电磁场复习纲要

合集下载

电磁场复习纲要

电磁场复习纲要

《电磁场理论》知识点第一章 矢量分析一、基本概念、规律矢量微分算子在不同坐标系中的表达,标量场的梯度、矢量场的散度和旋度在不同坐标系中的计算公式,常用的矢量恒等式(见附录一1.和2.)、矢量积分定理(高斯散度定理、斯托克斯旋度定理及亥姆霍兹定理)。

二、基本技能练习1、已知位置矢量z y x e z e y ex r ˆˆˆ++=ρ,r 是它的模。

在直角坐标系中证明 (1)r r r ρ=∇ (2)3=•∇r ρ (3)∇×0=r ρ (4)∇×(0)=∇r (5)03=•∇r rρ2、已知矢量z y e xy e x eA z y x 2ˆˆˆ++=ϖ,求出其散度和旋度。

3、在直角坐标系证明0A ∇⋅∇⨯=r4、已知矢量y x e eA ˆ2ˆ+=ϖ,z x e eB ˆ3ˆ-=ϖ,分别求出矢量A ϖ和B ϖ的大小及B A ϖϖ⋅ 5、证明位置矢量x y z r e x e y e z =++r r r r的散度,并由此说明矢量场的散度与坐标的选择无关。

6、矢量函数z y x e x e y ex A ˆˆˆ2++-=ϖ,试求 (1)A ϖ⋅∇(2)若在xy 平面上有一边长为2的正方形,且正方形的中心在坐标原点,试求该矢量A ϖ穿过此正方形的通量。

第二章 静电场一、基本常数真空中介电常数0ε二、基本概念、规律静电场、库仑定律、电场强度、电位及其微分方程、电荷密度、电偶极子模型、高斯定理、环路定理、极化强度矢量、电位移矢量、场方程(真空中和电介质中)、介质性能方程,边界条件,场能及场能密度。

三、基本技能练习1、设非均匀介质中的自由电荷密度为ρ,试证明其中的束缚电荷密度为)(00εεερεεερ-∇•---=D b ρ。

2、证明极化介质中,极化电荷体密度b ρ与自由电荷体密度ρ的关系为:ρεεερ0--=b 。

3、一半径为a 内部均匀分布着体密度为0ρ的电荷的球体。

求任意点的电场强度及电位。

电磁学复习提纲课件.ppt

电磁学复习提纲课件.ppt

S
0 Ix ln a b
2
aI
X
i
dm dt
C
D
( 0 I ln a b ) dx a
2
a dt
bx
0 I ln a b
F
E
2
a
29
练习 如图,导体棒 AB 在均匀磁场中绕通过 C 点
的垂直于棒长且沿磁场方向的轴 OO ' 转动(角速度
与 B 同方向),BC 的长度为棒长的1/3,则
B 0I
2R
B 0i 0nI
22
有限长的载流导线、 无限长的载流导线
载流圆环轴线上的 磁场、载流圆环圆
心处的磁场
无限大的载流平面、 及其两载流平面的
任意放置情况
20
★ 圆形螺绕环的磁场分布及无限长 螺线管的磁场分布。
B nI
21
三、 理解磁场的高斯定理和环路定理的含义 并会应用安培环路定理计算电流的分布具有某种对
(3) E V
点电荷:E
q
4r 2

(1) 定义法
电势
(2) 叠加法
V q 4 r
◆常见带电体的场强及电势
点 线电荷分布 面电荷分布
体电荷分布
点电荷,电偶极 子,点电荷系
带电直线,均 匀带电圆环
均匀带电平面
圆盘,球面, 柱面
球体,柱体
2
三、 理解高斯定理、电通量及环路定理的含义
1、电通量 SE dS
I0 得
H2
I 2πr
, (R1
r
R2,)
I
I
H3
, (r
2πr
R2)
B 0r H
B1
0H1

电磁场与电磁波试卷及复习提纲.

电磁场与电磁波试卷及复习提纲.

《电磁场与电磁波》学习提要第一章场论简介1、方向导数和梯度的概念;方向导数和梯度的关系。

2、通量的定义;散度的定义及作用。

3、环量的定义;旋度的定义及作用;旋度的两个重要性质。

4、场论的两个重要定理:高斯散度定理和斯托克斯定理。

第二章静电场1、电场强度的定义和电力线的概念。

2、点电荷的场强公式及场强叠加原理;场强的计算实例。

3、静电场的高斯定理;用高斯定理求场强方法与实例。

4、电压、电位和电位差的概念;点电荷电位公式;电位叠加原理。

5、等位面的定义;等位面的性质;电位梯度,电位梯度与场强的关系。

6、静电场环路定理的积分形式和微分形式,静电场的基本性质。

7、电位梯度的概念;电位梯度和电场强度的关系。

8、导体静电平衡条件;处于静电平衡的导体的性质。

9、电偶极子的概念。

10、电位移向量;电位移向量与场强的关系;介质中高斯定理的微分形式和积分形式;求介质中的场强。

11、介质中静电场的基本方程;介质中静电场的性质。

12、独立导体的电容;两导体间的电容;求电容及电容器电场的方法与实例。

13、静电场的能量分布,和能量密度的概念。

第三章电流场和恒定电场1、传导电流和运流电流的概念。

2、电流强度和电流密度的概念;电流强度和电流密度的关系。

3、欧姆定律的微分形式和积分形式。

4、电流连续性方程的微分形式和积分形式;恒定电流的微分形式和积分形式及其意义。

5、电动势的定义。

6、恒定电场的基本方程及其性质。

第四章恒定磁场1、电流产生磁场,恒定电流产生恒定磁场。

2、电流元与电流元之间磁相互作用的规律-安培定律。

3、安培公式;磁感应强度矢量的定义;磁感应强度矢量的方向、大小和单位。

4、洛仑兹力及其计算公式。

5、电流元所产生的磁场元:比奥-萨伐尔定律;磁场叠加原理;磁感应线。

计算磁场的方法和实例。

6、磁通的定义和单位。

7、磁通连续性原理的微分形式、积分形式和它们的意义。

8、通量源和旋涡源的定义。

9、安培环路定律的积分形式和微分形式。

电磁场复习提纲(大连海事大学)

电磁场复习提纲(大连海事大学)
③r1>r2,反射系数Γ> 0,透射系数1 < T < 2。分界面反射波与入射波的电场同相,透射波电场振幅大于入射波电场振幅。
五.均匀平面波对导体平面的垂直入射
①入、反射波都是行波,合成波为纯驻波,振幅与位置有关。
②z=0和z为0.5 整数倍处是合成波电场波节、磁场波腹;z为0.25 奇数倍处是合成波电场波腹、磁场波节。合成波磁场与电场存在90°相差。
2.远区场
远区电场与磁场相位相同、相互垂直,复数波印亭矢量无虚部;
平均波印亭矢量不为零,电流元能量转换成电磁波向四周扩散。
瞬时玻印亭矢量的值始终不小于零,说明电磁能量一直向外辐射,因此远区场又称为辐射场。
电基本振子远区场的电气特性:
非均匀球面波横电磁波
E面:电场矢量所在的平面。
H面:磁场矢量所在的平面。
电场强度矢量指向电位Ф减小的方向,即由正电荷指向负电荷的方向,而电位梯度方向是电位Ф增大的方向。
电场能量密度
静电位能
镜像电荷:两个导板夹角为180°/n (n必须为整数)条件下镜像电荷数为2n−1。
电流元的镜像:电流元视为等量异号电荷构成的电偶极子。电流元电流正方向由负电荷指向正电荷。
两个带等量异号电荷导体的电容:
第4章恒定电场与恒定磁场
一.恒定电场【有源场,无旋场】
恒定电场基本方程
恒定电场边界条件
电流密度法向分量在边界上连续
恒定电场切向分量在边界上连续
电流线与 很大的媒质表面垂直。
电导率均匀,体电荷密度为0。换言之,各向同性线性均匀媒质不存在体电荷(媒质内没有净余电荷)。
通常导电媒质分界面上存在面电荷。除非 。
(2)导电媒质均匀平面波是TEM波, 仍成立。

电磁场与电磁波复习提纲

电磁场与电磁波复习提纲

“电磁场与电磁波“复习提纲根本定义、根本公式、根本概念、根本计算一、场的概念〔§1-1〕 1. 场的定义2. 标量场与矢量场:等值面、矢量线 二、矢量分析1. 矢量点积与叉积的定义:〔第一次习题〕2. 三种常用正交坐标系3.标量的梯度〔§1-3〕 a) 等值面:例1-1 b) 方向导数:例1-2c) 梯度定义与计算:例1-3 4. 矢量场的通量与散度〔§1-4〕a) 矢量线的定义:例1-4b) 矢量场的通量:()()S e r F S r F n SSd d⋅=⋅=⎰⎰ψc) 矢量场的散度定义与计算:例1-5d) 散度定理〔高斯定理〕:⎰⎰⋅=⋅∇SVS F V Fd d5. 矢量场的环量与旋度〔§1-5〕a) 矢量场的环流〔环量〕:⎰⋅=ll F d Γb) 矢量场的旋度定义与计算:例1-6 c) 旋度定理〔斯托克斯定理〕:()⎰⎰⋅=⋅⨯∇CSl F S Fd d6. 无源场与无散场a) 旋度的散度()0≡⨯∇⋅∇A ,散度处处为0的矢量场为无源场,有A F⨯∇=b) 梯度的旋度()0≡∇⨯∇ϕ,旋度处处为0的矢量场为无旋场,有u F -∇=;c) 矢量场的分类 7. 拉普拉斯算子8. 亥姆霍兹定理:概念与意义 根本概念:1. 矢量场的散度和旋度用于描述矢量场的不同性质a) 矢量场的旋度是矢量,矢量场的散度是标量;b) 旋度描述矢量场中场量与涡旋源的关系,散度描述矢量场中场量与通量源的关系; c) 无源场与无旋场的条件;d) 旋度描述场分量在与其垂直方向上的变化规律;散度描述场分量沿各自方向上的变化规律 2. 亥姆霍兹定理概括了矢量场的根本性质a) 矢量场由其散度、旋度和边界条件唯一确定;b) 由于矢量的散度和旋度分别对应矢量场的一种源,故分析矢量场总可以从研究其散度和旋度着手; c) 散度方程和旋度方程是矢量场的微分形式,故可以从矢量场沿闭合面的通量和沿闭合路径的环流着手,得到根本方程的积分形式。

工程电磁场 复习资料

工程电磁场 复习资料

工程电磁场_复习资料工程电磁场复习资料一、电磁场的基本概念1、电磁场:是由电场和磁场两种矢量场组成的一种物理场。

2、电磁场的性质:电磁场具有能量、动量和惯性等性质,这些性质可以从麦克斯韦方程组中得到描述。

3、电磁场的波动性:电磁场以波的形式传播,这种波动性表现为电场和磁场在空间中的传播。

4、电磁感应:当导体处于变化的磁场中时,导体内部会产生感应电流,这种现象称为电磁感应。

二、麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程组,包括四个基本方程:1、安培环路定律:描述磁场与电流之间的关系。

2、法拉第电磁感应定律:描述电磁感应现象。

3、麦克斯韦方程组的一般形式:描述了电场和磁场在空间中的传播。

4、高斯定律:描述了电荷在空间中的分布。

三、电磁场的边界条件电磁场在两种不同媒质的分界面上会发生反射和折射等现象,这些现象可以用边界条件来描述。

边界条件包括:1、电场强度和磁场强度在分界面上的连续性。

2、电位移矢量和磁感应强度在分界面上的连续性。

3、分界面上没有电荷堆积。

四、电磁场的能量和动量电磁场具有能量和动量,这些量可以用以下公式计算:1、电磁场的能量密度:W=1/2(E^2+B^2)2、电磁场的动量密度:P=E×B3、电磁场的能量流密度:S=E×H五、电磁场的波动性电磁场以波的形式传播,这种波动性可以用波动方程来描述。

波动方程的一般形式为:∇×E=ρ/ε,∇×H=J/εc^2,其中ρ和J分别为电荷密度和电流密度,ε为真空中的介电常数,c为光速。

六、电磁场的散射和衍射当电磁波遇到障碍物时,会发生散射现象;当电磁波通过孔洞或缝隙时,会发生衍射现象。

这些现象可以用费马原理和基尔霍夫公式来描述。

管理学复习资料马工程版一、管理学概述1、管理学定义:管理学是一门研究管理活动及其规律的科学,旨在探索如何有效地组织、协调和控制人的行为,以实现组织目标。

2、管理学的发展历程:管理学作为一门独立的学科,经历了古典管理理论、行为科学理论、现代管理理论等多个发展阶段。

电磁场复习纲要

电磁场复习纲要

电磁场复习纲要《电磁场理论》知识点第⼀章⽮量分析⼀、基本概念、规律⽮量微分算⼦在不同坐标系中的表达,标量场的梯度、⽮量场的散度和旋度在不同坐标系中的计算公式,常⽤的⽮量恒等式(见附录⼀1.和2.)、⽮量积分定理(⾼斯散度定理、斯托克斯旋度定理及亥姆霍兹定理)。

⼆、基本技能练习1、已知位置⽮量z y x e z e y ex r ++=,r 是它的模。

在直⾓坐标系中证明(1)r r r =? (2)3=??r (3)?×0=r (4)?×(0)=?r (5)03=??r r2、已知⽮量z y e xy e x eA z y x 2++=,求出其散度和旋度。

3、在直⾓坐标系证明0A =4、已知⽮量y x e e A ?2?+= ,z x e e B ?3?-=,分别求出⽮量A 和B 的⼤⼩及B A ?5、证明位置⽮量x y z r e x e y e z =++ 的散度,并由此说明⽮量场的散度与坐标的选择⽆关。

6、⽮量函数z y x e x e y ex A 2++-=,试求(1)A(2)若在xy 平⾯上有⼀边长为2的正⽅形,且正⽅形的中⼼在坐标原点,试求该⽮量A穿过此正⽅形的通量。

第⼆章静电场⼀、基本常数真空中介电常数0ε⼆、基本概念、规律静电场、库仑定律、电场强度、电位及其微分⽅程、电荷密度、电偶极⼦模型、⾼斯定理、环路定理、极化强度⽮量、电位移⽮量、场⽅程(真空中和电介质中)、介质性能⽅程,边界条件,场能及场能密度。

三、基本技能练习1、设⾮均匀介质中的⾃由电荷密度为ρ,试证明其中的束缚电荷密度为)(00εεερεεερ-??---=D b 。

2、证明极化介质中,极化电荷体密度b ρ与⾃由电荷体密度ρ的关系为:ρεεερ0--=b 。

3、⼀半径为a 内部均匀分布着体密度为0ρ的电荷的球体。

求任意点的电场强度及电位。

4、设0=z 为两种媒质的分界⾯,0>z 为空⽓,其介电常数为01εε=,0媒质2。

电磁场复习提纲t.docx

电磁场复习提纲t.docx
5介质的传导现象及其描述方法,欧姆定律;
6物质本构方程;
7媒质中的麦克斯韦方程组;
电磁场的边界条件。
(例3・1、例3-2、习题3-4、习题3-10、习题3-12、习题3-14等)
四、静态场分析
主要内容:
1静电场的泊松方程和拉普拉斯方程;
2恒定电场的拉普拉斯方程;
3恒定磁场的矢量泊松方程;
4静态场的重要原理和定理(对偶原理、叠加原理、唯一性 定理);
8高斯定律(电场的高斯定律、2-3、例2-6、例2-14、习题2-5、习题2-26、习题2-27、习题
2-28等)
三、
主要内容:
1电磁场与介质的相互作用的三个基本现象;
2电场中的导体,电导率;
3电介质的极化现象及其描述方法,电位移矢量;
4磁介质的磁化现象及其描述方法,磁场强度矢量,磁介质 的分类;
5镜像法的原理、应用条件,应用镜像法求静态电磁场典型 问题的解;
6分离变量法的理论基础、主要步骤,应用分离变量法求静 态电磁场典型问题的解;
7复变函数法;
8保角变换法。
(例4-3、例4・4等)
五、场论和路论的关系
主要内容:
电磁场与电磁波复习提纲
一、矢量分析
王要内容:
矢量及矢量的基本运算;
场的概念、矢量场和标量场;
正交曲线坐标系的变换,拉梅系数;
方向导数和梯度,梯度的意义; 通量和散度,散度的意义,散度定理; 环量和旋度,旋度的意义,斯托克斯定理; 正交曲线坐标系中梯度、散度、旋度的计算;
重要矢量恒等式;
拉普拉斯算子。
(例1-5、例1-6、习题1-16、习题1-17等)
二、电磁学基本理论
主要内容:
1库仑定律,电场的定义,电场的力线;

《电磁场与电磁波》复习纲要(含答案)

《电磁场与电磁波》复习纲要(含答案)

S
第二类边值问题(纽曼问题) 已知场域边界面上的位函数的法向导数值,即 第三类边值问题(混合边值问题) 知位函数的法向导数值,即
|S f 2 ( S ) n
已知场域一部分边界面上的位函数值,而其余边界面上则已
|S1 f1 ( S1 )、 | f (S ) S 2 2 n 2
线处有无限长的线电流 I,圆柱外是空气(µ0 ),试求圆柱内 外的 B 、 H 和 M 的分布。 解:应用安培环路定理,得 H C dl 2 H I I H e 0 磁场强度 2π I e 0 a 2 π 磁感应强度 B I e 0 a 2 π 0 I B e 2π M H 磁化强度 0 0 0

C
F dl F dS
S
5、无旋场和无散场概念。 旋度表示场中各点的场量与旋涡源的关系。 矢量场所在空间里的场量的旋度处处等于零,称该场为无旋场(或保守场) 散度表示场中各点的场量与通量源的关系。 矢量场所在空间里的场量的散度处处等于零,称该场为无散场(或管形场) 。 6、理解格林定理和亥姆霍兹定理的物理意义 格林定理反映了两种标量场 (区域 V 中的场与边界 S 上的场之间的关系) 之间满足的关系。 因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布 在无界空间,矢量场由其散度及旋度唯一确定 在有界空间,矢量场由其散度、旋度及其边界条件唯一确定。 第二章 电磁现象的普遍规律 1、 电流连续性方程的微分形式。
D H J t B E t B 0 D
D ) dS C H dl S ( J t B E dl dS S t C SB dS 0 D dS ρdV V S

电磁场与微波技术复习提纲

电磁场与微波技术复习提纲

电磁场与微波技术复习提纲“电磁场与微波技术”(822)复习提纲一、总体要求“电磁场与微波技术”要求考生熟练掌握“电磁场与电磁波”、“微波技术基础”和“天线原理”的基本概念、基本理论和分析方法,具备分析和解决相关问题的一定能力。

“电磁场与微波技术”由“电磁场与电磁波”、“微波技术基础”和“天线原理”三部分构成。

“电磁场与电磁波”部分所占比例为40%(60分)。

“微波技术基础”部分所占比例为30%(45分)。

“天线原理”部分所占比例为30%(45分)。

《电磁场与电磁波》要求学生准确、系统的掌握电磁场与电磁波的相关概念,深刻领会描述电磁场与电磁波的基本定理和定律,熟练掌握分析电磁场与电磁波问题的基本方法,了解电磁场数值方法及其专业软件,具有熟练运用“场”的方法分析和解决问题的能力。

“微波技术基础”要求学生系统掌握微波传输线理论及分析方法、各种类型的导波结构、微波网络与微波元件的基础知识、微波谐振腔理论,深刻领会描述微波技术的基本概念和定律,学会用“场”与“路”的方法分析、解决微波工程问题。

《天线原理》要求学生系统地掌握天线理论的基本概念、基本原理、定律和基本分析方法,以及一些典型天线的工作原理与设计思想,具有解决实际工程问题的能力以及进行创新性研究和解决复杂工程问题的能力。

“电磁场与电磁波”部分考查内容要点为:(一)静电场基本要求熟练掌握静电场的基本概念、静电场的基本方程、边界条件。

掌握静电场的计算方法、电场能量和电场力的计算,电容的求解方法。

(二)恒定电流的电场基本要求熟练掌握电流的分类、电流密度的定义和物理含义。

掌握电荷守恒定律、欧姆定律的微分形式、焦耳定律、恒定电流场的基本方程和边界条件。

(三)恒定电流的磁场基本要求熟练掌握磁通连续性原理、安培环路定律、恒定磁场的基本方程、矢量磁位和磁场的边界条件。

掌握电流分布已知时磁感应强度和磁场强度的计算,矢量泊松方程和磁偶极子及其产生的场,标量磁位、互感和自感、磁场能量、能量密度、磁场力的概念和求解。

电磁场理论复习提纲

电磁场理论复习提纲

电磁场理论复习提纲电磁场理论复习提纲一、矢量分析与场论基础①正交曲线坐标系及变换,拉梅系数;②正交曲线坐标单位矢量及变换关系;③矢量及矢量的基本运算;④场的概念、矢量场和标量场;⑤源的概念、场与源的关系;⑥标量函数的梯度,梯度的意义与性质;⑦矢量场的散度,散度的意义与性质;⑧矢量函数的旋度,旋度的意义与性质⑨正交曲线坐标系中梯度、散度、旋度计算公式;⑩矢量场的基本构成,Helmholtz定理。

二、宏观电磁场的实验定律①库仑定律,电场的定义,电场的力线;②静电场的性质(静电场的散度、旋度及电位概念);③Ampere定律,电流元之间的作用力;④毕奥-沙伐尔定律,磁感应强度定义,磁场的力线;⑤恒定电流磁场性质(磁场的散度、旋度和矢势概念);⑥Faraday电磁感应定律,电磁感应定律的意义;⑦电荷守恒定律(或称为电流连续原理)⑧电磁场与带电粒子相互作用力,Lorentz力公式;⑨宏观电场、磁场的激励源与完整定义;⑩宏观电磁场的矢量特性。

三、介质的电磁性质①介质基本概念,场与介质相互作用的物理机制;②介质极化,磁化、传导的宏观现象及其特点;③介质的极化现象及其描述方法,电位移矢量;④介质的磁化现象及其描述方法,磁场矢量;⑤介质的传导现象及其描述方法,欧姆定律;⑥极化电流、磁化电流与传导电流产生原因及异同点;⑦介质的分类、电磁特性参数与物质本构方程;⑧介质的色散及其产生的原因,色散现象带来的问题;⑨导电媒质—良导体—理想导体⑩理想导体几个问题(模型、静电平衡、电荷分布等);四、宏观Maxwell方程组①静态电磁场与电流连续性原理之间的矛盾;②位移电流概念、位移电流的实验基础及其意义;③宏观电磁场的Maxwell方程组及其对应实验;④宏观Maxwell的微分形式、积分形式、边界条件;⑤宏观Maxwell方程组的预言及其物理意义;⑥宏观Maxwell方程组的完备性问题、物质本构关系;⑦宏观Maxwell方程组各方程的独立性问题;⑧宏观电磁场的应用领域及其求解方法。

电磁场复习提纲

电磁场复习提纲

第一章矢量分析1.理解标量场与矢量场的概念,了解标量场的等值面和矢量场的矢量线的概念;2.矢量场的散度和旋度、标量场的梯度是矢量分析中最基本的重要概念,应深刻理解,掌握散度、旋度和梯度的计算公式和方法;理解矢量场的性质与散度、旋度的相互关系。

注意矢量场的散度与旋度的对比和几个重要的矢量恒等式。

注意哈密顿算符在散度、旋度、梯度中的应用。

3.散度定理和斯托克斯定理是矢量分析中的两个重要定理,应熟练掌握和应用。

4.熟悉亥姆霍兹定理,理解它的重要意义。

5.会计算给定矢量的散度、旋度。

并能够验证散度定理。

理解无旋场与无源场的条件和特点。

掌握矢量场的梯度和旋度的两个重要性质(课件例题,课本习题1.16、1.18、1.20,1.27)第二章电磁场的基本规律1.电荷是产生电场的源,应理解电荷与电荷分布的概念,理解并掌握电流连续性方程的微分形式和积分形式;电流是产生磁场的源,应理解电流与电流密度的概念。

2.掌握真空中静电场的散度与旋度及其物理意义,真空中高斯定理的微分和积分形式。

会计算一些典型电荷分布的电场强度。

3.熟悉掌握磁感应强度的表示及其特性。

会计算一些典型电流分布的磁感应强度。

掌握恒定磁场的散度和旋度及其物理意义;磁通连续性定理的微分、积分形式和安培环路定理的积分、微分形式。

4.媒质的电磁特性有哪些现象?分别对应哪些物质?(1)电介质的极化有哪些分类?极化强度矢量与电介质内部极化电荷体密度、电介质表面上极化电荷面密度各有什么关系式?电介质中的高斯定理?电位移矢量的定义?电介质的本构关系?(2)磁化强度矢量与磁介质内磁化电流密度、磁介质表面磁化电流面密度之间各有什么关系式?磁化强度矢量的定义?磁介质中的安培环路定理?磁介质的本构关系?(3)导电媒质的本构关系/欧姆定律的微分形式?(式2.4.29),焦耳定律的微分形式、积分形式?5.电磁感应定律揭示了随时间变化的磁场产生电场这一重要的概念,应深刻理解电磁感应定律的意义,掌握感应电动势的计算。

电磁场与电磁波 复习大纲参考

电磁场与电磁波 复习大纲参考

电磁场与电磁波复习大纲参考
一、概念与简答
亥姆霍兹定理,电磁模型的源与场量,媒质本构关系,Maxwell方程微分与积分形式,Maxwell方程相量形式,电场边界条件,磁场边界条件,瞬时坡印廷矢量,时间平均坡印廷矢量,坡印廷定理,位移电流,静电场中的导体,欧姆定律点函数,电流连续性方程,洛伦兹条件,导电媒质的复介电常数,损耗角正切,良导体,良绝缘体?本征阻抗,TEM波,电磁波的极化,导体的趋肤深度,驻波与驻波比,总场的波阻抗?
二、分析计算
chp3)例3-5高斯定律计算导线电场,3.6节,静电场中的导体?例3-11,3-12球壳电场与电位计算,例3-13两导体球电场击穿,例3-18,P.3-31同轴线电容计算,例3-25电场能量计算电容,P.3-25电场边界条件?
Chp5)电阻计算?例5-5同轴线绝缘电阻,P.5-21接地电阻
Chp6)例6-1安培定律计算导线磁场,例6-15螺线管电感计算?,例6-16同轴线电感计算?例6-20磁场能量计算同轴电感?例6-10,,P.6-27磁路计算?
Chp7)7.3节,例7-5,位移电流,欧姆定律点函数?7.4节,7.6节,7.7节,洛伦兹条件,电荷守恒,波动方程,相量?例7-7损耗角正切?
Chp8)Maxwell方程,8.2节,例8-4,趋肤深度?8.2节,8.6节,8.8节,本征阻抗,TEM波,驻波?例8-1,P.8-5,例8-7?
第 1 页共1 页。

电磁场复习提纲

电磁场复习提纲

电磁场复习提纲电磁场复习提纲一、基本数学工具1. 标量:只有大小,没有方向的物理量。

2. 矢量:不仅有大小,而且有方向的物理量。

3. 标量积(点积):4. 矢量积(叉积):(两矢量叉积,结果得一新矢量,其大小为这两个矢量组成的平行四边形的面积,方向为该面的法线方向,且三者符合右手螺旋法则。

)5. 标量场的梯度(矢量):标量场中某点梯度的大小为该点最大的方向导数,其方向为该点所在等值面的法线方向。

6. 矢量场散度(标量):矢量场中某点的通量密度称为该点的散度。

7. 矢量场的旋度(矢量):一矢量其大小等于某点最大环量密度,方向为该环的法线方向,那么该矢量称为该点矢量场的旋度。

8. 散度定理:物理含义:穿过一封闭曲面的总通量等于矢量散度的体积分。

9. 斯托克斯定理:物理含义:一个矢量场旋度的面积分等于该矢量沿此曲面周界的曲线积分。

10. 亥姆霍兹定理:若矢量场F 在无限空间中处处单值,且其导数连续有界,而源分布在有限空间中,则矢量场由其散度、旋度和边界条件唯一确定;且可以表示为一个标量函数的梯度和一个矢量函数的旋度之和。

11. 两个零恒等式 :(任何标量场梯度的旋度恒为零。

)(任何矢量场的旋度的散度恒为零。

)二、电磁学基本理论(一)电场基本物理量(1)()0φ≡||||cos A B A B θ=?||||sin c A B A B aθ?=?grad φφ=?div F F=??rot F F=??d d SVF S F V=()d d S l F S F l=(2)()0F ≡1. 电场:这种存在于电荷周围,能对其他电荷产生作用力的特殊的物质称为电场。

可见电荷是产生电场的源。

2. 库仑定律:单位牛顿(N )3. 点电荷:当电荷体体积非常小,可忽略其体积时,称为点电荷。

点电荷可看作是电量q 无限集中于一个几何点上。

点电荷周围电场强度的计算公式:单位:牛顿/库伦(N/C )或者伏特/米(V/m )4. 连续分布的电荷源产生的电场:线电荷分布:单位长度上的电荷量。

理工类考研电磁场复习指南重点概念与题型解析

理工类考研电磁场复习指南重点概念与题型解析

理工类考研电磁场复习指南重点概念与题型解析电磁场作为理工类考研中的一门重要学科,是许多科学与工程专业的基础课程之一。

考生在备战电磁场考研时,需要熟练掌握电磁场的相关概念和解题技巧。

本文将从概念复习和题型解析两个方面,为考生提供电磁场的复习指南。

一、概念复习1.1 电荷与电场电荷是电磁场中的基本粒子,具有正负两种属性。

带电粒子周围存在电场,电场是由电荷引起的。

电场线是表示电场分布的图形,它的密度与电场强度成正比。

1.2 静电场与静电场方程静电场是指电荷分布不随时间变化的电荷场景。

静电场方程是描述静电场分布的方程,它的具体形式为:∇·E = ρ/ε₀,其中E为电场强度,ρ为电荷密度,ε₀为真空介电常数。

1.3 静电势与静电势能静电势是描述静电场的物理量,定义为单位正电荷在电场中获得的能量。

根据静电势差的定义,静电势能是单位正电荷从无穷远处移到某点所具有的能量。

1.4 电场的高斯定律电场的高斯定律是描述电场分布与电荷分布之间关系的定律。

它表明,通过任意闭合曲面的电场通量与该曲面内的电荷量成正比。

1.5 电位系数与电介质电位系数是描述电介质中电场强度与静电势梯度之间关系的物理量。

电介质是指具有一定导电性质的物质,在电场中会产生极化现象。

1.6 磁场与电流电流是带电粒子运动所形成的电荷流动,磁场是电流所产生的。

磁场线是表示磁场分布的图形,它的方向由磁场的南北极性决定。

1.7 安培环路定理和法拉第电磁感应定律安培环路定理描述了磁场与电流之间的关系,它表明通过任意闭合回路的磁场环流与该回路内的电流成正比。

法拉第电磁感应定律描述了磁场变化与感应电动势之间的关系。

1.8 电磁波概念与特点电磁波是由电场和磁场相互耦合所产生的波动现象。

电磁波具有波长、频率、传播速度和振幅等特点,可以分为不同频段的射频、微波、红外线、可见光等。

二、题型解析2.1 判断题判断题是考查考生对基础概念理解和掌握情况的题型。

在回答判断题时,要注意阅读题干并结合基础概念进行判断。

(完整word版)电磁场复习要点(word文档良心出品)

(完整word版)电磁场复习要点(word文档良心出品)

电磁场复习要点第一章 矢量分析一、重要公式、概念、结论1. 梯度、散度、旋度在直角坐标系下的计算公式。

梯度:x y z u u u u x y z∂∂∂∇=++∂∂∂e e e 散度:y x zA A A x y z∂∂∂∇⋅=++∂∂∂A旋度: 2. 两个重要的恒等式: ()0u ∇⨯∇=,()0∇⋅∇⨯=A第二章 电磁场的基本规律 一、重要公式、概念、结论1.电场和磁场是产生电磁场的源量。

2.从宏观效应看,物质对电磁场的响应可分为极化、磁化和传导三种现象。

3. 静电场的基本方程:s lD D ds QE E dl ρ∇•=•=∇⨯=•=⎰⎰ 表明:静电场是有散无旋场。

电解质的本构关系: 0r D E E εεε==xyzy y z x z x x y z x y zA A A A A A x y z y z z x x y A A A ∂∂⎫⎫⎛⎛∂∂∂∂∂∂∂⎫⎛∇⨯==-+-+- ⎪⎪⎪ ∂∂∂∂∂∂∂∂∂⎝⎭⎝⎝⎭⎭e e e A e e e4. 恒定磁场的基本方程:l sH J H dl I B B ds ∇⨯=•=∇•=•=⎰⎰ 磁介质的本构关系:0r B H H μμμ==5. 相同场源条件下,均匀电介质中的电场强度为真空中电场强度值的倍r1ε。

6. 相同场源条件下,均匀磁介质中的磁感应强度是真空中磁感应强度的r μ倍。

7. 电场强度的单位是V/m ;磁感应强度B 的单位是T (特斯拉),或Wb/m 2 8. 电磁感应定律表明:变化的磁场可以激发电场。

9. 全电流定律表明:变化的电场也可激发磁场。

10. 理解麦克斯韦方程组:微分形式: 积分形式:⎰⎰⎰⎰⎰⎰=•=•∇=•=•∇•∂∂-=•∂∂-=⨯∇•∂∂+=•∂∂+=⨯∇ss l s l s s d B B Q s d D D s d t B l d E t B E s d tD J l d H t D J H 0)(ρ本构关系: E J HB EDσμε===二、计算。

电磁场复习要点

电磁场复习要点

电磁场复习要点第⼀章1、⽮量的点乘和叉乘公式、性质,特别是在直⾓坐标系下的计算公式2、三种常⽤正交坐标系的相互转换,各⽅向单位⽮量之间的⽅向关系。

3、场论的基础知识:(1)标量场的梯度的概念、性质、公式、与⽅向导数的关系(2)⽮量场的散度的概念、公式、与通量的关系、散度定理、通量源和⽮量线的特点(3)⽮量场的旋度的概念、公式、与环量的关系、斯托克斯定理、漩涡源和⽮量线的特点(4)两个恒等式(5)亥姆霍兹定理第⼆章1、三⼤实验定律:公式、含义、物理意义2、两个基本假设:有旋电场和位移电流3、麦克斯韦⽅程组微分形式、积分形式及其物理意义4、两种不同介质分界⾯上的边界条件(普通的、理想介质与理想介质、理想导体与理想介质)5、媒质的电磁特性:极化、磁化和传导。

6、三种介质的本构关系对以上公式要求理解,能够灵活运⽤公式进⾏解题。

重点例题:P80页例2.7.1,例2.7.3第三章1、电位函数:引⼊依据,与电场强度之间的关系(积分形式和微分形式),电位参考点的选取原则。

2、电容的定义及其求解3、静电场的能量和能量密度(各种公式)重点查看课本P96页双导体电容的计算步骤。

例3.1.4,例3.1.54、⽮量磁位:引⼊依据,与磁感应强度之间的关系(积分形式和微分形式),⽮量磁位的⽅向。

5、电感的定义,⾃感⼜分内⾃感和外⾃感。

圆截⾯长直导线单位长度的内⾃感是多少6、恒定磁场的能量和能量密度(各种公式)P125页例3.3.77、恒定电场的源量和场量,基本性质。

电阻的求解。

8、什么是边值问题,他的分类,唯⼀性定理及其意义9、边值问题的常⽤解法10、镜像法的原理、求解关键。

接地的⽆限⼤导体平⾯的镜像,具有⼀定夹⾓的接地导体平⾯的镜像。

接地和不接地导体球⾯的镜像。

主要能够求出镜像电荷的个数、位置、⼤⼩。

11、分离变量法的原理。

针对给出问题能够列出位函数满⾜的⽅程和边界条件。

12、有限差分法的主要思想,和主要公式。

第四章1、波动⽅程的意义2、位函数和场量的关系3、坡印廷⽮量的定义,物理意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电磁场理论》知识点第一章矢量分析一、基本概念、规律矢量微分算子在不同坐标系中的表达,标量场的梯度、矢量场的散度和旋度在不同坐标系中的计算公式,常用的矢量恒等式(见附录一1•和2.)、矢量积分定理(高斯散度定理、斯托克斯旋度定理及亥姆霍兹定理)。

二、基本技能练习1、已知位置矢量r x? y@y ze?z,r是它的模。

在直角坐标系中证明r r(1) r (2) ?r 3 (3) x r 0 (4) x( r) 0 (5) ?-y 0r r22、已知矢量A e x x e y xy gy z,求出其散度和旋度。

r3、在直角坐标系证明 A 04、已知矢量A e x 2?y, B e x3e z,分别求出矢量A和B的大小及A B5、证明位置矢量r £x X e『y e z Z的散度,并由此说明矢量场的散度与坐标的选择无关。

6、矢量函数A x2e x y?y x?z,试求(1)A(2)若在xy平面上有一边长为2的正方形,且正方形的中心在坐标原点,试求该矢量A穿过此正方形的通量。

第二章静电场一、基本常数二、基本概念、规律静电场、库仑定律、电场强度、电位及其微分方程、电荷密度、电偶极子模型、高斯定理、环路定理、极化强度矢量、电位移矢量、场方程(真空中和电介质中)、介质性能方程,边界条件,场能及场能密度。

三、基本技能练习2、证明极化介质中,极化电荷体密度b与自由电荷体密度的关系为:bD?(—)。

3、一半径为a内部均匀分布着体密度为0的电荷的球体。

求任意点的电场强度及电位。

媒质2。

已知空气中的电场强度为E14e x e z,求(1)空气中的电位移矢量(2)媒质2中的电场强度。

5、半径为a的均匀带电无限长圆柱导体,单位长度上的电荷量为,求空间电场强度分布。

6、半径为a的导体球外套一层厚为(b a)的电介质(其介电系数为),设导体球带电为q,求任意点的电位。

7、一个半径为a的电介质球内含有均匀分布的自由电荷,电荷体密度为证明其中心点的电位是(2 r 1) a 厶8、一个半径为a,带电量为Q的导体球,球外套有半径为b的同心介质球壳,壳外是空气,壳内介质的介电系数为「求空间任一点的D, E, P及束缚电荷密度。

9、一半径为a,内部均匀分布着体密度为°的电荷的球体。

求空间任意点的电场强度及电位。

10、内、外半径分别为R1, R2的均匀带电厚球壳,电荷体密度为,介质的介电常数为。

分别求在r v R1、R1v r v R2和r > R2的区域内场强的大小。

11、两个点电荷,电量分别为+q和-3q,相距为d,试求:(1)在它们的连线上电场强度E=0的点与电荷量为+q的点电荷相距多远?(2)若选无穷远处电势为零,两点电荷之间电势U=0的点与电荷量为+q的点电荷相距多远?12、同轴线内导体半径为a,外导体半径为b,内、外导体间介质为空气,其间电压为U。

(1 )求r a处的电场强度(2 )求a r b处的电位移矢量第三章恒定电流的电场和磁场、基本常数真空中磁导率二、基本概念、规律电流,电流强度,电流密度,稳恒条件,电荷守恒定律(电流连续性方程),欧姆定律及焦耳定律的微分形式,磁感应强度,毕奥一萨伐尔定律,安培定律,安培力,洛仑兹力,磁通连续性原理,安培环路定律(真空中和磁介质中),磁化强度矢量、磁场强度矢量,矢量磁位及其微分方程,标量磁位,库仑规范,场方程,介质性能方程,边界条件,场能及场能密度。

三、基本技能练习21、一铜棒的横截面积为20 80mm ,长为2m,两端的电位差为50V。

已知铜的电导率为5.7 107S/m。

求(1)电阻(2)电流(3)电流密度(4)棒内的电场强度(5)所消耗的功率2、在无界非均匀导电媒质(其和均是空间坐标的函数)中,若有恒定电流J存在,证明媒质中的自由电荷密度为:E?(—)。

3、半径为a的无限长直导线,载流为I,计算导线内外的磁感应强度B。

4、已知半径为R的环形导线,载有电流为I,求其中心的磁感应强度的大小。

5、无限长同轴电缆内导体半径为a,外导体的内、外半径分别为b和c。

电缆中有恒定电流流过(内导体上电流为I、外导体上电流为反方向的I ),设内、外导体间为空气,如图所示。

(1)求a r b处的磁场强度(2)求r c处的磁场强度。

6、载流为I的无限长直导线,计算在其外距导线为r处产生的磁感应强度B的大小。

7、设半径为a的无限长圆柱内均匀地流动着强度为I的电流,设柱外为自由空间,求(1)柱内离轴心r任一点处的磁场强度;(2)柱外离轴心r任一点处的磁感应强度。

均满足泊松方程。

9、无限长直线电流I垂直于磁导率分别为1和2的两种磁介质的交界面,如图所示。

(1)写出两磁介质的交界面上磁感应强度满足的方程(2)求两种媒质中的磁感应强度B2。

B i7^;B210、设无限长直导线与矩形回路共面,(如图所示),求(1)判断通过矩形回路中的磁感应强度的方向(在图中标出) ;(2 )设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。

第四章静态场的解一、基本概念、规律唯一性定理,镜像法(点电荷的平面、球面镜像法),分离变量法二、基本技能练习1、一点电荷q置于直角导体内部,用镜像法求直角导体内部某点的电位。

2、半径为a的不接地导体球附近距球心O为d处有一点电荷q,用镜像法计算球外任一点的电位。

3、两个点电荷Q和Q位于半径为a的接地导体球的直径延长线上,距球心均为D。

证明镜像电荷2a3Q2-构成一位于球心的电偶极子,且偶极矩大小为 D 。

4、接地无限大导体平面上半空间有一点电荷,电荷量为1,距导体平面为h。

(1 )导出电位函数满足的方程并应用镜像法求出位函数的解。

(2 )求导体表面上感应面电荷密度,并证明总感应电荷为一1。

5、已知一个半径为a的接地导体球,球外一个点电荷q位于距球心O为d处。

利用镜像法求球外空间任意点的电位分布。

6、一个半径为R的导体球带有电荷量为Q,在球体外距离球心为D处有一个点电荷q。

(1 )求点电荷q与导体球之间的静电力;(2)证明当q与Q同号,且Q RD3R2 2 2q (D R ) D成立时,F表现为吸引力。

7、已知一点电荷q与无穷大导体平面相距为h,若把它移动到无穷远处需要作多少功?8、无限大导体平面上方有一电荷线密度为|的长直线电荷,电荷线与导体平面的距离为h,求此电荷线单位长度所受的力。

第五章时变电磁场一、基本参数理想导体、理想介质、无源区、自由空间的电磁参数二、基本概念、规律法拉第电磁感应定律,位移电流,麦克斯韦方程及其辅助方程,洛仑兹力公式,时变电磁场的边界条件,场能及场能密度,坡印亭定理,坡印亭矢量及其平均值、复数形式,正弦电磁场的复数表示形式与瞬时值,麦克斯韦方程的复数形式,时变电磁场的位函数_|,洛仑兹规范,波动方程。

三、基本技能练习1、已知介质材料的相对介电系数r1.5,相对磁导率r1,电导率为。

其中的电场强度为E e x60cos(105t) V/m。

求传导电流密度及位移电流密度。

2、若金属铜中的电场为E0sin t,铜的电导率为5.8 107S/m,0,求铜中的位移电流密度及位移电流密度和传导电流密度之比。

3、证明麦克斯韦方程中包含电流连续性方程。

4、真空中B e y10 2 cos(6 10 2t) cos(2 z) T,计算位移电流密度是多少?5、在无源的自由空间中,已知磁场强度H e y2.63 10 5 cos(3 106t 10z)(A/m),试求位移电流6、证明均匀导电媒质内部,不会有永久的自由电荷分布。

7、已知时变电磁场中矢量位A e x A m Sin( t kz),其中A m、k是常数。

求电场强度、磁场强度和坡印廷矢量。

试求:(1)电场强度复矢量;(2)对应的磁场强度复矢量及其瞬时值9、证明通过任意闭合曲面的传导电流和位移电流之和等于零。

10、已知在无源的自由空间中 E ?x E°cos( t z),其中E0,?为常数。

请求出磁场强度11、已知真空中电场强度 E gE 0cosk 0(z ct) e y E 0 si nk 0(z ct),式中 k 0,试求:13、证明在均匀、线性和 2H14、已知无源的自由空间中(J 0,0),时变电磁场的电场强度复矢量为 复矢量。

(1)磁场强度和坡印亭矢量的瞬时值; (2)磁场能密度和电场能密度的时间平均值。

12、将下列场量作复数形式与瞬时值形式的变换:(1) E e x E 0cos( t kz)(2)EgE 。

(3)E(r,t) ?y E ym COS (t kx ) ?z E zm si n( t kx )同性的导电媒质中无源区磁场强度H (r,t )满足方程2HE (z ) e y E o e jkz (V/m )式中E 0,k 为常数。

求: (1)磁场强度复矢量。

(2 )坡印廷矢量的瞬时值。

(3)平均坡印廷矢量。

第六章平面电磁波一、 基本常数真空中均匀平面波的波速(相速)、波阻抗、理想介质电磁参数的特点、理想导体电磁参数的特点二、 基本概念、规律均匀平面波定义,无耗媒质(理想介质)和导电媒质媒质中均匀平面电磁波的传播特性 (电 磁场强度的时空关系、波速、周期和频率、波长和波数、波阻抗、能量密度和能流密度) ,电磁波的极化条件。

三、 基本技能练习1、在无源的自由空间中,电场强度复矢量的表达式为E 3x3E 0e jkz(1)试写出其时间表达式;(2)判断其属于什么极化。

2、设空间中平面电磁波的电场为 E z,t e x Acos wt kz,求解或简述如下问题:(1)简述上式中和k代表的物理意义,求出平面电磁波相位传播速度;(2)求出磁场的表达式;(3)导出平面波电场、磁场和传播方向之间满足的关系。

3、在设计对潜艇通信时,必须考虑海水是一种良导体的特性。

为了使通信距离足够远,信号尽可能强,有两种不同频率31和w2的发射机和接收机,且W1> W2,请问选择哪种频率的通信设备?为什么?4、在无源的自由空间中,电场强度复矢量的表达式为(1 )试写出其时间表达式;(2)说明电磁波的传播方向;5、已知无界理想媒质( 9 0, 0, 0 )中均匀平面电磁波的电场强度为.. jkz j —E &4e jz e y3e 3 (V /m),求出电场强度瞬时值表达式。

6、频率为10 M Hz的均匀平面电磁波在铁中传播。

设铁的参量r 1 , r 103, 107S/m,试求铁中该电磁波的波阻抗和其振幅衰减至表面值 1 = 36.8 %时的传播距离。

7、在自由空间传播的均匀平面波的电场强度复矢量为j(20 z _)E e x 10 4e j20 z ?y 10 4 e 2 (V / m)求(1)平面波的传播方向;(2)频率;(3)波的极化方式;(4)磁场强度;(5)电磁波的平均坡印廷矢量S av。

相关文档
最新文档