9.A解析:A【解析】【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限,没有图像符合要求;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,A符合要求.故选A.【点睛】本题考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.10.C解析:C【解析】【分析】把各个选项依据比例的基本性质,两内项之积等于两外项之积,已知的比例式可以转化为等积式2x=3y,即可判断.【详解】A.变成等积式是:xy=6,故错误;B.变成等积式是:3x+3y=4y,即3x=y,故错误;C.变成等积式是:2x=3y,故正确;D.变成等积式是:5x+5y=3x,即2x+5y=0,故错误.故选C.【点睛】本题考查了判断两个比例式是否能够互化的方法,即转化为等积式,判断是否相同即可.11.B解析:B【解析】【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B .【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.12.A解析:A【解析】根据黄金比的定义得:12AP AB = ,得42AP == .故选A. 二、填空题13.8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个由主视图可知第二层最少有2个第三层最少有1个所以组成这个几何体的小正方体的个数最少为5+2+1=8个点睛:本题主要考查学生由三视图判断几何解析:8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层最少有1个,所以组成这个几何体的小正方体的个数最少为5+2+1=8个. 点睛:本题主要考查学生由三视图判断几何体,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”.14.y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小从而可以解答本题详解:∵反比例函数y=--4<0∴在每个象限内y 随x 的增大而增大∵A(-4y1)B (-1y2)解析:y 1<y 2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y 1与y 2的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0, ∴在每个象限内,y 随x 的增大而增大, ∵A (-4,y 1),B (-1,y 2)是反比例函数y=-4x 图象上的两个点,-4<-1, ∴y 1<y 2,故答案为:y 1<y 2.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.15.或2【解析】【分析】由折叠性质可知BF=BF△BFC 与△ABC 相似有两种情况分别对两种情况进行讨论设出BF=BF=x 列出比例式方程解方程即可得到结果【详解】由折叠性质可知BF=BF 设BF=BF=x 故 解析:127或2 【解析】 【分析】 由折叠性质可知B’F=BF ,△B’FC 与△ABC 相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x ,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF ,设B’F=BF=x ,故CF=4-x当△B’FC ∽△ABC ,有'B F CF AB BC =,得到方程434x x -=,解得x=127,故BF=127; 当△FB’C ∽△ABC ,有'B F FC AB AC =,得到方程433x x -=,解得x=2,故BF=2; 综上BF 的长度可以为127或2. 【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论. 16.【解析】试题解析:连接CE 如图:∵△ABC 和△ADE 为等腰直角三角形∴AC=ABAE=AD ∠BAC=45°∠DAE=45°即∠1+∠2=45°∠2+∠3=45°∴∠1=∠3∵∴△ACE ∽△ABD ∴∠解析:42【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴2AB ,2AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=∠3,∵2AC AE AB AD== ∴△ACE ∽△ABD , ∴∠ACE=∠ABC=90°,∴点D 从点B 移动至点C 的过程中,总有CE ⊥AC ,即点E 运动的轨迹为过点C 与AC 垂直的线段,,当点D 运动到点C 时,,∴点E 移动的路线长为cm .17.45°【解析】【分析】首先求出线段ACAFAG 的长度(用a 表示)求出两个三角形对应边的比进而证明△ACF ∽△GCA 问题即可解决【详解】设正方形的边长为a 则AC=∵∴∵∠ACF=∠ACF ∴△ACF ∽△解析:45°.【解析】【分析】首先求出线段AC 、AF 、AG 的长度(用a 表示),求出两个三角形对应边的比,进而证明△ACF ∽△GCA ,问题即可解决.【详解】设正方形的边长为a ,则=,∵ACCF ==CG AC == ∴AC CG CF AC=, ∵∠ACF=∠ACF ,∴△ACF ∽△GCA ,∴∠1=∠CAF ,∵∠CAF+∠2=45°,∴∠1+∠2=45°.点睛:该题以正方形为载体,主要考查了相似三角形的判定及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.18.-2【解析】【分析】根据已知条件得到三角形ABC 的面积=得到|k|=2即可得到结论【详解】解:∵AB⊥y 轴∴AB∥CO∴∴∵∴故答案为:-2【点睛】本题考查了反比例函数系数k 的几何意义明确是解题的关解析:-2【解析】【分析】根据已知条件得到三角形ABC 的面积=1•=12AB OB ,得到|k|=2,即可得到结论. 【详解】解:∵AB ⊥y 轴,∴AB ∥CO , ∴111•1222ABC S AB OB x y k ====g 三角形 ,∴2k=,∵0k <,∴2k =-,故答案为:-2.【点睛】本题考查了反比例函数系数k 的几何意义,明确1•=12ABC S AB OB =V 是解题的关键. 19.【解析】【分析】根据正方形的对边平行证明△BDF∽△BCA 然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长同理利用前两个小正方形上方的三角形相似根据相似三角形对应边成比例列出比例式解析:4()5n 【解析】【分析】根据正方形的对边平行证明△BDF ∽△BCA ,然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长,同理利用前两个小正方形上方的三角形相似,根据相似三角形对应边成比例列出比例式即可求出前两个小正方形的边长的关系,以此类推,找出规律便可求出第n 个正方形的边长.【详解】 解:如下图所示,∵四边形DCEF 是正方形,∴DF ∥CE ,∴△BDF ∽△BCA ,∴DF :AC=BD :BC ,即x 1:4=(1-x 1):1解得x 1= 45, 同理,前两个小正方形上方的三角形相似,112121-=-x x x x x 解得x 2=x 12同理可得,113231,-=-x x x x x解得:33121==x x x x以此类推,第n 个正方形的边长1n 45=⎛⎫= ⎪⎝⎭n n x x . 故答案为:4()5n【点睛】本题考查了正方形的性质,相似三角形的判定与性质,解题的关键是根据相似三角形对应边成比例找出后面正方形的边长与第一个正方形的边长的关系. 20.4【解析】∵线段b 是ac 的比例中项∴解得b =±4又∵线段是正数∴b=4点睛:本题考查了比例中项的概念利用比例的基本性质求两条线段的比例中项的时候负数应舍去解析:4【解析】∵线段b 是a 、c 的比例中项,∴216b ac ==,解得b =±4,又∵线段是正数,∴b =4. 点睛:本题考查了比例中项的概念,利用比例的基本性质求两条线段的比例中项的时候,负数应舍去.三、解答题21.173米【解析】【分析】由外角的性质可以得到∠PAC=∠APB ,从而有PB=AB=200,在Rt △PBC 中,由三角函数定义可以求出PC 的长.【详解】解:由题意,可得∠PAC=30°,∠PBC=60°.∴∠APB=∠PBC=∠PBC -∠PAC=30°.∴∠PAC=∠APB .∴PB=AB=200.在Rt △PBC 中,∠PCB=90°,∠PBC=60°,PB=200,∴PC=PBsin ∠PBC=400346.4==≈173(米). 答:灯塔P 到环海路的距离PC 约等于173米.考点:解直角三角形的应用-方向角问题.22.(1)证明参见解析;(2)半径长为154,AE =6. 【解析】【分析】(1)已知点D 在圆上,要连半径证垂直,连结OD ,则OC OD =,所以ODC OCD ∠=∠,∵AB AC =,∴B ACD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .由DE AB ⊥得出OD EF ⊥,于是得出结论;(2)由35OD AE OF AF ==得到35OD AE OF AF ==,设3OD x =,则5OF x =.26AB AC OD x ===,358AF x x x =+=,362AE x =-,由363285x x -=,解得x 值,进而求出圆的半径及AE 长.【详解】解:(1)已知点D 在圆上,要连半径证垂直,如图2所示,连结OD ,∵AB AC =,∴B ACD ∠=∠.∵OC OD =,∴ODC OCD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .∵DE AB ⊥,∴OD EF ⊥.∴EF 是⊙O 的切线;(2)在Rt ODF ∆和Rt AEF ∆中,∵35OD AE OF AF ==,∴35OD AE OF AF ==. 设3OD x =,则5OF x =.∴26AB AC OD x ===,358AF x x x =+=.∵32EB =,∴362AE x =-.∴363285x x -=,解得x =54,则3x=154,AE=6×54-32=6,∴⊙O 的半径长为154,AE =6.23.(1)见解析 (2) △ABD ∽△ACE【解析】分析:(1)由∠BAD=∠CAE 易得∠BAC=∠DAE ,这样结合∠ABC=∠ADE ,即可得到△ABC ∽△ADE .(2)由(1)中结论易得AB AC AD AE =,从而可得: AB AD AC AE=,这样结合∠BAD=∠CAE 即可得到△ABD ∽△ACE 了.详解;(1)∵∠BAD=∠CAE ,∴∠BAC=∠DAE ,∵∠ABC=∠ADE ,∴△ABC∽△ADE.(2)△ABD∽△ACE,理由如下:由(1)可知△ABC∽△ADE,∴AB AC AD AE=,∴AB AD AC AE=,又∵∠BAD=∠CAE,∴△ABD∽△ACE.点睛:这是一道考查“相似三角形的判定与性质的题目”,熟悉“相似三角形的判定定理和性质”是解答本题的关键.24.(1)证明见解析;(2).【解析】【分析】(1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;(2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到 CE=AE,根据等腰三角形的性质、平行线的判定定理证明=,由相似三角形的性质列出比例式,计算即可.【详解】(1)证明:∵AC 平分∠DAB,∴∠DAC=∠CAB,∵AC2=AB•AD,∴=,∴△ADC∽△ACB;(2)∵△ADC∽△ACB,∴∠ACB=∠ADC=90°,∵点 E 为 AB 的中点,∴CE=AE= AB= ,∴∠EAC=∠ECA,∴∠DAC=∠EAC,∴∠DAC=∠ECA,∴CE∥AD;∴==,∴=.【点睛】本题考查的是直角三角形的性质、平行线的判定、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.25.(1) FD=5; (2)证明见解析.【解析】【分析】(1)利用三角形中位线的性质得出DE∥AB,进而得出∠DEC =∠B,即可得出FD=DE,即可得出答案;(2)利用等腰三角形的性质和平行线的性质得出∠B=∠A=∠CED=∠CDE,即可得出∠CDE=∠F,即可得出△CDE∽△DFE.【详解】解:(1)∵D、E分别是AC、BC的中点,∴DE//AB,DE=12AB=5又∵DE//AB,∴∠DEC= ∠B.而∠F= ∠B,∴∠DEC =∠B,∴FD=DE=5;(2)∵AC=BC,∴∠A=∠B.又∠CDE=∠A,∠CED= ∠B,∴∠CDE=∠B.而∠B=∠F,∴∠CDE=∠F,∠CED=∠DEF,∴△CDE∽△DFE.【点睛】此题主要考查了相似三角形的判定与性质以及等腰三角形的性质和平行线的性质等知识,熟练利用相关性质是解题关键.。

2020-2021初三数学下期中试卷(含答案)

2020-2021初三数学下期中试卷(含答案)

2020-2021初三数学下期中试卷(含答案)一、选择题1.P是△ABC一边上的一点(P不与A、B、C重合),过点P的一条直线截△ABC,如果截得的三角形与△ABC相似,我们称这条直线为过点P的△ABC的“相似线”.Rt△ABC中,∠C=90°,∠A=30°,当点P为AC的中点时,过点P的△ABC的“相似线”最多有几条?()A.1条B.2条C.3条D.4条2.如图,用放大镜看△ABC,若边BC的长度变为原来的2倍,那么下列说法中,不正确的是().A.边AB的长度也变为原来的2倍;B.∠BAC的度数也变为原来的2倍;C.△ABC的周长变为原来的2倍;D.△ABC的面积变为原来的4倍;3.如图所示,在△ABC中, cos B=22,sin C=35,BC=7,则△ABC的面积是()A.212B.12C.14D.214.如图,河坝横断面迎水坡AB的坡比是1:3(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高3mBC ,则坡面AB的长度是().A.9m B.6m C.63m D.33m5.在△ABC中,若=0,则∠C的度数是()A.45°B.60°C.75°D.105°6.已知两个相似三角形的面积比为 4:9,则周长的比为 ( )A.2:3B.4:9C.3:2D237.如图,校园内有两棵树,相距8米,一棵树树高13米,另一棵树高7米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞()A.8米B.9米C.10米D.11米8.已知线段a、b、c、d满足ab=cd,把它改写成比例式,错误的是()A.a:d=c:b B.a:b=c:d C.c:a=d:b D.b:c=a:d9.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()A.12m B.13.5m C.15m D.16.5m10.在△ABC中,若|sinA-3|+(1-tanB)2=0,则∠C的度数是( )A.45°B.60°C.75°D.105°11.下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个12.下列变形中:①由方程125x-=2去分母,得x﹣12=10;②由方程29x=92两边同除以29,得x=1;③由方程6x﹣4=x+4移项,得7x=0;④由方程2﹣5362x x-+=两边同乘以6,得12﹣x﹣5=3(x+3).错误变形的个数是()个.A.4B.3C.2D.1二、填空题13.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FE⊥AD,EG=15里,HG经过A点,则FH=__里.14.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要________个小立方体.15.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的P点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为________米.16.如图,等腰△ABC中,底边BC长为8,腰长为6,点D是BC边上一点,过点B作AC 的平行线与过A、B、D三点的圆交于点E,连接DE,则DE的最小值是___.17.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数kyx(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为▲.18.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.19.如图,在平行四边形ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为_____.20.如图,矩形ABCD的顶点,A C都在曲线kyx=(常数0k≥,0x>)上,若顶点D的坐标为()5,3,则直线BD的函数表达式是_.三、解答题21.如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,•景区管委会又开发了风景优美的景点D,经测量,景点D位于景点A的北偏东30′方向8km处,•位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.(1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考试其他因素,求出这条公路的长.(结果精确到0.1km).(2)求景点C 与景点D 之间的距离.(结果精确到1km ) (参考数据:3=1.73,5=2.24,sin53°=0.80,sin37°=0.60,tan53°=1.33,tan37°=0.75,sin38°=0.62,sin52°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73).22.如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm .长度均为20cm 的连杆BC ,CD 与AB 始终在同一水平面上.(1)旋转连杆BC ,CD ,使BCD ∠成平角,150ABC ∠=︒,如图2,求连杆端点D 离桌面l 的高度DE .(2)将(1)中的连杆CD 绕点C 逆时针旋转,使165BCD ∠=︒,如图3,问此时连杆端点D 离桌面l 的高度是增加了还是减少?增加或减少了多少?(精确到0.1cm ,参考数据:2 1.41≈,3 1.73≈)23.如图,在△ABC 中,DE ∥BC ,23AD AB =,M 为BC 上一点,AM 交DE 于N. (1)若AE =4,求EC 的长;(2)若M 为BC 的中点,S △ABC =36,求S △ADN 的值.24.如图,已知O 是原点,,B C 两点的坐标分别为()3,1-,()2,1.(1)以点O 为位似中心,在y 轴的左侧将OBC V 扩大为原来的两倍(即新图与原图的相似比为2),画出图形,并写出点,B C 的对应点的坐标;(2)如果OBC V 内部一点M 的坐标为(),x y ,写出点M 的对应点M '的坐标.25.如图,在路灯下,小明的身高如图中线段AB 所示,他在地面上的影子如图中线段AC 所示,小亮的身高如图中线段FG 所示,路灯灯泡在线段DE 上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB =1.6m ,他的影子长AC =1.4m ,且他到路灯的距离AD =2.1m ,求灯泡的高.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:根据相似线的定义,可知截得的三角形与△ABC 有一个公共角.①公共角为∠A 时,根据相似三角形的判定:当过点P 的角等于∠C 时,即图中PD∥BC 时,△APD∽△ACB;当过点P 的角等于∠B 时,即图中当PF⊥AB 时,△APF∽△ABC;②公共角为∠C 时,根据相似三角形的判定:当过点P 的角等于∠A 时,即图中P E ∥AB 时,△CPE∽△CAB ;当过点P 的角等于∠B 时,根据∠CPB <60°,可知此时不成立;③公共角为∠B,不成立.解:①公共角为∠A 时:当过点P 的角等于∠C 时,即图中PD∥BC 时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,∵∠CPB=∠A+∠ABP,∴PB>PC,PC=PA,∴PB>PA,∴∠PBA<∠A,∴∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.综上最多有3条.故选C.2.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC,若边BC的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB的长度也变为原来的2倍,故A正确;∴∠BAC的度数与原来的角相等,故B错误;∴△ABC的周长变为原来的2倍,故C正确;∴△ABC的面积变为原来的4倍,故D正确;故选B【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.3.A解析:A【解析】【分析】【详解】试题分析:过点A作AD⊥BC,∵△ABC中,cosB=22,sinC=35,AC=5,∴cosB=22=BDAB,∴∠B=45°,∵sinC=35=ADAC=5AD,∴AD=3,∴CD=4,∴BD=3,则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选A .考点:1.解直角三角形;2.压轴题.4.B解析:B【解析】由图可知,:1:3BC AC =,tan 3BAC ∠=, ∴30BAC ∠=︒, ∴36m 1sin 302BC AB ===︒. 故选B . 5.C解析:C【解析】【分析】根据非负数的性质可得出cosA 及tanB 的值,继而可得出A 和B 的度数,根据三角形的内角和定理可得出∠C 的度数.【详解】由题意,得 cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C .6.A解析:A【解析】【分析】由于相似三角形的面积比等于相似比的平方,已知了两个相似三角形的面积比,即可求出它们的相似比;再根据相似三角形的周长比等于相似比即可得解.【详解】∵两个相似三角形的面积之比为4:9,∴两个相似三角形的相似比为2:3,∴这两个相似三角形的周长之比为2:3.故选:A【点睛】本题考查的是相似三角形的性质:相似三角形的周长比等于相似比,面积比等于相似比的平方.7.C解析:C【解析】如图所示,AB,CD为树,且AB=13,CD=8,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=8,AE=AB-CD=6,在直角三角形AEC中,AC=10米,答:小鸟至少要飞10米.故选C.8.B解析:B【解析】【分析】根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.【详解】解:A、a:d=c:b⇒ab=cd,故正确;B、a:b=c:d⇒ad=bc,故错误;C、d:a=b:c⇒dc=ab,故正确;D、a:c=d:b⇒ab=cd,故正确.故选B.【点睛】本题考查比例的基本性质,解题关键是根据比例的基本性质实现比例式和等积式的互相转换.9.D解析:D【解析】【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴BC DC EF DE=,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴20 0.30.4 BC=,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.10.C解析:C【解析】【分析】先根据非负数的性质求出sinA及tanB的值,再根据特殊角的三角函数值求出∠A及∠B的值,由三角形内角和定理即可得出结论.【详解】∵|sin A B)2=0,∴sinA=2,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.【点睛】(1)非负数的性质:几个非负数的和等0,这几个非负数都为0;(2)三角形内角和等于180°.11.D解析:D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D.12.B解析:B【解析】【分析】根据方程的不同特点,从计算过程是否正确、方法应用是否得当等方面加以分析.【详解】①方程125x-=2去分母,两边同时乘以5,得x﹣12=10,故①正确.②方程29x=92,两边同除以29,得x=814;要注意除以一个数等于乘以这个数的倒数,故②错误.③方程6x﹣4=x+4移项,得5x=8;要注意移项要变号,故③错误.④方程2﹣5362x x-+=两边同乘以6,得12﹣(x﹣5)=3(x+3);要注意去分母后,要把是多项式的分子作为一个整体加上括号,故④错误.故②③④变形错误.故选B.【点睛】在解方程时,要注意以下问题:(1)去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号;(2)移项时要变号.二、填空题13.05【解析】∵EG⊥ABFH⊥ADHG经过A点∴FA∥EGEA∥FH∴∠HFA=∠AEG=90°∠FHA=∠EAG∴△GEA∽△AFH∴∵AB=9里DA=7里EG=15里∴FA=35里EA=45里∴解析:05【解析】∵EG⊥AB,FH⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴EG EA AF FH=.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴15 4.5 3.5FH=,解得FH=1.05里.故答案为1.05.14.8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个由主视图可知第二层最少有2个第三层最少有1个所以组成这个几何体的小正方体的个数最少为5+2+1=8个点睛:本题主要考查学生由三视图判断几何解析:8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层最少有1个,所以组成这个几何体的小正方体的个数最少为5+2+1=8个.点睛:本题主要考查学生由三视图判断几何体,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”.15.5【解析】根据题意画出图形构造出△PCD∽△PAB利用相似三角形的性质解题解:过P作PF⊥AB交CD于E交AB于F如图所示设河宽为x米∵AB∥CD∴∠PDC=∠PBF∠PCD=∠PAB∴△PDC∽△解析:5【解析】根据题意画出图形,构造出△PCD∽△PAB,利用相似三角形的性质解题.解:过P作PF⊥AB,交CD于E,交AB于F,如图所示设河宽为x米.∵AB∥CD,∴∠PDC=∠PBF,∠PCD=∠PAB,∴△PDC∽△PBA,∴AB PF CD PE=,∴AB15x CD15+=,依题意CD=20米,AB=50米,∴15205015x=+,解得:x=22.5(米).答:河的宽度为22.5米.16.【解析】【分析】如图连接AEADOEOD作AJ⊥BC于JOK⊥DE于K首先证明∠EOD=2∠C=定值推出⊙O的半径最小时DE的值最小推出当AB是直径时DE的值最小【详解】如图连接AEADOEOD作A5【解析】【分析】如图,连接AE ,AD ,OE ,OD ,作AJ ⊥BC 于J ,OK ⊥DE 于K .首先证明∠EOD =2∠C =定值,推出⊙O 的半径最小时,DE 的值最小,推出当AB 是直径时,DE 的值最小.【详解】如图,连接AE ,AD ,OE ,OD ,作AJ ⊥BC 于J ,OK ⊥DE 于K .∵BE ∥AC ,∴∠EBC+∠C =180°,∵∠EBC+∠EAD =180°,∴∠EAD =∠C ,∵∠EOD =2∠EAD ,∴∠EOD =2∠C =定值,∴⊙O 的半径最小时,DE 的值最小,∴当AB 是⊙O 的直径时,DE 的值最小,∵AB =AC =6,AJ ⊥BC ,∴BJ =CJ =4,∴AJ 22A C CJ -2264-5∵OK ⊥DE ,∴EK =DK ,∵AB =6,∴OE =OD =3,∵∠EOK =∠DOK =∠C ,∴sin ∠EOK =sin ∠C =256, ∴3EK 25, ∴EK 5∴DE =5∴DE 的最小值为5故答案为5【点睛】本题考查三角形的外接圆,解直角三角形,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题.17.【解析】待定系数法曲线上点的坐标与方程的关系反比例函数图象的对称性正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的设小正方形的边长为b图中阴影部分的面积等于9可求出b解析:3yx =.【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(3a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=6.∵正方形的中心在原点O,∴直线AB的解析式为:x=3.∵点P(3a,a)在直线AB上,∴3a=3,解得a=1.∴P(3,1).∵点P在反比例函数3yx=(k>0)的图象上,∴k=3×1=3.∴此反比例函数的解析式为:.18.3:2【解析】因为DE∥BC所以因为EF∥AB所以所以故答案为:3:2 解析:3:2【解析】因为DE∥BC,所以32AD AEDB EC==,因为EF∥AB,所以23CE CFEA BF==,所以32BFFC=,故答案为: 3:2.19.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF再利用勾股定理即可解决问题【详解】解:∵四边形ABCD是平行四边形∴AB=CD=12 AE∥BCAB∥CD∴∠CFB=∠FBA∵B解析:15【解析】【分析】首先证明CF=BC=12,利用相似三角形的性质求出BF ,再利用勾股定理即可解决问题.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD =12,AE ∥BC ,AB ∥CD ,∴∠CFB =∠FBA ,∵BE 平分∠ABC ,∴∠ABF =∠CBF ,∴∠CFB =∠CBF ,∴CB =CF =8,∴DF =12﹣8=4,∵DE ∥CB ,∴△DEF ∽△CBF , ∴EF BF =DF CF , ∴2BF =48, ∴BF =4,∵CF =CB ,CG ⊥BF ,∴BG =FG =2,在Rt △BCG 中,CG =故答案为【点睛】本题考查平行四边形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.20.【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3)C (5)所以B ()然后利用待定系数法求直线BD 的解析式【详解】∵D(53)∴A(3)C (5)∴B()设直线BD 的解析式为y=m 解析:35y x =【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3k ,3),C (5,5k ),所以B (3k ,5k ),然后利用待定系数法求直线BD 的解析式. 【详解】∵D (5,3),∴A (3k ,3),C (5,5k ), ∴B (3k ,5k ), 设直线BD 的解析式为y=mx+n ,把D (5,3),B (3k ,5k )代入得 5335m n k k m n ==+⎧⎪⎨+⎪⎩,解得350m n ⎧⎪⎨⎪⎩==, ∴直线BD 的解析式为35y x =. 故答案为35y x =. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .也考查了矩形的性质.三、解答题21.(1)景点D 向公路a 修建的这条公路的长约是3.1km ;(2)景点C 与景点D 之间的距离约为4km .【解析】【详解】解:(1)如图,过点D 作DE ⊥AC 于点E ,过点A 作AF ⊥DB ,交DB 的延长线于点F ,在Rt △DAF 中,∠ADF=30°,∴AF=12AD=12×8=4,∴== 在Rt △ABF 中=, ∴BD=DF ﹣3,sin ∠ABF=45AF AB =, 在Rt △DBE 中,sin ∠DBE=DB BD ,∵∠ABF=∠DBE ,∴sin ∠DBE=45, ∴DE=BD•sin ∠DBE=45×(﹣3)(km ),∴景点D 向公路a 修建的这条公路的长约是3.1km ;(2)由题意可知∠CDB=75°,由(1)可知sin ∠DBE=45=0.8,所以∠DBE=53°, ∴∠DCB=180°﹣75°﹣53°=52°, 在Rt △DCE 中,sin ∠DCE=DB DC ,∴DC= 3.1sin 520.79DE ︒=≈4(km ), ∴景点C 与景点D 之间的距离约为4km .22.(1)39.6DE cm ≈;(2)下降了,约3.2cm . 【解析】【分析】(1)如图2中,作BO ⊥DE 于O .解直角三角形求出OD 即可解决问题.(2)作DF ⊥l 于F ,CP ⊥DF 于P ,BG ⊥DF 于G ,CH ⊥BG 于H .则四边形PCHG 是矩形,求出DF ,再求出DF-DE 即可解决问题.【详解】(1)过点B 作BO DE ⊥,垂足为O ,如图2,则四边形ABOE 是矩形,1509060OBD =-=o o o ∠,∴sin 6040sin 60203DO BO =⋅=⨯=o o∴203539.6DE DO OE DO AB cm =+=+=≈.(2)下降了.如图3,过点D 作DF l ⊥于点F ,过点C 作CP DF ⊥于点P ,过点B 作BG DF ⊥于点G ,过点C 作CH BG ⊥于点H ,则四边形PCHG 为矩形,∵60CBH ︒∠=,∴30BCH ︒∠=,又∵165BCD ︒∠=,∴45DCP ︒∠=, ∴sin 60103CH BC ︒==*sin 45102DP CD ==,∴DF DP PG GF DP CH AB =++=++1021035=. ∴下降高度:20351021035DE DF -=-103102=3.2cm ≈.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.(1)2(2)8【解析】【分析】(1)首先根据DE ∥BC 得到△ADE 和△ABC 相似,求出AC 的长度,然后根据CE=AC -AE 求出长度;(2)根据△ABC 的面积求出△ABM 的面积,然后根据相似三角形的面积比等于相似比的平方求出△ADN 的面积.【详解】解:(1)∵DE ∥BC∴△ADE ∽△ABC ∴23AE AD AC AB == ∵AE=4∴AC=6 ∴EC=AC -AE=6-4=2(2)∵△ABC 的面积为36,点M 为BC 的中点∴△ABM 的面积为:36÷2=18 ∵△ADN 和△ABM 的相似比为23∴:4:9ADN ABM S S ∆∆=∴ADN S V =8考点: 相似三角形的判定与性质24.(1)如图,OB C ''△即为所求,见解析;点B 的对应点的坐标为()6,2-,点C 的对应点的坐标为()4,2--;(2)点(),M x y 的对应点M '的坐标为()2,2x y --.【解析】【分析】(1)延长BO ,CO 到B′、C′,使OB′、OC′的长度是OB 、OC 的2倍.顺次连接三点即可;(2)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以-2的坐标,所以M 的坐标为(x ,y ),写出M 的对应点M′的坐标为(-2x ,-2y ).【详解】(1)如图,OB C ''△即为所求,点B 的对应点的坐标为()6,2-,点C 的对应点的坐标为()4,2--.(2)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以-2的坐标,所以M 的坐标为(x ,y ),写出M 的对应点M′的坐标为(-2x ,-2y ).【点睛】考查了直角坐标系和相似三角形的有关知识,注意做这类题时,性质是关键,看图也是关键.很多信息是需要从图上看出来的.25.(1)画图见解析;(2)DE=4.【解析】【分析】(1)连接CB 延长CB 交DE 于O ,点O 即为所求.连接OG ,延长OG 交DF 于H .线段FH 即为所求.(2)根据AB CA OD CD =,可得1.6 1.41.4 2.1DO =+ ,即可推出DO =4m . 【详解】(1)解:如图,点O 为灯泡所在的位置,线段FH 为小亮在灯光下形成的影子.(2)解:由已知可得,AB CA OD CD=,∴1.6 1.41.42.1 DO=+,∴OD=4m,∴灯泡的高为4m.【点睛】本题考查中心投影、解题的关键是正确画出图形,记住物长与影长的比的定值,属于基础题,中考常考题型.。

2020-2021学年度第二学期九年级数学期中试卷及答案(共5套)

2020-2021学年度第二学期九年级数学期中试卷及答案(共5套)

BA 'AB 'O第6题图2020-2021学年度第二学期九年级数学期中试卷本试卷分选择题和非选择题两部分,共三大题25小题,共6页,满分150分,考试时间120分钟.可以使用规定型号的计算器。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔填写好自己的学校、班级、姓名、试室号、座位号、准考证号,再用2B 铅笔把准考证号对应的号码标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.4的平方根为( * ). A .2B .±2C .4D .±42. 对于样本数据1,2,3,2,2,以下判断:①平均数为5;②中位数为2;③众数为2;④极差为2.正确的有( * ). A .1个B .2个C .3个D .4个3.如图所示的几何体的主视图是( * ).4.如果代数式1x x有意义,那么x 的取值范围是( * ). A .x ≥0B .x ≠1C .x >0D .x ≥0且x ≠15. 已知一个圆锥的底面半径为3cm ,母线长为10cm ,则这个圆锥的侧面积为( * ). A .30πcm 2B .50πcm 2C .60πcm 2D .391πcm 26.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A 'OB ',若∠AOB=15°,则∠AOB '的度数是( * ). A .25° B .30° C .35° D .40°A .B .C .D .第3题图第10题图OP第8题图7.一次函数32-=x y 的大致图像为( * ).A .B .C .D .8.如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是 小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点,且位于右上方的小 正方形内,则∠APB 等于( * ).A .30°B .45°C .60°D .90°9.关于x 的二次函数2(1)2y x =--+,下列说法正确的是( * ).A .图象的开口向上B .图象与y 轴的交点坐标为(0,2)C .当1x >时,y 随x 的增大而减小D .图象的顶点坐标是(-1,2)10.如图,直角三角形纸片ABC 中,AB=3,AC=4,D 为斜边BC 中点,第1次将纸片折叠,使点A 与点D 重合,折痕与AD 交与点P 1;设P 1D 的中点为D 1,第2次将纸片折叠,使点A 与点D 1重合,折痕与AD 交于点P 2;设P 2D 1的中点为D 2,第3次将纸片折叠,使点A 与点D 2重合,折痕与AD 交于点P 3;…;如此类推,则AP 6的长为( * ).A .512532⨯B .69352⨯C .614532⨯D .711352⨯第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11.点A (0,3)向右平移2个单位长度后所得的点A ’的坐标为 * .12.已知空气的单位体积质量为0.00124克/厘米3,将0.00124用科学记数法表示为* .13.如图,△ABC 与△DEF 是位似图形,相似比为2∶3,已知AB =4,则DE 的长为 * .o yxo y x yxooy x第13题图 C O DE F AB 14.化简:=+-+1112a a a * . 15.如图,防水堤坝的轴截面是等腰梯形ABCD ,DA CB =,DC AB ∥,5=DA ,4=DC ,9=AB ,则斜坡DA 的坡角为 * __ 度.16.已知α ,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足βα11+=﹣1,则m 的值是 * .三、解答题(本大题共9小题,满分102 分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解方程:xx 332=-. 18.(本小题满分9分)如图,已知□ABCD .(1)作图:延长BC ,并在BC 的延长线上截取线段CE ,使得CE =BC (用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)的条件下,连结AE ,交CD 于点F , 求证:△AFD ≌ △EFC . 19.(本小题满分10分) 已知1=-b a 且2=ab ,求代数式32232ab b a b a +-的值.20.(本小题满分10分)小强对自己所在班级的48名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题: (1)求m 的值;第18题图 A B C D第15题图(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.21.(本小题满分12分)为支持失学儿童,某中学计划用“义捐义卖”活动中筹集的部分资金用于购买A,B 两种型号的学习用品共1000件,已知A 型学习用品的单价为20元,B 型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A,B 两种学习用品各多少件? (2)若购买这批学习用品的钱不超过28000元,则最多能购买B 型学习用品多少件? 22.(本小题满分12分)如图,在菱形ABCD 中,AB =23,∠BAD =60º,AC 交BD 于点O ,以点D 为圆心的⊙D 与边AB 相切于点E . (1)求AC 的长;(2)求证:⊙D 与边BC 也相切.23.(本小题满分12分)如图,四边形ABCD 为正方形.点A 的坐标为(0,2),点B 的坐标为(0,﹣3),反比例函数xky =)0(≠k 的图象经过点C . (1)求反比例函数的解析式;(2)若点P 是反比例函数图象上的一点,△P AD 的面积恰好等于正方形ABCD 的面积,求点P 的坐标.第23题图第20题图 第22题图24.(本小题满分14分)如图1,在半径为2的扇形AOB 中,∠AOB =90°,点C 是 上的一个动点(不与点A 、B 重合)OD ⊥BC ,OE ⊥AC ,垂足分别为点D 、点E . (1)当BC =1时,求线段OD 的长;(2)在点C 的运动过程中,△DOE 中是否存在长度保持不变的边或度数保持不变的角?如果存在,请指出并求其长度或度数(只求一种即可......);如果不存在,请说明理由; (3)作DF ⊥OE 于点F (如图2),当DF 2+EF 取得最大值时,求sin ∠BOD 的值.25.(本小题满分14分)如图,已知直线l :2+-=x y 与y 轴交于点A ,抛物线k x y +-=2)1(经过点A ,其顶点为B ,另一抛物线h h x y -+-=2)(2(h >1)的顶点为D ,两抛物线相交于点C ,(1)求点B 的坐标,并判断点D 是否在直线l 上,请说明理由; (2)设交点C 的横坐标为m .①请探究m 关于h 的函数关系式;②连结AC 、CD ,若∠ACD =90°,求m 的值.九年级数学参考答案与评分标准说明:(一)《答案》中各行右端所注分数表示正确作完该步应得的累加分数,全卷满分150分。

2020-2021九年级数学下期中试卷(带答案)

2020-2021九年级数学下期中试卷(带答案)

D. 4 3
11.在平面直角坐标系中,点 E(﹣4,2),点 F(﹣1,﹣1),以点 O 为位似中心,按比
例 1:2 把△EFO 缩小,则点 E 的对应点 E 的坐标为( )
A.(2,﹣1)或(﹣2,1)
B.(8,﹣4)或(﹣8,4) C.(2,﹣
1)
D.(8,﹣4)
12.如图,一张矩形纸片 ABCD 的长 BC=xcm,宽 AB=ycm,以宽 AB 为边剪去一个最大
10.B
解析:B 【解析】
AP AQ , 2 AQ ,AQ= 4 ,
AB AC 6 4
3
AP AQ , 2 AQ ,AQ=3. AC AB 4 6
故选 B. 点睛:相似常见图形 (1)称为“平行线型”的相似三角形(如图,有“A 型”与“X 型”图)
(2)如图:其中∠1=∠2,则△ADE∽△ABC 称为“斜交型”的相似三角形,有“反 A 共 角型”、“反 A 共角共边型”、 “蝶型”,如下图:
A.五丈
B.四丈五尺
C.一丈
D.五尺
7.如图,已知△ABC 的三个顶点均在格点上,则 cosA 的值为( )
A. 3 3
B. 5 5
C. 2 3 3
D. 2 5 5
8.如图,将一个 Rt△ABC 形状的楔子从木桩的底端点 P 处沿水平方向打入木桩底下,使木
桩向上运动,已知楔子斜面的倾斜角为 20°,若楔子沿水平方向前移 8cm(如箭头所
11.A
解析:A 【解析】 【分析】 利用位似比为 1:2,可求得点 E 的对应点 E′的坐标为(2,-1)或(-2,1),注意分两种 情况计算. 【详解】 ∵E(-4,2),位似比为 1:2, ∴点 E 的对应点 E′的坐标为(2,-1)或(-2,1). 故选 A. 【点睛】 本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两 种位置关系.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过 A 作 AM⊥x 轴于 M,过 B 作 BN⊥x 轴于 N, 则∠AMO=∠BNC=90°, ∵四边形 AOCB 是菱形, ∴OA=BC=AB=OC,AB∥OC,OA∥BC, ∴∠AOM=∠BCN, ∵A(3,4), ∴OM=3,AM=4,由勾股定理得:OA=5, 即 OC=OA=AB=BC=5, 在△AOM 和△BCN 中
A.y= 12 x
B.y= 24 x
C.y= 32 x
D.y= 40 x
7.已知点 C 在线段 AB 上,且点 C 是线段 AB 的黄金分割点(AC>BC),则下列结论正 确的是( )
A.AB2=AC•BC
B.BC2=AC•BC
C.AC= 5 1 BC D.BC= 5 1 AC
2
2
8.在△ABC 中,若
图④中的三角形三边长分别为 (2a)2 (a)2 5a, (a)2 (3a)2 10a 、
(3a)2 (4a)2 5a ,
∴①和②图中三角形不相似;
∵ 2a 13a 5a 2a 2 5a 4 2a
∴②和③图中三角形不相似;
∵ 2a 2 2a 2 5a 2a 2 5a 4 2a
∴①和③图中三角形不相似;
AMO BNC AOM BCN , OA BC
∴△AOM≌△BCN(AAS), ∴BN=AM=4,CN=OM=3,
∴ON=5+3=8, 即 B 点的坐标是(8,4), 把 B 的坐标代入 y=kx 得:k=32,
即 y= 32 , x
故答案选 C. 【点睛】 本题考查了菱形的性质,解题的关键是熟练的掌握菱形的性质.
22.如图,直线 l1 / /l2 / /l3 ,直线 AC 依次交 l1 、 l2 、 l3 于 A、B、C 三点,直线 DF 依次

l1

l2

l3

D、E、F
三点,若
AB AC
4 7

DE
2
,求
EF
的长.
23.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为 A(-2,1),B(-1,4), C(-3,2). (1)以原点 O 为位似中心,位似比为 1∶2,在 y 轴的左侧,画出△ABC 放大后的图形 △A1B1C1,并直接写出 C1 点的坐标;
的中点,且 S△AOF=12 3 时,OA 的长为__________.
19.若函数 y=(k-2) xk2 5 是反比例函数,则 k=______.
20.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果 保留 π)
三、解答题
21.马路两侧有两根灯杆 AB、CD,当小明站在点 N 处时,在灯 C 的照射下小明的影长正好 为 NB,在灯 A 的照射下小明的影长为 NE,测得 BD=24m,NB=6m,NE=2m. (1)若小明的身高 MN=1.6m,求 AB 的长; (2)试判断这两根灯杆的高度是否相等,并说明理由.
2
5
A. 21 2
B.12
C.14
D.21
5.用放大镜观察一个五边形时,不变的量是( )
A.各边的长度 B.各内角的度数 C.五边形的周长 D.五边形的面积
6.如图,菱形 OABC 的顶点 A 的坐标为(3,4),顶点 C 在 x 轴的正半轴上,反比例函
数 y= k (x>0)的图象经过顶点 B,则反比例函数的表达式为( ) x
本题考查了相似图形,相似图形是指形状相同的图形,仔细观察看每组图形是否相同,如 果相同就相似,否则就不相似.
3.A
解析:A 【解析】 【分析】 根据勾股定理,可得 AB 的长,根据余弦函数等于邻边比斜边,可得答案. 【详解】 如图,
在 Rt△ABC 中,∠C=90°,由勾股定理,得
AB= AC2 BC2 = 5 ,
6.C
解析:C 【解析】 【分析】 过 A 作 AM⊥x 轴于 M,过 B 作 BN⊥x 轴于 N,根据菱形性质得出 OA=BC=AB=OC,AB ∥OC,OA∥BC,求出∠AOM=∠BCN,OM=3,AM=4,OC=OA=AB=BC=5,证△AOM ≌△BCN,求出 BN=AM=4,CN=OM=3,ON=8,求出 B 点的坐标,把 B 的坐标代入 y=kx 求出 k 即可. 【详解】
△AC′B′,则 tanB′的值为( )
A. 1 2
B. 2 4
C. 1 4
D. 1 3
12.如图▱ABCD,F 为 BC 中点,延长 AD 至 E,使 DE : AD 1: 3 ,连结 EF 交 DC 于点
G,则 S DEG : SCFG =( )
A.2:3
二、填空题

B.3:2
C.9:4
D.4:9
13.在△ABC 中,∠ABC=90°,已知 AB=3,BC=4,点 Q 是线段 AC 上的一个动点,过点 Q 作 AC 的垂线交直线 AB 于点 P,当△PQB 为等腰三角形时,线段 AP 的长为_____.
14.将三角形纸片( ABC )按如图所示的方式折叠,使点 B 落在边 AC 上,记为点 B ' ,折痕为 EF ,已知 AB AC 3, BC 4 ,若以点 B ' , F , C 为顶点的三角形与 ABC 相似,则 BF 的长度是______.
∵ 2a 2 2a 2 5a 2 5 5a 10a 5a 5
∴①和④图中三角形相似. 故选 D 【点睛】 本题考查相似三角形的判定,勾股定理等知识,解题的关键是熟练掌握熟练掌握基本知 识.
2.D
解析:D 【解析】 【分析】 观察图形,看它们的形状是否相同,形状相同的两个图形是相似图形. 【详解】 A.小明上幼儿园时的照片和初中毕业时的照片,形状不相同,不相似; B.商店新买来的一副三角板,形状不相同,不相似; C.所有的课本都是相似的,形状不相同,不相似; D.国旗的五角星都是相似的,形状相同,相似. 故选 D. 【点睛】
=0,则∠C 的度数是( )
A.45°
B.60°
C.75°
D.105°
9.在 ABC 中,点 D , E 分别在边 AB , AC 上, AD : BD 1: 2 ,那么下列条件中能
够判断 DE / / BC 的是( )
A. DE 1 BC 2
B. DE 1 BC 3
C. AE 1 AC 2
D. AE 1 AC 3
2020-2021 初三数学下期中试卷(附答案)
一、选择题
1.如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶点所得的四个 三角形中是相似三角形的是( )
A.①和②
B.②和③
C.①和③
2.下列说法正确的是( )
A.小红小学毕业时的照片和初中毕业时的照片相似
B.商店新买来的一副三角板是相似的
C.所有的课本都是相似的
D.国旗的五角星都是相似的
D.①和④
3.在 RtABC 中, C 90, AC 2, BC 1,则 cos A的值是( )
A. 2 5 5
B. 5 5
C. 5 2
D. 1 2
4.如图所示,在△ABC 中, cos B= 2 ,sin C= 3 ,BC=7,则△ABC 的面积是( )
2
5
cosB= 2 = BD ,∴∠B=45°,∵sinC= 3 = AD = AD ,∴AD=3,∴CD=4,∴BD=3,则
2 AB
5 AC 5
△ABC 的面积是: 1 ×AD×BC= 1 ×3×(3+4)= 21 .故选 A.
2
2
2
考点:1.解直角三角形;2.压轴题.
5.B
解析:B 【解析】解:∵用一个放大镜去观察一个三角形,∴放大后的三角形与原三角形相似,∵ 相似三角形的对应边成比例,∴各边长都变大,故此选项错误; ∵相似三角形的对应角相等,∴对应角大小不变,故选项 B 正确;. ∵相似三角形的面积比等于相似比的平方,∴C 选项错误; ∵相似三角形的周长得比等于相似比,∴D 选项错误. 故选 B. 点睛:此题考查了相似三角形的性质.注意相似三角形的对应边成比例,相似三角形的对 应角相等,相似三角形的面积比等于相似比的平方,相似三角形的周长得比等于相似比.
7.D
解析:D 【解析】 【分析】
根据黄金分割的定义得出 BC AC 5 1 ,从而判断各选项. AC AB 2
【详解】 ∵点 C 是线段 AB 的黄金分割点且 AC>BC,
∴ BC AC 5 1 ,即 AC2=BC•AB,故 A、B 错误; AC AB 2
∴AC= 5 1 AB,故 C 错误; 2
(1)用尺规作图的方法确定旋转中心 P,并直接写出点 P 的坐标;(要求保留作图痕迹, 不写作法) (2)若以 P 为圆心的圆与直线 CD 相切,求⊙P 的半径
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【解析】
【分析】 设小长方形的长为 2a,宽为 a.利用勾股定理求出三角形的三边长即可判断. 【详解】 由题意可知:小长方形的长是宽的 2 倍, 设小长方形的宽为 a,则长为 2a,
15.如图,在平面直角坐标系中,正方形 ABCD 与正方形 BEFG 是以原点 O 为位似中心的
位似图形,且相似比为 1 ,点 A,B,E 在 x 轴上,若正方形 BEFG 的边长为 6,则点 C 的 3
坐标为________.
16.如图,直立在点 B 处的标杆 AB=2.5m,站立在点 F 处的观测者从点 E 看到标杆顶 A, 树顶 C 在同一直线上(点 F,B,D 也在同一直线上).已知 BD=10m,FB=3m,人的高度 EF =1.7 m,则树高 DC 是________.(精确到 0.1 m)
∴∠A=60°,∠B=45°, ∴∠C=180°-∠A-∠B=180°-60°-45°=75°. 故选 C.
相关文档
最新文档