第3章静电场的边值问题详解
第3章 边值问题及静电场的求解
r r
Q Q
const.
若镜像位置满足
OQ ~ P OPQ
r r
R0 a
const .
由三角形相似,
b R0 R0 a
2 R0 b a Q R0 Q a
导体球外部空间的电势为
Q R 0Q 4 0 r ar 1 4 0 1 Q R a 2 Ra cos
sin d
(sin
sin
0
该方程的解有两种情况
■
1 d
2
d
2
m
2
的解
0,
当电位与方位角无关时,
2 即: m 0
( ) A
■
1 d R dr
(r
2
2
dR dr
) n ( n 1) 的解
1
(1) n 0 时, R ( r ) A0 B 0 r
n
|S f 2 ( S )
称为第二类边界条件或“诺伊曼”条件。 这类问题称为第 二类边值问题。 (3)已知场域边界面S上各点电位和电位法向导数的线性 组合值, 即给定
( N ) |S f 3 ( S )
称为第三类边界条件或“混合边界条件”。 这类问题称为 第三类边值问题。
P
Q Q 4 0 r r 1
考察空间:导体球外部空间。 镜像电荷:用位于对称轴上的等效代
替导体球面上的感应电荷。
球面上任意点P 的电势
Q Q ( P) 0 4 0 r r 1
r r
Q Q
镜像电荷不应随P 变化,
第三章 静电场的边值问题
u (1 2 ) 0
积分后 , 1 - 2 C, 该式既满足场域 , 又满足边界 , 故 C 0,1 2 ,得证
若导体边界为第二类边 界条件 , 即已知电荷面密度
1 2 , n n
即
(1 -2 ) u 0 n n
q
1 2 q 1 2
q
2 2 q 1 2
0
( y 0 ,b x a )
0
例 设有电荷均匀分布在半径为a的介质球型区域中,电荷体密度
为 ,试用解微分方程的方法求球体内、外的电位及电场。
解: 采用球坐标系,分区域建立方程 1 d d 21 2 (r 2 1 ) (0 r a ) r dr dr 0
2u 21 2 2
利用矢量恒等式
0 (uu) u2u (u) 2 ( u )2
对场域求体积分, 并利用高斯散度定理
V
(uu )dV uu dS (u ) 2 dV
s V
S为体积 V的边界面 ,即S S0 S , S S1 S2 Sn , 由于在无穷远 S0处电位为零 ,因此有
静电场的边值问题 数学物理方程定解条件通常分为初始条件和边界条件。 静电场与时间无关,因此电位所满足的泊松方程及拉普拉斯
方程的解仅决定于边界条件。根据给定的边界条件求解泊松方程
或拉普拉斯方程就是静电场的边值问题。
边值问题 微分方程
边界条件
2 2 0
场域 边界条件
分界面 衔接条件
S f1 (s)
已知场域边界 上各点电位 的法向导数
布或边界是电力线的条 件是等价的? 边值问题框图
第3章---- 静电场及其边值问题的解法--4
电磁场
第3章 静电场及其边值问题的解法
结论:
由两个半无限大接地导体平面形成角形边界,当其夹角 , n
π n
为整数时,该角域中的点电荷将有(2n-1)个镜像电荷,该角 域中的场可以用镜像法求解;
当n=3时:
/3
q
/3
q
电磁场
第3章 静电场及其边值问题的解法
q
q
当n=3时:
r
2π
r
S
衔接条件
----不同媒质分界面上的边界条件,如
1 2 1 2 , 1 2 n n
1 2
1
2
电磁场
第3章 静电场及其边值问题的解法
例:
b
y
U0
2 2 2 0 2 x y (0, y) 0, (a, y) 0
1
d1
q d2 2 q1 d2
d1 R1
d1 R
q
d2
d2
q3
R3
d1
R2
d1
d2
q2
电位函数 q 1 1 1 1 ( ) 4π R R1 R2 R3
镜像电荷q1=-q,位于(-d1, d2 ) 镜像电荷q3 = q , 位于(-d1, -d2 )
镜像电荷q2=-q,位于( d1, -d2 )
(第三类边值问题)
§3.5 电磁场
静电场边值问题,唯一性定理
第3章 静电场及其边值问题的解法
3. 边值型问题的解法
解析法
镜像法
分离变量法
复变函数法 格林函数法 计算法
…
有限差分法 有限元法 数值法 边界元法 矩量法
第3章---- 静电场及其边值问题的解法 (1)
积分形式:
∫ D ⋅ dS = q ∫ E ⋅ dl = 0
S l
微分形式:
∇⋅D = ρ ∇× E = 0
D = εE
静电场:无旋有散场
本构关系:
线形、各向同性媒质
电磁场
第3章 静电场及其边值问题的解法
二、静电场的无旋性与电位
一 、静电场的无旋性
试验电荷q0位移dl时,电场力作功:
dA= F ⋅ dl = q0E ⋅ dl
从A点移到B点:
A = ∫ q0 E ⋅ dl
A
B
定义: A、B点间电压:
U AB
A = = ∫ E ⋅ dl q A
B
(2 - 19)
电磁场
第3章 静电场及其边值问题的解法
∫ E ⋅ dl = ∫ E ⋅ dl + ∫ E ⋅ dl = ∫ E ⋅ dl − ∫ E ⋅ dl = 0
_____ _____
电磁场
第3章 静电场及其边值问题的解法
均匀电场中带电粒子的 轨迹
阴极射线示波器原理
电磁场
第3章 静电场及其边值问题的解法
磁分离器 回旋加速器
电磁场
第3章 静电场及其边值问题的解法
磁悬浮列车
电磁场
第3章 静电场及其边值问题的解法
磁录音原理:
电磁场
第3章 静电场及其边值问题的解法
§3.1 静电场基本方程与电位方程 一、静电场的麦克斯韦方程组
∞
r
ρ 0a ρ 0a dr = 2 3ε 0 r 3ε 0 r
3
3
当r<a时,
ϕ = ∫ Er dr = ∫ Er dr + ∫
r r
∞
a
EM03静电场边值问题
Z轴
XY平面 XY平面
15
镜像法 可得导体表面( 由Dn=ρS可得导体表面(z=0)的感应面电荷密 ) 度:
qh ρS = ε0Ez = − 2 2 2 3/ 2 2π ( x + y + h )
令ρ2=x2+y2,则导体表面总的感应电荷: 导体表面总的感应电荷:
∞ qh 2π ρdρ qi = ∫∫ ρs ds = − ∫0 dϕ∫0 (ρ 2 + h2 )3/ 2 S 2π ∞
11
镜像法 第一类 点电荷与无限大的导体平面 置于无限大接地平面导体上方, 例3.2 置于无限大接地平面导体上方,距导体 面为h处的点电荷q。
12
镜像法 分析: 分析:
Z轴
- - - - - - - -
XY平面 XY平面
Φ=0 可用叠加法求解
13
镜像法 解: 在直角坐标系中, 在直角坐标系中, 当z>0 时, 2ϕ = 0 ∇ =0时 =0; 当z=0时,φ=0;
=
qh
ρ +h
2
2 0
= −q
16
镜像法 分析: 分析: 当点电荷位于无限大的导体平面时, 当点电荷位于无限大的导体平面时,由于静电 感应,导体表面将产生等量的异性的感应电荷, 感应,导体表面将产生等量的异性的感应电荷, 使用镜像法时, 使用镜像法时,可以用一个异性的镜像电荷代 替导体表面的感应电荷。 替导体表面的感应电荷。 电场线处处垂直于导体的平面, 电场线处处垂直于导体的平面,零电位面与导 体表面重合。 体表面重合。
24
镜像法 取球面上的点分别 位于A 两点, 位于A、B两点,可 以得到确定未知量 q’、b的两个方程: 的两个方程: 、 的两个方程
第三章 静电场边值关系
电位所满足的拉普拉斯方程在圆柱坐标系
中的展开式只剩下包含变量r 的一项,即电 位微分方程为
2 1 d d r 0 r dr dr
求得
C1 ln r C 2
利用边界条件:
V r a
C1 ln a C 2 V C1 ln b C 2 0
q q 4 π r 4 π r
可见,为了保证球面上任一点电位为零,必须选择镜像电荷为
r q q r
上任一点均具有同一数值。由上图可见,若要求三角形 △OPq
r 为了使镜像电荷具有一个确定的值,必须要求比值 对于球面 r
r a 与 △ OqP 相似,则 常数。由此获知镜像电荷应为 r f
代入上述边界条ห้องสมุดไป่ตู้,求得镜像电荷如下:
q
1 2 q 1 2
q
2 2 q 1 2
例 已知同轴线的内导体半径为a,电位为V,外导体接地,其
内半径为b。试求内外导体之间的电位分布函数以及电场强度。
解
V a b
O
对于这种边值问题,镜像法不适
用,只好求解电位方程。为此,选用圆柱 坐标系。由于场量仅与坐标 r 有关,因此,
以格林函数表示的积分解。
数学物理方程是描述物理量随空间和时间的变化规律。对于某 一特定的区域和时刻,方程的解取决于物理量的初始值与边界值, 这些初始值和边界值分别称为初始条件和边界条件,两者又统称为 该方程的定解条件。静电场的场量与时间无关,因此电位所满足的 泊松方程及拉普拉斯方程的解仅决定于边界条件。根据给定的边界 条件求解空间任一点的电位就是静电场的边值问题。
q q
电场线与等位面的分布特性与第二章所述的电偶极子的上半
《静电场的边值问题》课件
用离散的差分代替微分方程中的导数项,将微分方程转化为差分方程进行求解。
有限元方法
将连续的求解区域离散化为有限个小的单元,用每个单元的中心函数近似代替该单元上的函数,从而将 微分方程转化为线性方程组进行求解。
2023
PART 03
静电场的边界条件
REPORTING
边界条件的定义
01
边界条件是指在求解静电场问题时,电场在边界处的
2023
PART 05
静电场的实际应用
REPORTING
电场在物理中的应用
静电感应
当一个带电体靠近导体时,导体因静电感应 而带电。
电容器的充放电
电容器在充电和放电过程中,电荷在电场的 作用下移动。
电子显微镜
利用电场对电子的加速和聚焦作用,实现高 分辨率的显微成像。
电场在化学中的应用
离子交换
利用电场对离子的作用力,实现离子的分离 和纯化。
VS
详细描述
有限元法是一种将连续的静电场划分为有 限个小的区域(即元),然后对每个元进 行求解的方法。这种方法能够处理复杂的 几何形状和边界条件,并且具有较高的计 算精度和稳定性。
边界元法
总结词
只对静电场的边界进行离散化,然后对边界上的离散点进行求解的方法。
详细描述
边界元法是一种只对静电场的边界进行离散化,然后对边界上的离散点进行求解的方法。这种方法能够大大减少 未知数的数量,并且适用于处理具有复杂边界条件的问题。但是,由于只对边界进行离散化,因此需要更高的计 算精度和更复杂的数学处理。
电化学反应
在电解池和原电池中,电场驱动离子在溶液 中的迁移,并参与化学反应。
电泳技术
在电场的作用下,带电粒子在介质中移动, 用于分离和纯化生物分子。
电磁场及电磁波_第三章
从而电场为:
3.1.3 导体系统的电容
电容是导体系统的一种基本属性, 它是描 述导体系统储存电荷能力的物理量。 定义两导体系统的电容为任一导体上的总 电荷与两导体之间的电位差之比, 即
电容单位是F(法拉), 此比值为常数
1. 双导体的电容计算
在电子与电气工程中常用的传输线,例如 平行板线、平行双线、同轴线都属于双导 体系统。通常,这类传输线的纵向尺寸远 大于横向尺寸。因而可作为平行平面电场 (二维场来研究),只需要计算传输线单 位长度的电容。 其计算步骤如下:
√ 所有电位系数
, 且具有对称性, 即
(2)电容系数
对电位系数的矩阵方程求逆,可得:
或表示为:
式中, 称为电容系数或感应系数。下
标相同的系数
称为自电容系数或自
感应系数,下标不同的系数
称
为互电容系数或互感应系数。
电容系数具有以下特点:
√ 在数值上等于第j个导体的电位为一个 单位而其余导体接地时, 第i个导体上的电 量, 即
可见, 点P、Q之间电位差的物理意义是把 一个单位正电荷从点P沿任意路径移动到点 Q的过程中, 电场力所做的功, 根据静电场 的无旋性, 这个功是路径无关的。因而电 位差是唯一的。。
为了使电场中每一点电位具有确定的值, 必须选定场中某一固定点作为电位参考点, 即规定该固定点的电位为零。 例如,若选定Q点为零,则
电场强度为: • 内外导体间的电压为:
可得同轴线单位长度的绝缘电阻为:
方法之二:
已经知道同轴线单位长度的电容为: 因此,同轴线单位长度的漏电导为:
例二: 计算半球形接地器的接地电阻 解: 通常要求电子、电气设备与大地有良 好的连接,将金属物体埋入地内,并将需 接地的设备与该物体连接就构成接地器。
静电场的边值问题
静电场的边值问题
第三章 静电场旳边值问题
1. 电位微分方程 2. 镜像法 3. 直角坐标系中旳分离变量法 4. 圆柱坐标系中旳分离变量法 5. 球坐标系中旳分离变量法
1
电磁场与电磁波
静电场的边值问题
3.1 电位微分方程
已知电位 与电场强度 E 旳关系为
E 对上式两边取散度,得
E 2
r0作为参照点,则 及l 在l 圆柱面上P点共同产生
旳电位为
P
l 2π
ln r0 l r 2π
ln r0 r
l 2π
ln r r
已知导体圆柱是一种等位体,必须要求比值
r 常数 r
与前同理,可令 r a d
r fa
d a2 f
21
电磁场与电磁波
静电场的边值问题
(4)点电荷与无限大旳介质平面
或者
X (x) C sinh x D cosh x
含变量 x 或 y 旳常微分方程旳解完全相同。
♣这些解旳线性组合依然是方程旳解。一般为了
满足给定旳边界条件,必须取其线性组合作为方
程旳解。
解旳形式旳选择决取于给定旳边界条件。
解中待定常数也取决于给定旳边界条件。
30
电磁场与电磁波
静电场的边值问题
8
电磁场与电磁波
静电场的边值问题
3.2 镜像法
实质: 以一种或几种等效电荷替代边界旳影响, 将原来具有边界旳非均匀空间变成无限大旳均匀自 由空间,从而使计算过程大为简化。
这些等效电荷一般处于原电荷旳镜像位置,所以 称为镜像电荷,而这种措施称为镜像法。
9
电磁场与电磁波
静电场的边值问题
根据:惟一性定理。等效电荷旳引入不能变化原 来旳边界条件。
第三章静电场边值问题
第三章 静电场边值问题在上一章中,我们已经知道了几种从电荷分布求静电场的问题。
一种是直接积分式(2-2-1)求得已知电荷分布情况下的电场;另一种是利用式(2-2-4)高斯定理求解某些具有对称性电荷分布的静电场问题;再一种就是由式(2-2-10)求出静电势,再利用关系式ϕ=-∇E求出电场,这些问题一般都不存在边界。
然而,对于许多实际静电问题,电荷的分布是复杂的,计算积分很困难,甚至是不能积分,有些静电问题只给出了边界上的面电荷或电势。
在这种情况下,需有其它有效的方法求解静电问题,这种方法就是求解静电势所满足的偏微分方程。
这偏微分方程就是由式(2-2-10)给出的方程:2ρϕε∇=-因此,对于有边界存在的情况下,我们不得不求解给定边界条件下静电势微分方程,然后求出静电场,这一问题称为静电场边值问题错误!未找到引用源。
即求出满足给定边界条件的泊松方程的解。
在这一章中,我们首先介绍静电唯一性定理,它是解决静电场边值问题的基础。
基于静电唯一性定理,我们主要介绍两种求解静电场边值问题的方法:电像法和分离变量法。
当然,求解边值问题还有其它的方法。
值得一提的是,本章所介绍的方法不仅仅适用于静电场,它同样适用于静磁场和时变电磁场。
3-1 静电唯一性定理我们将证明,如果我们得到了满足给定边界条件的泊松方程的解,那么,这个解是唯一的。
这就是静电唯一性定理错误!未找到引用源。
下面我们证明这一定理并初步介绍它的应用。
在由边界面s 包围的求解区域V 内,若: 1) 区域V 内的电荷分布给定;2) 在边界面s 上各点,给定了电势s ϕ,或给定了电势法向偏导数snϕ∂∂,则V 内的电势唯一确定。
以上的表述就是静电唯一性定理。
下面,我们用反证法证明静电唯一性定理。
证: 假定在区域V 内的电荷密度分布为ρ(r ),且有两个不同的解φ1和φ2满足泊松方程及给定边界条件(给定的电势值s ϕ或电势法向偏导数snϕ∂∂)。
即:2212,ρρϕϕεε∇=-∇=-并有12sssϕϕϕ==或12sssnnnϕϕϕ∂∂∂==∂∂∂式中s ϕ和snϕ∂∂为给定的边界条件。
第三章 静电场的边值问题
oP adq′r′OP adq′r′为常数。
对于不接地的导体球,若引入镜像电荷 q' 后,为了满足电荷守 恒原理,必须再引入一个镜像电荷q",且必须令q ′′ = − q ′P a O d q′ r′ r q f而且,为了保证球面边界是 一个等位面,镜像电荷 q′′ 必须位 于球心。
事实上,由于导体球不接地,因此,其电位不等于零。
由q 及 q‘在球面边界上形成的电位为零,因此必须引入第二个镜像电荷 q“ 以提供一定的电位。
(思考:等位线的形状是否和以前一样?)(3)线电荷与带电的导体圆柱。
P a O d f -ρl已知线电荷为rr′ρl,导体圆柱单位ρl长度的电荷量为-ρl 。
在圆柱轴线与线电荷之间,离轴线的距离d 处,平行放置一根 镜像线电荷 − ρ l 。
求d 的大小。
已知无限长线电荷产生的电场强度为E=ρl er 2πε r因此,离线电荷 r 处,以 r0 为参考点的电位为ϕ=∫r0rEdr =ρl ⎛ r0 ⎞ ln⎜ ⎟ 2πε ⎝ r ⎠若令镜像线电荷 − ρ l 产生的电位也取相同的 r0 作为参考点, 则 ρ l 及 − ρ l 在圆柱面上 P 点共同产生的电位为P a O d f -ρlr′rρlϕP =ρl ⎛ r0 ⎞ ρl ⎛ r0 ⎞ ln⎜ ⎟ − ln⎜ ⎟ 2πε ⎝ r ⎠ 2πε ⎝ r ′ ⎠ ρl ⎛ r ′ ⎞ = ln⎜ ⎟ 2πε ⎝ r ⎠已知导体圆柱是一个等位体,即 ϕ p 是一个常数,因此,为了 满足这个边界条件,必须要求比值r′ r为常数。
2a r′ a d 与前同理,可令 = = ,由此得 d = r f a f可以想象与实际导体圆柱对称位置的右侧,也存在一个圆柱等位 面,如上图,则可计算两根平行导线间的电容(P79)。
(4)点电荷与无限大的介质平面。
qq′ Enr0r0′E'E t′ Etq"ε1 ε2et en=ε1 ε1q'θ+ε2 ε2r0′′θ′ E n′E t′′EnEE"为了求解上半空间的场可用镜像电荷 q' 等效边界上束缚电 荷的作用,将整个空间变为介电常数为ε1 的均匀空间。
第三章 边值问题的解法
解:根据轴对称的特点和无限长的假设, 可确定电位函数满足一维拉普拉斯方程,
R2
采用圆柱坐标系
R1
1 (r ) 0 积分 Aln r B
r r r
由边界条件 U A ln R1 B 0 Aln R2 B
A U ln R1 R2
B
U ln R1
ln
R2
第3章 边值问题的解 法
给定边界条件下求有界空间 的静电场和电源外恒定电场的问 题,称之为边界值问题。
3.1边值问题的提法(分类)
3.1.1边值问题的分类
1 狄利克雷问题:给定整个场域边界面S上各点电位的(函数)
值
f (s)
2 聂曼问题:给定待求位函数在边界面上的法向导数值
/ n f (s)
q
4π0
(r
2
2dr
1
cos
d
)2 1/ 2
(d
2r2
a
2dra2 cos
a4 )1/ 2
导体球不接地:
q a q d
b a2 d
q q a q d
a
—
a
导体球不接地:根据电荷守恒定律,导体球上感应电荷代
数和应为零,就必须在原有的镜像电荷之外再附加另一镜
球壳内:边界为r = a1的导体球面,
边界条件为 (a1, ,) 0
➢ 根据球面镜像原理,镜像电荷
的位置和大小分别为
a1 q1
q
1
b1
a12 d1
q1
q1
第3章-静电场及其边值问题的解法
q + q′ = 0 得 q′ = −q 4πεR0
()
()
()
R R R
φ r′ = φ r′ = φ r′ =
( ) ( ) ( )
1 4 πε 1 4 πε 1 4 πε
0 0 0
∫ ∫ ∫
ρv r′ ρ s r′ ρl r′
v
( )d v ′
s
( )d s ′
l
( )d l ′
式中 R =| r − r ′ | ,为源点至场点的距离。
5
§3.1
因此,任一极化介质区域内部的体束缚电荷总量与其表面的总束缚电荷是等值 异性的,介质整体呈电中性。
13
§3.2
静电场中的介质
二、介质中的高斯定理,相对介电常数
介质中的高斯定理: ∇ ⋅ E =
′ ρv + ρv ε0
′ 带入可得: 将 ρv
∇⋅ ε0 E + P = ρv
(
)
定义电通量密度: D = ε 0 E + P = ε 0 (1 + χ e )E = ε E 式中: ε = ε0εr ,
第3章 静电场及其边值问题解法
本章先研究静电场的电位方程和介质特性。 本章还将介绍两种求解静电场边值问题的方法。
主要内容 静电场与电位方程 静电场的介质 镜像法 分离变量法
§3.1 静电场基本方程与电位方程
一、静电场基本方程
静电场的场源电荷和所有场量都不随时间变化,只是空间坐标的函数。
由麦克斯韦方程组得静电场基本方程:
r>a:
2 ∫ E ⋅ ds = rˆE ⋅ rˆ 4π r = s
E 4π r 2 =
− ρ0 4 3 πa , ε0 3
第3章静态场的边值问题及解的唯一性定理
l 2π
ln
r0 r
l 2π
ln
1 r
C
1)长直线电荷与接地的长直圆柱导体平行,求圆柱外电位分布
在圆柱与线电荷之间,在圆柱内离轴线的距离b 处,平行放置一
根镜像线电荷 , 代替圆柱导体上的感应电荷. l
第3 章
若令镜像线电荷 产 生的电位也取相同的 l
作r0为参考点,则
及l
在 圆柱面上 P 点共同产生的电位为
R
l
h
R′
x
-h
l ln x2 (z h)2 , z 0
l′
2 x2 (z h)2
均匀带电直线的电位分布
z 0,R R z0 0
l ln R C l ln R0
2
2 R
显然,满足边界条件。所以,原问题不变,所得的解是正确的。
第3 章
例3. 点电荷对相交半无限大接地导体平面的镜像 如图所示,两个相互垂直相连的半无限大接地导体平板,点
3、对于均匀分布在球面上的-q'电荷,可用另一个镜像电荷q"= q' 代替,但必须位于球心。
第3 章
结论:点电荷q对非接地导体球面的镜像电荷有两个:
镜像电荷1: 电量:q ' a q
位置: d ' a2
d
镜像电荷2: d
电量: q '' q ' a q
d
r r'
q O
'' d'
q' d
q
4 0 r
0
q q
即像电荷q'与原点电荷q电量相等,电性相反;用q'代替了
导体上的感应电荷。
在z>0区域内,P点的电位为
第3章 边值问题的解法
第三章 边值问题 的 解 法
无界
场源( / J )
电场( E / )
分布型
电场( )
求解边值问题通常可以转化为归结在给定边界条件下, 求解拉普拉斯方程或泊松方程的问题。
求解边值问题的方法一般分为解析法和数值法。
1
第三章 边值问题 的 解法
3.1 边值问题的分类*
3.2
法求解,镜像电荷的个数为(3600/θ)-1,再加上原电荷总共 3600/θ个,镜像电荷位于与原电荷关于边界对称的位置上,且 大小相等、符号相反;若3600/θ不为偶数,则镜像电荷就会出 现在所求区域,这将改变该区域内电位所满足的方程,不能 用镜像法求解。
镜像电荷的要求:根据唯一性定理,只要镜像电荷和 实际电荷一起产生的电位能满足给定的边界条件,又在所 求的区域内满足拉普拉斯方程即可。
镜像法是求解静电边值问题的一种间接方法,它巧妙应 用唯一性定理,使某些看来难解的边值问题易于解决。主要 用来求解无限大导体附近的电荷(点电荷/线电荷)产生的 场。
11
第三章 边值问题 的 解法
在z >0的上半平面(除点电荷所在点),▽2φ=0; 在z= 0的平面上,φ=0 ,▽2φ=0 。 当z→∞、|x|→∞、|y|→∞时,φ→0。
根据唯一性定理,式(3-1-1)必是所求问题的解。
14
第三章 边值问题 的 解法
用电位函数反求感应电荷量。
E 4 q0[ r x 2 3 r x 1 3 a x r y 2 3 r y 1 3 a y r z 2 3 r z 1 3 a z]
例1:地球对架空传输线所产生电场的影响。 例2:发射或接收天线的场分布会因支撑它们的金属 导电体的出现而显著改变。 结论:计算空间的电场,不仅要考虑原电荷的电场, 还要考虑感应电荷的电场,这就必须知道表面电荷的分布。 直接分析这些问题既复杂又困难。
02-静电场的边值问题及求解PDF
静电场的边值问题
及求解
1.ϕ的微分方程
ϕ
∇=-E E D ε=0=⨯∇E ρ=⋅∇
D ρ
=⋅∇)(E ερϕ-=∇⋅∇)(ερ
ϕϕ-=∇⋅∇+∇⋅∇εερϕ-=∇⋅∇εερ
ϕ-
=∇202=∇ϕ⎯泊松方程⎯拉普拉斯方程
ρ=0的无源空间均匀介质0=∇ε
2.边界条件
(1)第一类边界条件:已知场域边界面上各点的电位值,即给定边界上的电位(2)第二类边界条件:已知场域边界面上各点的电位法向导数值,即给定边界上的电位法向导数
(3)第三类边界条件:一部分边界上给定每一点的电位,一部分边界上给定每一点的电位法向导数
3.唯一性定理
满足下述条件的电位函数的解,是给定场域静电场的唯一解:
(1)在给定场域电位满足泊松方程或拉普拉斯方程;
(2)在不同媒质分界面;
(3)在给定场域边界电位满足给定的边界条件。
4.静电场边值问题的求解
(1)直接法:直接求解电位的微分方程得到解析解,如直接积分法、分离变量法;(2)间接法:依据唯一性定理和物理概念间接求解,如镜象法;
(3)数值法:利用数值分析求近似解,如有限差分法、有限元法。
[工学]静电场及其边值问题的解法
a)高斯定律的微分形式
(真空中) E v 0
(电介质中) E v v 0
代入v P ,得
E
1 0
(v
P)
(0E P) v
定义电位移矢量( Displacement) D 0E P 则有 D 电介质中高斯定律的微分形式
2 0l
ln R2
R1
3) 球形电容器
Q
E 40r 2
R2
R1
U= Q
4 0
R2 R1
dr= Q
r2 4 0
1 R1
1 R2
C0
Q U1 U2
4 0
R1 R2 R2 R1
15
§3.4 静电场中的边界条件
3.4.1 E 和 D 的边界条件
q q 0 得 q q 4 R0
于是,
q
4
1 R
1 R
q4 来自1x2 y2 (z h)2
1
x2 y2 (z h)2
R
1
40
=8.99 109 (m)
103
Re
12
§3.3 静电场中的导体
二、两个导体的电容
Q
ssds
nˆ Eds
s
E ds
s
B
U A E dl l E dl
C Q = sE ds U E dl
求电容的两条途径 l
折射定律
16
第三章静电场边值问题
导体B = 常数
∫ S D ⋅ dS = −τ ,
电荷分布不均匀
能否用高斯定理求解? 能否用高斯定理求解? 根据唯一性定理,寻找等效线电荷 电轴。 根据唯一性定理,寻找等效线电荷——电轴。 电轴
y p ρ1 +τ b o ρ2 b −τ x
2. 两根细导线产生的电场
h
图3.2.10
h
两根细导线的电场计算
• • • •
有限差分法 有限元法 数值法 边界元法 矩量法 实验法 实测法 模拟法 定性 定量 模拟电荷法
• • • •
边值问题 研究方法
数学模拟法 物理模拟法
• • • •
作图法
图3.1.2 边值问题研究方法框图
例3.1.1 图示长直同轴电缆横截面。已知缆芯截面是一边长为2b的正方形, 铅皮半径为a,内外导体之间电介质的介电常数为
q1 = − q q2 = − q q3 = q
d2 y
F = F1 + F 2+ F3
d1
q2
d2 d2
d1 o
q
d2 d2
q2 F1 = − y 4πε 0 (2d 2 ) 2 q2 F2 = − x 4πε 0 (2d1 ) 2 x
∧ ∧ F3 = 2d1 x + 2d 2 y 2 2 3/ 2 4πε 0 (2d1 ) + (2d 2 ) ∧
边界条件
C3 ϕ2( r ) = + C4 r
ϕ1
r →0
ϕ1
ε0
r=a
= ϕ2
r =a
r=a
⇒ 有限值 =0
参考点电位
∂ϕ 1 ∂r
= ε0
∂ϕ 2 ∂r
静电场及其边值问题的解
代入上式,得
表示电偶极矩,方向由负电荷指向正电荷。
z
o
d
由球坐标系中的梯度公式,可得到电偶极子的远区电场强度 等位线 电场线 电偶极子的场图
解 选定均匀电场空间中的一点o为坐标原点,而任意点P 的位置矢量为r,则 若选择点o为电位参考点,即 ,则 在球坐标系中,取极轴与 的方向一致,即 ,则有 在圆柱面坐标系中,取 与x轴方向一致,即 ,而 ,故 例3.1.2 求均匀电场的电位分布。
图2 线电荷与导体圆柱的镜像
特点:在导体圆柱面上有感应电荷, 圆轴外的电位由线电荷与感应电荷共 同产生。
分析方法:镜像电荷是圆柱面内部与 轴线平行的无限长线电荷,如图2所示。
线电荷对接地导体圆柱面的镜像
由于上式对任意的都成立,因此,将上式对求导,可以得到 由于导体圆柱接地,所以当 时,电位应为零,即 所以有 设镜像电荷的线密度为 ,且距圆柱的轴线为 ,则由 和 共同产生的电位函数
1. 电位函数的定义
电位定义
2.电位的表达式
*
对于连续的体分布电荷,由 面电荷的电位: 故得 点电荷的电位: 线电荷的电位:
3. 电位差
两端点乘 ,则有
将
上式两边从点P到点Q沿任意路径进行积分,得
关于电位差的说明
P、Q 两点间的电位差等于电场力将单位正电荷从P点移至Q 点 所做的功,电场力使单位正电荷由高电位处移到低电位处; 电位差也称为电压,可用U 表示; 电位差有确定值,只与首尾两点位置有关,与积分路径无关。
镜像法的理论基础——解的惟一性定理 用位于场域边界外虚设的较简单的镜像电荷分布来等效替代该边界上未知的较为复杂的电荷分布,从而将原含该边界的非均匀媒质空间变换成无限大单一均匀媒质的空间,使分析计算过程得以明显简化的一种间接求解法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
q q
电场线与等位面的分布特性与第二章所述的电偶极子的上半
部分完全相同。
z
电场线
等位线
由此可见,电场线处处垂直于导体平面,而零电位面与导体
表面吻合。
电荷守恒:当点电荷 q 位于无限大的导体平面附近时,导体表 面将产生异性的感应电荷,因此,上半空间的电场取决于原先的点 电荷及导体表面上的感应电荷。可见,上述镜像法的实质是以一个 异性的镜像点电荷代替导体表面上异性的感应电荷的作用。根据电 荷守恒原理,镜像点电荷的电量应该等于这些感应电荷的总电量,
(1)点电荷与无限大的导体平面。
P q h h q P
r q
r
介质
导体
r
介质 介质
以一个处于镜像位臵的点电荷代替边界的影响,使整个空间 变成均匀的介电常数为 的空间,则空间任一点 P 的电位由 q 及 q' 共同产生,即
q q 4 π r 4 π r
考虑到无限大导体平面的电位为零,求得
q q 4 π r 4 π r
可见,为了保证球面上任一点电位为零,必须选择镜像电荷为
r q q r
上任一点均具有同一数值。由上图可见,若要求三角形 △ OPq
r 为了使镜像电荷具有一个确定的值,必须要求比值 对于球面 r
读者可以根据导体表面电荷密度与电场强度或电位的关系证明这个
结论。 半空间等效:上述等效性仅对于导体平面的上半空间成立,因
为在上半空间中,源及边界条件未变。
对于半无限大导体平面形成的劈形边界也可应用镜像法。但是
仅当这种导体劈的夹角等于 的整数分之一时,才可求出其镜像电 荷。为了保证这种劈形边界的电位为零,必须引入几个镜像电荷。 π 例如,夹角为 的导电劈需引入 5 个镜像电荷。 3
第三章 静电场的边值问题
主 要 内 容 电位微分方程,镜像法,分离变量法。
1. 电位微分方程
已知,电位 与电场强度 Eபைடு நூலகம்的关系为
E
对上式两边取散度,得
E 2
对于线性各向同性的均匀介质,电场强度 E 的散度为
E
那么,线性各向同性的均匀介质中,电位满足的微分方程式为
数的关系为
S n
,可见,表面电荷给定等于给定了电位的
法向导数值。因此,给定导体上的电荷就是第二类边界。 因此,对于导体边界的静电场问题,当边界上的电位,或电 位的法向导数给定时,或导体表面电荷给定时,空间的静电场即 被惟一地确定。这个结论称为静电场惟一性定理。
2. 镜像法
实质:是以一个或几个等效电荷代替边界的影响,将原来具 有边界的非均匀空间变成无限大的均匀自由空间,从而使计算过
通常给定的边界条件有三种类型:
第一类边界条件给定的是边界上的物理量,这种边值问题又称 为狄利克雷问题。
第二类边界条件是给定边界上物理量的法向导数值,这种边值 问题又称为诺依曼问题。
第三类边界条件是给定一部分边界上的物理量及另一部分边界 上物理量的法向导数值,这种边界条件又称为混合边界条件。
对于任何数学物理方程需要研究解的存在、稳定及惟一性问题。 解的存在是指在给定的定解条件下,方程是否有解。 解的稳定性是指当定解条件发生微小变化时,所求得的解是否会 发生很大的变化。 解的惟一性是指在给定的定解条件下所求得的解是否惟一。
2
该方程称为泊松方程。 对于无源区,上式变为
2 0
上式称为拉普拉斯方程。
泊松方程的求解。 已知分布在 V 中的电荷 (r ) 在无限大的自由空间产生的 电位为 1 (r ) (r ) dV V 4π | r r |
因此,上式就是电位微分方程在自由空间的解。
程大为简化。
依据:惟一性定理。因此,等效电荷的引入必须维持原来的 边界条件不变,从而保证原来区域中静电场没有改变,这是确定 等效电荷的大小及其位臵的依据。这些等效电荷通常处于镜像位 臵,因此称为镜像电荷,而这种方法称为镜像法。
关键:确定镜像电荷的大小及其位臵。
局限性:仅仅对于某些特殊的边界以及特殊分布的电荷才有 可能确定其镜像电荷。
G0 (r , r )
对于无限大的自由空间,表面 S 趋向无限远处,由于格林函数
G0 (r , r ) 及电位 均与距离成反比,而 dS 与距离平方成正比,所以,
对无限远处的 S 表面,上式中的面积分为零。 若 V 为无源区,那么上式中的体积分为零。因此,第二项面积 分可以认为是泊松方程在无源区中的解,或者认为是拉普拉斯方程
应用格林函数 G(r , r ),即可求出泊松方程的通解为
(r ) G0 (r , r )
V
S
( r ) dV [G0 (r , r ) (r ) (r )G0 (r , r )] dS
1 4π | r r |
式中格林函数 G(r , r )为
以格林函数表示的积分解。
数学物理方程是描述物理量随空间和时间的变化规律。对于某 一特定的区域和时刻,方程的解取决于物理量的初始值与边界值, 这些初始值和边界值分别称为初始条件和边界条件,两者又统称为 该方程的定解条件。静电场的场量与时间无关,因此电位所满足的 泊松方程及拉普拉斯方程的解仅决定于边界条件。根据给定的边界 条件求解空间任一点的电位就是静电场的边值问题。
静电场是客观存在的,因此电位微分方程解的存在确信无疑。
由于实际中定解条件是由实验得到的,不可能取得精确的真值, 因此,解的稳定性具有重要的实际意义。 泊松方程及拉普拉斯方程解的稳定性在数学中已经得到证明。 可以证明电位微分方程解也是惟一的。
静电场的边界通常是由导体形成的。此时,若给定导体上的 电位值就是第一类边界。 已知导体表面上的电荷密度与电位导
/3
q
/3
q
连续分布的线电荷位于无限大的导体平面附近时,根据叠加 原理得知,同样可以应用镜像法求解。
(2)点电荷与导体球。 若导体球接地,导体球的电位
P a o d r q f q
为零。为了等效导体球边界的影响, 令镜像点电荷q' 位于球心与点电荷 q 的连线上。那么,球面上任一点 电位为