二次函数单元测试卷(含答案)
人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)
第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。
第二十二章-二次函数-单元测试(含答案)
第二十二章二次函数学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知二次函数223y x x =--,点P 在该函数的图象上,点P 到x 轴、y 轴的距离分别为1d 、2d .设d d d =+,下列结论中:①④231(x 4点B C .52D .535.已知二次函数2y x bx c =++的图象上有三个点()11,y -)、()21,y 、()33,y ,若13y y =,则( ).A .21y c y >>B .12c y y <<C .12c y y >>D .21y c y <<6.已知二次函数y=ax 2+bx+c (a≠0)的图象如图,在下列代数式中(1)a+b+c >0;(2)﹣4a <b <﹣2a (3)abc >0;(4)5a ﹣b+2c <0; 其中正确的个数为( )78①93的“特征数”为[1,2,3]-.若“特征数”为12,2,2m m m --⎢⎥⎣⎦的二次函数的图象与x 轴只有一个交点,则m的值为( )A .2-或2B .12-C .2-D .210.某同学在体育训练中掷出的实心球的运动路线呈如图所示的抛物线形,若实心球运动的抛物线的解析式为()21349y x =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离,则该同学此次掷球的成绩(即OA 的长度)是( )A .4mB .6mC .8mD .9m11.已知函数223y x x =-+,当0x m ≤≤时,有最大值3,最小值2,则m 的取值范围是( )A .1m ≥B .02m ≤≤C .12m ≤≤D .2m ≤12.有一拱桥洞呈抛物线状,这个桥洞的最大高度是16 m ,跨度为40 m ,现把它的示意图(如图)放在平面直角坐标系中,则抛物线的表达式为( )A .281255x y x =+B .218255y x x =-+C .251825y x x =--D .25125168y x x +=+ 二、填空题13.已知抛物线22161y x x =-+,则这条抛物线的对称轴是直线 .14.已知抛物线()21433y x =--的部分图象如图所示,则图象再次与x 轴相交时的坐标是 .15.已知抛物线()20y ax bx c a =++≠图象的顶点为()2,3P -,且过()3,0A -,则抛物线的关系式为 .16.已知222b c c a a bk a b c+++===,0a b c ++≠,将抛物线22y x =向右平移k 个单位,再向上平移2k 个单位后,所得抛物线的表达式为 .对于平移后的抛物线,当25x ……时,y 的取值范围是 .17.设关于x 的方程()2440x k x k +--=有两个不相等的实数根12,x x ,且1202x x <<<,那么k 的取值范围是 .三、解答题18.己知二次函数y =ax 2+bx +c (a ,b ,c 均为常数且0a ≠).(1)若该函数图象过点(1,0)A -,点(3,0)B 和点(0,3)C ,求二次函数表达式:(2)若21b a =+,2c =,且无论a 取任何实数,该函数的图象恒过定点,求出定点的坐标.(4)将这个函数的图象向右平移2个单位长,向上平移1个单位长,写出平移后的二次函数解析式.20.高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资,已知生产每件产品的成本是40元.在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x (元),年销售量为y(万件),年获利(年获利=年销售额一生产成本—投资)为z(万元).(1)试写出y与x之间的函数关系式(不写x的取值范围);(2)试写出z与x之间的函数关系式(不写x的取值范围);(3)公司计划,在第一年按年获利最大确定销售单价进行销售;到第二年年底获利不低于1130万元,请借助函数的大致图象说明:第二年的销售单价x(元)应确定在什么范围内?21.珊珊度假村共有客房50间供游客居住,当每个房间的定价为每天200元时,所有房间刚好可以住满,根据经验发现,每个房间的定价每增加10元,就会有1个房间空闲,对有游客入住的房间,宾馆需对每个房间支出每天20元的各种费用.设每个房间的定价增加x元,每天的入住量为y个,度假村住宿每天的利润为w元.(1)求y与x的函数关系式;(2)求w与x的函数关系式,并求客房收入每天的最大利润是多少?(3)当x为何值时,客房收入每天的利润不低于10350元?22.篮球是一项广受喜爱的运动.学习了二次函数后,小江同学打篮球时发现,篮球投出时在空中的运动可近似看作一条抛物线,于是建立模型,展开如下研究:如图,篮框距离地面3m,某同学身高2m,站在距离篮球架4mL 处,从靠近头部的O点将球正对篮框投出,球经过最高点时恰好进入篮框,球全程在同一水平面内运动,轨迹可看作一条抛物线C.不计篮框和球的大小、篮板厚度等.(1)求抛物线C的表达式;(2)研究发现,当球击在篮框上方0.2m及以内范围的篮板上时,球会打板进框.若该同学正对篮框,改用跳投的方式,出手点O位置升高了0.5m,要能保证进球,求L的取值范围.(计算结果保留小数点后一位)23.如图1,在平面直角坐标系中,是坐标原点,抛物线与轴正半轴交于点,与轴交于点,连接,点分别是的中点.,且始终保持边经过点,边经过点,边与轴交于点,边与轴交于点.(1)填空,的长是 ,的度数是 度(2)如图2,当,连接①求证:四边形是平行四边形;②判断点是否在抛物线的对称轴上,并说明理由;(3)如图3,当边经过点时(此时点与点重合),过点作,交延长线上于点,延长到点,使,过点作,在上取一点,使得(若在直线的同侧),连接,请直接写出的长.24.如图,抛物线239344y x x =-++与x 轴交于点A ,与y 轴交于点B .在线段OA 上有一动点(m,0)E (不与,O A 重合),过点E 作x 轴的垂线交AB 于点N ,交抛物线于点P ,过点P 作PM AB ⊥于点M .(1)求直线AB的函数解析式;(参考答案:题号12345678910答案B D B A D A C D C D 题号1112 答案CB1.B 2.D 3.B 4.A 5.D 6.A 7.C 8.D 9.C 10.D 11.C 12.B 13.4x =14.(7,0)15.23129y x x =---16.22(1)2y x =+-1670x ……17.-2<k <0 18.(1)223y x x =-++(2)()0,2,()2,0-19.(1)221y x =-;(2)17;(3)略;(4)2288y x x =-+.20.(1)y=-110x+30;(2)z=-110x 2+34x-3200;(3)第二年的销售单价应确定在不低于120元且不高于220元的范围内.21.(1)5010x y =-(2)(3)22(2)2312 24。
二次函数单元测试题及答案
二次函数单元测试题及答案1. 选择题(每题2分)1. 下列函数中,属于二次函数的是:A. y = 3x + 2B. y = x^2 + 3x - 2C. y = √xD. y = |x|答案:B2. 二次函数y = 2x^2 + 3x - 4的图像开口方向是:A. 向上开口B. 向下开口答案:A3. 函数y = -x^2 + 5x + 3的顶点坐标是:A. (3, 8)B. (-3, 2)C. (5, 8)D. (-5, 3)答案:A4. 函数y = x^2 - 4x + 4的轴对称线方程为:A. x = 2B. x = 4C. x = -2D. x = -4答案:A5. 函数y = x^2 + 6x + 9的值域是:A. (-∞, 9)B. [9, +∞)C. (-∞, 0)D. [0, +∞)答案:B2. 填空题(每题3分)1. 二次函数y = -2x^2 + 4x - 1的判别式为_______。
答案:402. 函数y = x^2 + bx + c的顶点坐标是(-2, 1),则b和c的值分别为_______。
答案:b = 4,c = -33. 函数y = 3x^2 - 6x + k的图像与x轴有两个交点,则k的值为_______。
答案:k > 04. 函数y = -x^2 - 4x + m的轴对称线方程为x = 2,则m的值为_______。
答案:m = 35. 函数y = ax^2 + bx + 2的值域是(-∞, 1],则a和b的关系是_______。
答案:a < 0,b > 03. 计算题(每题5分)1. 求二次函数y = -3x^2 + 6x + 9的顶点坐标和对称轴方程。
解答:首先,二次函数的顶点坐标可以通过公式 h = -b/2a 和 k = f(h) 来求得。
其中,h 表示对称轴的横坐标,k 表示顶点的纵坐标。
对于给定的函数 y = -3x^2 + 6x + 9,我们可以得到 a = -3,b = 6,c = 9。
第一章 二次函数 单元测试卷(含答案)2024-2025学年浙教版数学九年级上册
二次函数单元测试卷一、选择题(每题3分,共30分)1.下列各式中,y是x的二次函数的是( )A.y=1x2B.y=x2+1x+1C.y=2x2−1D.y=x2−12.一个二次函数图象的顶点坐标是(2,4),且过另一点(0,−4),则这个二次函数的解析式为( )A.y=−2(x+2)2+4B.y=2(x+2)2−4C.y=−2(x−2)2+4D.y=2(x−2)2−43.已知A(−1,y1),B(1,y2),C(3,y3)三点都在抛物线y=x2−3x+m上,则y1、y2、y3的大小关系为( )A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y2<y14.将抛物线y=3x2+2先向左平移2个单位长度,再向下平移3个单位长度,则得到的抛物线的解析式为( )A.y=3(x−2)2−1B.y=3(x−2)2+5C.y=3(x+2)2−1D.y=3(x+2)2+55.在同一直角坐标系中,函数y=ax2+b与y=ax+b(a,b都不为0)的图象的相对位置可以是( )A.B.C.D.6.若m<n<0,且关于x的方程a x2−2ax+3−m=0(a<0)的解为x1,x2(x1<x2),关于x的方程a x2−2ax+3−n=0(a<0)的解为x3,x4(x3<x4).则下列结论正确的是( )A.x3<x1<x2<x4B.x1<x3<x4<x2C.x1<x2<x3<x4D.x3<x4<x1<x27.已知二次函数y=a x2+bx+c满足以下三个条件:①b2a>4c,②a−b+c<0,③b<c,则它的图象可能是( )A.B.C.D.8.小明在解二次函数y=a x2+bx+c时,只抄对了a=1,b=4,求得图象过点(−1,0).他核对时,发现所抄的c比原来的c值大2.则抛物线与x轴交点的情况是( )A.只有一个交点B.有两个交点C.没有交点D.不确定9.已知二次函数y=x2−bx+1,当−32≤x≤12时,函数y有最小值12,则b的值为( )A.−2或32B.−116或32C.±2D.−2或−11610.如图,把二次函数y=a x2+bx+c(a≠0)的图象在x轴上方的部分沿着x轴翻折,得到的新函数叫做y=a x2+bx+c(a≠0)的“陷阱”函数.小明同学画出了y=a x2+bx+c(a≠0)的“陷阱”函数的图象,如图所示并写出了关于该函数的4个结论,其中正确结论的个数为( )①图象具有对称性,对称轴是直线x=1;②由图象得a=1,b=−2,c=−3;③该“陷阱”函数与y轴交点坐标为(0,−3);④y=−a x2−bx−c(a≠0)的“陷阱”函数与y=a x2+bx+c(a≠0)的“陷阱”函数的图象是完全相同的.A.1B.2C.3D.4二、填空题(每题4分,共24分)11.若y=(m2+m)x m2+1−x+3是关于x的二次函数,则m= .12.如图所示,某大桥有一段抛物线形的拱梁,抛物线的解析式为y=ax2+bx.小强骑自行车从拱梁一端沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10 s时和26 s时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需 s. 13.二次函数y=ax2+bx+c的图象与x轴交于A,B两点,顶点为C,其中点A,C坐标如图所示,则一元二次方程ax2+bx+c=0的根是 第12题图第13题图第16题图14.若把二次函数y=x2−2x−2化为y=(x−ℎ)2+k的形式,其中ℎ,k为常数,则ℎ+k= .15.y关于x的二次函数y=a x2+a2,在−1≤x≤1时有最大值6,则2a= .16.如图,在平面直角坐标系中,抛物线y=1x2−3x与x轴的正半轴交于点E.矩形ABCD2的边AB在线段OE上,点C、D在抛物线上,则矩形ABCD周长的最大值为 .三、综合题(17-20、22每题6分,21、23每题8分,共46分)17.已知点M为二次函数y=−(x−m)2+4m+1图象的顶点,直线y=kx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由;(2)如图,若二次函数图象也经过点A,B,且kx+5>−(x−m)2+4m+1,根据图象,直接写出x的取值范围.18.如图,二次函数y=a x2+2ax+c的图象与x轴交于A,B两点(点A在点B的左侧),与y轴正半轴交于点C,且OA=OC=3.(1)求二次函数及直线AC的解析式.(2)P是抛物线上一点,且在x轴上方,若∠ABP=45°,求点P的坐标.19.为了振兴乡村经济,增加村民收入,某村委会干部带领村民把一片坡地改造后种植了优质葡萄,今年正式上市销售,并在网上直播推销优质葡萄.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为y={mx−76m(1≤x<20,x为正整数),n(20≤x≤30,x为正整数),且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售葡萄的成本是18元/千克,每天的利润是W元.(1)m= ,n= ;(2)销售优质葡萄第几天时,当天的利润最大?最大利润是多少?20.如图,△ABC中,AC=BC,∠ACB=90°,A(−2,0),C(6,0),反比例函数y=kx (k≠0,x>0)的图象与AB交于点D(m,4),与BC交于点E.(1)求m,k的值;(2)点P为反比例函数y=kx(k≠0,x>0)图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作PM∥AB,交y轴于点M,过点P作PN∥x轴,交BC于点N,连接MN,求△PMN面积的最大值,并求出此时点P的坐标.21.如图,已知二次函数y=a x2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=a x2+2x+c的表达式;(2)连接PO,PC,并把ΔPOC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.22.根据以下素材,探索完成任务.如何设计跳长绳方案素材1图1是集体跳长绳比赛,比赛时,各队跳绳10人,摇绳2人,共计12人.图2是绳甩到最高处时的示意图,可以近似的看作一条抛物线,正在甩绳的甲、乙两位队员拿绳的手间距6米,到地面的距离均为1米,绳子最高点距离地面2.5米.素材2某队跳绳成员有6名男生和4名女生,男生身高1.70米至1.80米,女生身高1.66米至1.68米.跳长绳比赛时,可以采用一路纵队或两路纵队并排的方式安排队员位置,但为了保证安全,人与人之间距离至少0.5米.问题解决任务1确定长绳形状在图2中建立合适的直角坐标系,并求出抛物线的函数表达式.任务2探究站队方式当该队以一路纵队的方式跳绳时,绳子能否顺利的甩过所有队员的头顶?任务3拟定位置方案为了更顺利的完成跳绳,现按中间高两边低的方式居中安排站位.请在你所建立的坐标系中,求出左边第一位跳绳队员横坐标的最大取值范围.23.如图,对称轴为直线x=−1的抛物线y=a x2+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(−3,0),且点(2,5)在抛物线y=a x2+bx+c上.(1)求抛物线的解析式;(2)点C为抛物线与y轴的交点;①点P在抛物线上,且S△POC=4S△BOC,求点P点坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.答案解析部分1.【答案】C2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】B9.【答案】A10.【答案】C11.【答案】112.【答案】3613.【答案】x1=-2,x2=114.【答案】-215.【答案】2或−616.【答案】1317.【答案】(1)解:点M在直线y=4x+1上,∵y=−(x−m)2+4m+1,∴点M坐标为(m,4m+1),把x=m代入y=4x+1上得y=4m+1,∴点M(m,4m+1)在直线y=4x+1上;(2)解:把x=0代入y=kx+5,可得y=5,∴点B坐标为(0,5),把(0,5)代入y=−(x−m)2+4m+1,可得5=−m2+4m+1,解得m1=m2=2,∴y=−(x−2)2+9,把y=0代入y=−(x−2)2+9,可得0=−(x−2)2+9,解得x1=−1,x2=5,∵点A在x轴正半轴上,∴点A坐标为(5,0),∴x<0或x>5时,kx+5>−(x−m)2+4m+1.18.【答案】(1)解:∵OA=OC=3,∴点A(−3,0),C(0,3),∴{9a−6a+c=0c=3,解得{a=−1c=3,∴二次函数的解析式为y=−x2−2x+3,设直线AC的解析式为y=kx+b(k≠0),将点A(−3,0),C(0,3)代入,得{−3k+b=0b=3,解得{k=1b=3,∴直线AC的解析式为y=x+3;(2)解:如图,过点B作BP⊥AC交抛物线于点P,∵OA=OC,OA⊥OC,∴∠CAB=45°,∴∠ABP=45°,∴直线PB可以看作由直线y=-x向右平移得到,∴设PB的解析式为y=−x+m,∵二次函数的表达式为y=−x2−2x+3,令y=0,即−x2−2x+3=0,解得x1=−3,x2=1,∴点B(1,0),代入y=−x+m,得m=1,∴PB的解析式为y=−x+1,联立得{y=−x2−2x+3y=−x+1,解得{x=1y=0或{x=−2 y=3,∴点P的坐标为(−2,3).19.【答案】(1)−12;25(2)解:由(1)知第x天的销售量为20+4(x−1)=(4x+16)千克.当1≤x<20时,W=(4x+16)(−12x+38−18)=−2x2+72x+320=−2(x−18)2+968,∴当x=18时,W取得最大值,最大值为968.当20≤x≤30时,W=(4x+16)(25−18)=28x+112.∵a=28>0,∴W随x的增大而增大,∴W最大=28×30+112=952.∵968>952,∴当x=18时,W最大=968.答:销售优质葡萄第18天时,当天的利润最大,最大利润是968元.20.【答案】(1)解:∵A(−2,0),C(6,0),∴AC=8.又∵AC=BC,∴BC=8.∵∠ACB=90°,∴点B(6,8).设直线AB的函数表达式为y=ax+b,将A(−2,0),B(6,8)代入y=ax+b,得{a=1,b=2.∴直线AB的函数表达式为y=x+2.将点D(m,4)代入y=x+2,得m=2.∴D(2,4).将D(2,4)代入y=kx,得k=8.(2)解:延长NP交y轴于点Q,交AB于点L.∵AC=BC,∠BCA=90°,∴∠BAC=45°.∵PN∥x轴,∴∠BLN=∠BAC=45°,∠NQM=90°.∵AB∥MP,∴∠MPL=∠BLP=45°,∴∠QMP=∠QPM=45°,∴QM=QP.设点P 的坐标为(t ,8t),(2<t <6),则PQ =t ,PN =6−t .∴MQ =PQ =t .∴S △PMN =12⋅PN ⋅MQ =12⋅(6−t)⋅t =−12(t−3)2+92.∴当t =3时,S △PMN 有最大值92,此时P(3,83).21.【答案】(1)解:将点B 和点C 的坐标代入 y =a x 2+2x +c ,得 {c =39a +6+c =0 ,解得 a =−1 , c =3 .∴ 该二次函数的表达式为 y =−x 2+2x +3 .(2)解:若四边形POP′C 是菱形,则点P 在线段CO 的垂直平分线上;如图,连接PP′,则PE ⊥CO ,垂足为E ,∵ C (0,3),∴ E(0, 32 ),∴ 点P 的纵坐标等于 32 .∴−x 2+2x +3=32 ,解得 x 1=2+102, x 2=2−102(不合题意,舍去),∴ 点P 的坐标为( 2+102, 32 ).(3)解:过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (m , −m 2+2m +3 ),设直线BC 的表达式为 y =kx +3 ,则 3k +3=0 , 解得 k =−1 .∴直线BC 的表达式为 y =−x +3 .∴Q 点的坐标为(m , −m +3 ),∴QP =−m 2+3m .当 −x 2+2x +3=0 ,解得 x 1=−1,x 2=3 ,∴ AO=1,AB=4,∴ S 四边形ABPC =S △ABC +S △CPQ +S △BPQ= 12AB ⋅OC +12QP ⋅OF +12QP ⋅FB = 12×4×3+12(−m 2+3m)×3当 m =32时,四边形ABPC 的面积最大.此时P 点的坐标为 (32,154) ,四边形ABPC 的面积的最大值为 758.22.【答案】解:任务一:以左边摇绳人与地面的交点为原点,地面所在直线为 x 轴,建立直角坐标系,如图:由已知可得, (0,1) , (6,1) 在抛物线上,且抛物线顶点的纵坐标为 2.5 ,设抛物线解析式为 y =a x 2+bx +c ,∴{c =136a +6b +c =14ac−b 24a=52 ,解得 {a =−16b =1c =1,∴抛物线的函数解析式为 y =−16x 2+x +1 ;任务二:∵y =−16x 2+x +1=−16(x−3)2+52,∴抛物线的对称轴为直线 x =3 ,10 名同学,以直线 x =3 为对称轴,分布在对称轴两侧,男同学站中间,女同学站两边,对称轴左侧的 3 位男同学所在位置横坐标分布是 3−0.5×12=114 , 114−0.5=94和 94−0.5=74,当 x =74 时, y =−16×(74−3)2+52=21596≈2.24>1.8 ,∴绳子能顺利的甩过男队员的头顶,同理当 x =34 时, y =−16×(34−3)2+52=5332≈1.656<1.66 ,∴绳子不能顺利的甩过女队员的头顶;∴绳子不能顺利的甩过所有队员的头顶;任务三:两路并排,一排 5 人,当 y =1.66 时, −16x 2+x +1=1.66 ,解得 x =3+3145 或 x =3−3145,但第一位跳绳队员横坐标需不大于 2 (否则第二、三位队员的间距不够 0.5 米)∴3−3145<x ≤2 .23.【答案】(1)解:∵抛物线的对称轴为直线x =−1,又∵点A(−3,0)与(2,5)在抛物线上,∴{9a−3b +c =04a +2b +c =5−b 2a=−1,解得{a =1b =2c =−3,∴抛物线的解析式为y =x 2+2x−3;(2)解:①由(1)知,二次函数的解析式为y =x 2+2x−3,∴抛物线与y 轴的交点C 的坐标为(0,−3),与x 轴的另一交点为B(1,0),则OC =3,OB =1,设P 点坐标为(x ,x 2+2x−3),∵S △POC =4S △BOC ,∴12×3×|x|=4×12×3×1,∴|x|=4,则x =±4,当x =4时,x 2+2x−3=16+8−3=21,当x =−4时,x 2+2x−3=16−8−3=5,∴点P 的坐标为(4,21)或(−4,5);②如图,设直线AC 的解析式为y =kx +t ,将A(−3,0),C(0,−3)代入得{−3k +t =0t =−3,解得{k =−1t =−3,∴直线AC 的解析式为y =−x−3,设Q 点坐标为(x ,−x−3),−3≤x ≤0,则D 点坐标为(x ,x 2+2x−3),∴QD =(−x−3)−(x 2+2x−3)=−x 2−3x =−(x +32)2+94,∴当x =−32时,线段QD 的长度有最大值94.。
二次函数单元测试卷(含答案)
二次函数单元测试卷(含答案) 二次函数单元测试卷一、选择题(每小题3分,共30分)1.当-2≤x≦1,二次函数y=-(x-m)²+ m+1有最大值4,则实数m值为()A。
-7/4 B。
3或-3 C。
2或-3 D。
2或3或-742.二次函数y=ax²+bx+c(a≠0)的图像与x轴的交点个数为()A。
0个 B。
1个 C。
2个 D。
1个或2个3.关于二次函数y=ax²+bx+c,下列命题中正确的个数是()①当c=0时,函数的图像经过原点;②当c>0,且函数图像开口向下时,方程ax²+bx+c=0必有两个不相等的实根;③函数图像最高点的纵坐标是4ac-b²/4a;④当b=0时,函数的图像关于y轴对称。
A。
1个 B。
2个 C。
3个 D。
4个4.二次函数y=2mx+(8m+1)x+8m的图像与x轴有交点,则m的范围是()A。
m-1/16 D。
m≥1/16且m≠-1/165.下列二次函数中有一个函数的图像与x轴有两个不同的交点,这个函数是()A。
y=x² B。
y=x+4 C。
y=3x²-2x+5 D。
y=3x+5x²-16.若二次函数y=ax+c,当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为()A。
a+c B。
a-c C。
-c D。
c7.下列二次函数中有一个函数的图像与坐标轴有一个交点,这个函数是()A。
y=x²-2x+1 B。
y=x²+4 C。
y=x²-2x+1 D。
y=3x+5x²-18.抛物线y=-3x²+2x-1的图像与坐标轴交点的个数是()A。
没有交点B。
只有一个交点C。
有且只有两个交点D。
有且只有三个交点9.函数y=ax²+bx+c的图像如图所示,关于x的一元二次方程ax²+bx+c-3=0的根的情况是()A。
2023-2024学年人教版九年级数学上册《第二十二章 二次函数》单元测试卷附有答案
2023-2024学年人教版九年级数学上册《第二十二章 二次函数》单元测试卷附有答案学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题,满分40分)1.关于抛物线22y x x =-+,下列说法错误的是( ) A .该抛物线经过原点B .该抛物线的对称轴是直线1x =C .该抛物线的最大值为1D .当0x >时,y 随x 增大而减小2.已知一次函数y =ax +b 的图象如图所示,那么二次函数y =ax 2+bx +1的图象大致为( )A .B .C .D .3.用20cm 长的绳子围成一个矩形,如果这个矩形的一边长为xcm ,面积是Scm 2,则S 与x 的函数关系式为( )A .S =x (20﹣x )B .S =x (20﹣2x )C .S =x (10﹣x )D .S =2x (10﹣x )4.将抛物线向左平移2个单位后,得到的抛物线的解析式是( ) A . B . C .D .5.若抛物线2y x bx c =++与x 轴两个交点之间的距离为2,抛物线的对称轴为直线1x =,将此抛物线向左平移3个单位,再向下平移2个单位,得到的新抛物线的顶点坐标为( ) A .(2,3)--B .(1,3)-C .(3,2)-D .(2,3)-6.如图所示,抛物线2y ax bx c =++(0a ≠)的对称轴为直线1x =,与y 轴的一个交点坐标为()0,3,其部分图象如图所示,下列结论:①<0abc ;①40a c +>;①方程20ax bx c ++=有一个实根大于2;①当0x <时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个7.下列抛物线平移后可得到抛物线y=-(x -2)2的是( ) A .y=-x 2B .y=x 2-2C .y=(x -2)2+1D .y=(2-x )28.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论正确的是( ) ①abc <0;①a+c >0;①2a+b=0;①关于x 的一元二次方程ax 2+bx+c=0的解是x 1=﹣1,x 2=3①b 2<4acA .①①①B .①①①①C .①①①D .①①①9.设函数221y x kx k =-+-(k 为常数),下列说法正确的是( )A .对任意实数k ,函数与x 轴都没有交点B .存在实数n ,满足当x n ≥时,函数y 的值都随x 的增大而减小C .k 取不同的值时,二次函数y 的顶点始终在同一条直线上D .对任意实数k ,抛物线221y x kx k =-+-都必定经过唯一定点 10.在平面直角坐标系中,若点()11,M x y ,()()2212,N x y x x <是抛物线()220y mx x m m =-+>上的两点,且满足124x x +=时,都有12y y >,则m 的取值范围是( )A .102m <<B .104m <<C .12m >D .1142m <<二、填空题(共8小题,满分32分)11.二次函数y=﹣2(x ﹣1)2+3的图象与y 轴的交点坐标是 .12.若点A(2,m )在函数21y x =-的图象上,则点A 关于x 轴的对称点的坐标是 . 13.把抛物线2y x =-向右平移1个单位,再向上平移3个单位,得到抛物线()213y x =--+. ( )14.已知抛物线22y x mx m =-++,当21x -<<时,y 随x 的增大而增大,m 的取值范围是 . 15.已知抛物线y =ax 2(a ≠0)过点(﹣2,6),在下列5个点中,对于不在此抛物线上的一点P ,将点P 平移到点P ′,使点P ′在此抛物线上,写出点P 的坐标及平移方法:(1,32),(﹣1,32),(1,﹣32),(2,8),(2,3)答: .16.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a 元(a >0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大,a 的取值范围应为 .17.若将图中的抛物线y =x 2-2x +c 向上平移,使它经过点(2,0),则此时的抛物线位于x 轴下方的图象对应x 的取值范围是 .18.如图所示,二次函数y=ax2+bx+c(a≠0)的图象,有下列4个结论:①abc>0;①b>a+c;①4a+2b+c>0;①b2﹣4ac>0;其中正确的是.三、解答题(共6小题,每题8分,满分48分)19.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)若商场经营该商品一天要获利润2160元,并让顾客得到实惠,则每件商品的售价应为多少元?(2)如果要使商场一天获得最大利润,每件衬衫应降价多少元?20.已知二次函数2=++过点A(1,0),B(-3,0),C(0,-3)y ax bx c(1)求二次函数的解析式;(2)在抛物线的对称轴上求点F,使AF+CF最小,求点F的坐标.(3)在抛物线上存在一点P使△ABP的面积为6,求点P的坐标.21.如图,在平面直角坐标系中,抛物线y =ax 2+bx +1交y 轴于点A ,交x 轴正半轴于点B (4,0),交直线AD 于点D (3,52),过点D 作DC ①x 轴于点C .(1)直接写出:a = ,b = ;(2)点P 为x 轴正半轴上一动点,过点P 作PN ①x 轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求①PCM 面积的最大值.22.函数y=ax 2(a≠0)的图象与直线y=2x ﹣3交于点(1,b ). (1)求a 和b 的值.(2)求抛物线y=ax 2的解析式,并求出顶点坐标和对称轴.(3)求抛物线与直线y=﹣2的两个交点及顶点所构成的三角形的面积.23.如图,已知抛物线()20y ax bx c a =++≠与x 轴交于点1,0A 和点()3,0B -,与y 轴交于点()0,3C .(1)求拋物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使CMP为等腰三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.24.在平面直角坐标系xOy中,抛物线23=-++与x轴交于点A和点B(点A在点By x mx左侧),(1)若抛物线的对称轴是直线x=1,求出点A和点B的坐标,并画出此时函数的图象;(2)当已知点P(m,2),Q(-m,2m-1).若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.参考答案:12.(2,-3)13.√14.m1≥15.(1,﹣32)向上平移3个单位,点(2,8)向下平移2个单位16.0<a<617.0<x<218.①①①.19.(1)92(2)520.(1)223y x x=+-;(2)F(1-,2-);(3)P(17-+,3)或(17--,3)或(0,3-)或P(2-,3-).21.(1)﹣34和114;(2)最大值为251622.(1)a=-1,b=-1;(2) 顶点坐标(0,0),对称轴x=0;(3)6 23.(1)223y x x=--+(2)存在,点P坐标为(1,6)-或(1,10)-或(1,10)--或5 (1,)3 -24.(1)点A坐标为(-1,0),点B坐标为(3,0);(2)m≤-2 或m≥1。
人教版九年级数学上册《第二十二章二次函数》单元测试卷-附含答案
人教版九年级数学上册《第二十二章二次函数》单元测试卷-附含答案学校:___________班级:___________姓名:___________考号:___________一、单选题 1.若二次函数图象的顶点坐标为2,1,且过点()0,3,则该二次函数的解析式为( ) A .()21122x y --= B .()221y x =+- C .()221y x =-- D .()221y x =---2.平面直角坐标系中,抛物线y =12(x +2)(x ﹣5)经变换后得抛物线y =12(x +5)(x ﹣2),则这个变换可以是( )A .向左平移7个单位B .向右平移7个单位C .向左平移3个单位D .向右平移3个单位 3.已知二次函数()2213y x =--,则下列说法正确的是( ) A .y 有最小值0,有最大值-3 B .y 有最小值-3,无最大值 C .y 有最小值-1,有最大值-3 D .y 有最小值-3,有最大值0 4.二次函数()2y x k h =++的图象与x 轴的交点的横坐标分别为-1和3,则()22y x k h =+++的图象与x 轴的交点的横坐标分别为( )A .-3和1B .1和5C .-3和5D .3和5 5.若二次函数2y a x bx c =++的图象经过不同的六点()1,A n -、()5,1B n -和()6,1C n +、()14,D y 和()22,E y 、()32,F y 则1y 、2y 和3y 的大小关系是( ) A .123y y y <<B .132y y y <<C .213y y y <<D .321y y y << 6.已知二次函数()24119y x =--上的两点()()1122,,,P x y Q x y 满足123x x =+,则下列结论中正确的是( ) A .若112x <-,则121y y >>- B .若1112x -<<,则210y y >> C .若112x <-,则120y y >> D .若1112x -<<,则210y y >> 7.已知抛物线()2<0y ax bx c a =++的对称轴为=1x -,与x 轴的一个交点为()2,0.若关于x 的一元二次方程()20ax bx c p p ++=>有整数根,则P 的值有多少个?( )A .1B .2C .3D .48.如图,直线y=x 与抛物线y=x 2﹣x ﹣3交于A 、B 两点,点P 是抛物线上的一个动点,过点P 作直线PQ⊥x轴,交直线y=x 于点Q ,设点P 的横坐标为m ,则线段PQ 的长度随m 的增大而减小时m 的取值范围是( )﹣1或1<m <3 9.小明周末外出游玩时看到某公园有一圆形喷水池,如图1,简单测量得到如下数据:圆形喷水池直径为20m ,水池中心O 处立着一个圆柱形实心石柱OM ,在圆形喷水池的四周安装了一圈喷头,喷射出的水柱呈拋物线型,水柱在距水池中心4m 处到达最大高度为6m ,从各方向喷出的水柱在石柱顶部的中心点M 处101110.如图,在ABC 中90,3cm,6cm B AB BC ∠=︒==,动点P 从点A 开始沿AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ 的面积S 随出发时间t 的函数图象大致是( )A .B . C. D .二、填空题11.抛物线22(1)3y x =---与y 轴交点的纵坐标为12.已知实数x 、y 满足x 2﹣2x +4y =5,则x +2y 的最大值为 .13.今年三月份王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝等进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,当销售单价是 元时,王大伯获得利润最大.14.已知抛物线224y mx mx c =-+ 与x 轴交于点()1,0A -、()2,0B x 两点,则B 点的横坐标2x = .15.已知抛物线的函数关系式:()22212y x a x a a =+-+-(其中x 是自变量).(1)若点()1,3P 在此抛物线上,则a 的值为 .(2)设此抛物线与x 轴交于点()1,0A x 和()2,0B x ,若122x x <<,且抛物线的顶点在直线34x =的右侧,则a 的取值范围为 .16.设二次函数2y ax bx c =++(,a b c ,是常数,0a ≠),如表列出了x ,y 的部分对应值. x … 5- 3- 1 2 3 …y … 2.79- m 2.79- 0n … 则不等式20ax bx c ++<的解集是 .17.二次函数2y ax bx c =++的部分图象如图所示,对称轴为1x =,图象过点A ,且930a b c ++=,以下结论:⊥420a b c -+<;⊥关于x 的不等式220ax ax c -+->的解集为:13x -<<;⊥3c a >-;⊥()21(1)0m a m b -+-≥(m 为任意实数);⊥若点()1,B m y ,()22,C m y -在此函数图象上,则12y y =.其中错误的结论是 .三、解答题设该超市在第x 天销售这种商品获得的利润为y 元.(1)求y 关于x 的函数关系式;(2)在这30天中,该超市销售这种商品第几天的利润最大?最大利润是多少?21.如图所示,二次函数2y ax bx c =++的图象经过()1,0-、()3,0和()03-,三点.(1)求二次函数的解析式;(2)方程2++=有两个实数根,m的取值范围为__________.ax bx c m(3)不等式23++>-的解集为__________;ax bx c x22.一次足球训练中,小明从球门正前方12m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为8m时,球达到最高点,此时球离地面4m.已知球门高OB为2.58m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素);(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.56m处?参考答案:1.C2.C3.B4.A5.D6.B。
二次函数单元测试卷含答案
二次函数单元测试卷一、选择题(每题 3 分,共 30 分)1.当 -2 ≤ x≦1, 二次函数 y=- ( x-m)2 + m2 +1有最大值4,则实数 m值为()7 B. 3 或-3或 -3 D. 2或 3或-7 442.函数ymx2x2m(m是常数)の图像与x轴の交点个数为()A.0 个 B .1个 C .2个 D .1个或 2个3.关于二次函数yax2bxcの图像有以下命题:①当c时,函数の图像经过原点;②当c0,且函数の图像张口向下时,方程ax 2bx c 0必有两个不相等の实根;③函数图像最高点の纵坐标是4ac b2y轴对称.此中正确命题の个数是(4a;④当 b0时,函数の图像关于)A.1 个 B .2个C. 3 个 D .4个4.关于xの二次函数y2mx2(8m1)x8mの图像与x轴有交点,则mの范围是()m1m ≥1m1m11616 且m 01616 且m 0A .B .C. D .5.以下二次函数中有一个函数の图像与x 轴有两个不一样の交点,这个函数是()2B .y x24C.y 3x22x 5D.y 3x25x 1A .y x6.若二次函数 y ax2 c ,当 x 取 x1、 x2( x1x2)时,函数值相等,则当x 取 x1x2时,函数值为()A .a c B.a c C .c D .c7.以下二次函数中有一个函数の图像与坐标轴有一个交点,这个函数是()A .y x2—1B .y x24C.y x2—2x 1 D.y 3x25x 18.抛物线 y3x22x1の图象与坐标轴交点の个数是()A .没有交点B.只有一个交点C.有且只有两个交点D.有且只有三个交点9.函数 y ax 2bx c の图象以以下图,那么关于x の一元二次方程ax2bx c30 の根の状况是()yA .有两个不相等の实数根B.有两个异号の实数根3C .有两个相等の实数根D .没有实数根Ox10.. 若把函数 y=x の象用 E( x, x),函数 y=2x+1 の象用 E( x,2x+1),⋯⋯E(x, x22x1)可以由E(x, x2)怎平移获得?A .向上平移1个位B .向下平移1个位C .向左平移1个位D.向右平移1个位二、填空(每小 3 分,共 24 分)11. 抛物y2x83x2与 x 有个交点,因其判式b24ac0 ,相二次方程 3x2 2 x80 の根の个数.12. 关于xの方程mx2mx 5 m 有两个相等の数根,相二次函数y mx2mx5m 与 x 必然订交于点,此 m.13. 抛物y x2(2 m 1)x 6m 与 x 交于两点 ( x1,0) 和 ( x2,0) ,若 x1x2x1 x249,要使抛物原点,将它向右平移个位.14. 如所示,函数y(k 2) x 27x (k 5) の像与 x 只有一个交点,交点の横坐x.yOx15.已知二次函数 y 1 x2bx c ,关于xの一元二次方程 1 x2bx c 0 の两个22根是1和 5,个二次函数の分析式16.若函数 y=( m 1) x2 4x+2mの象与 x 有且只有一个交点,mの17.若根式1有意,双曲y= 2k - 2与抛物 y=x2+2x+2-2k の交点在第象限 .22k x18.将二次三式 x2+16x+100 化成( x+p)2+q の形式三、解答(本大共7 小,共66 分)19.. (7 分)已知一个二次函数の象点(0, 0),( 1, 3),( 2, 8),求函数分析式。
二次函数单元测试题及答案
二次函数单元测试题及答案一、选择题1. 二次函数y = ax^2 + bx + c中,当a的值变为原来的2倍时,函数图像如何变化?A. 向上平移B. 向下平移C. 向左平移D. 向右平移答案:B2. 下列哪个选项是二次函数的标准形式?A. y = x^2 + 2x + 1B. y = 2x^2 - 3x + 4C. y = 3x + 4D. y = x - 2答案:B3. 若二次函数y = -2x^2 + 3x + 1的顶点坐标为(1, 2),则下列哪个选项是正确的?A. a = -2, b = 3, c = 1B. a = 2, b = -3, c = -1C. a = -2, b = -3, c = -1D. a = 2, b = 3, c = 1答案:A4. 二次函数y = 3x^2 - 6x + 9的最小值是多少?A. 0B. 3C. 9D. 无法确定答案:C5. 如果二次函数y = x^2 + 4x + 4的图像与x轴相交于两点A和B,那么线段AB的长度是多少?A. 2B. 4C. 6D. 8答案:C二、填空题6. 已知二次函数y = 2x^2 - 5x + 3,其顶点坐标为__________。
答案:(1, -1)7. 函数y = -x^2 + 4x - 3的最大值是__________。
答案:18. 若二次函数y = 3x^2 - 2x - 5的图像关于y轴对称,则新的函数表达式为y = __________。
答案:y = 3x^2 + 2x - 5三、解答题9. 已知二次函数y = -2x^2 + 6x + 3,求该函数在x = -1时的函数值。
答案:当x = -1时,y = -2*(-1)^2 + 6*(-1) + 3 = -2 - 6 + 3 =-5。
10. 给定二次函数y = x^2 - 6x + 9,求该函数的对称轴方程。
答案:对称轴为x = -b/(2a) = -(-6)/(2*1) = 3。
二次函数单元测试卷及答案
二次函数单元测试卷及答案第一部分:选择题(共10题,每题2分)1. 若 $f(x)=2x^2+6x+1$,则该函数的抛物线开口向上()。
A. 对B. 错2. 对于函数 $f(x)=ax^2+bx+c$,若 $a>0$,则抛物线开口()。
A. 向上B. 向下3. 已知 $f(x)=x^2+bx+c$,若 $b^2-4c>0$,则该函数()。
A. 有两个实根B. 无实根C. 有一个实根4. 若 $f(x)=\frac{1}{2}x^2+ax+b$ 的导函数为 $f'(x)=x+1$,则 $f(x)$ 的解析式为()。
A. $\frac{1}{2}x^2+x+1$B. $\frac{1}{2}x^2+2x+1$C.$\frac{1}{2}x^2+x+2$5. 设 $f(x)=2x^2-10x+8$,$g(x)=x^2-3x+7$,则 $f(x)-g(x)$ 的值域为()。
A. $(0,+\infty)$B. $(-\infty,0)$C. $[0,+\infty)$6. 函数 $f(x)=x^2-2mx+1$ 与 $y=0$ 交点的横坐标为 $4$,则 $m$ 的值为()。
A. $1$B. $2$C. $-1$7. 若 $f(x)=x^2+1$,则 $f(2x+1)$ 的最小值为()。
A. $2$B. $5$C. $6$8. 已知函数 $f(x)=ax^2+bx+c$ 在 $x=1$ 处有极值 $0$,则 $a+b+c$ 等于()。
A. $-1$B. $0$C. $1$9. 函数 $f(x)=x^2-2x+5$ 与 $g(x)=2x-1$ 的交点横坐标之和为()。
A. $0$B. $1$C. $2$10. 若 $f(x)=x^2-2x-15$,则 $f(x)$ 的零点为()。
A. $-3,5$B. $-5,3$C. $-3,-5$答案:1.A 2.A 3.A 4.B 5.A 6.C 7.C 8.B 9.C 10.A第二部分:填空题(共5题,每题4分)1. 函数 $f(x)=x^2+2x+1$ 的零点是 _____________。
二次函数单元测试题及答案
二次函数单元测试题一、选择题(本题共计7 小题,每题3 分,共计21分,)1. 下列函数中是二次函数的是()+x2A.y=ax2+bx+cB.y=3x2+1C.y=2(x+1)2−2x2D.y=1x2. 已知二次函数的图象如右图,则下列结论中,正确的结论有()①a+b+c>0②a−b+c<0③abc<0④b=2a⑤b>0.A.5个B.4个C.3个D.2个3. 若正方形的边长为6,边长增加x,面积增加y,则y关于x的函数解析式为()A.y=(x+6)2B.y=x2+62C.y=x2+6xD.y=x2+12x4. 已知二次函数y=a(x+1)2−b(a≠0)有最小值1,则a,b的大小关系为()A.a>bB.a<bC.a=bD.不能确定5. 二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0, 1)和(−1, 0).下列结论:①ab<0;②b2>4ac;③0<b<1;④当x<−1时,y< 0.其中正确结论的个数是()A.1B.2C.3D.46. 设函数y=a(x−ℎ)2+k(a,ℎ,k是实数,a≠0),当x=1时,y=1;当x=8时,y =8,()A.若ℎ=4,则a<0B.若ℎ=5,则a>0C.若ℎ=6,则a<0D.若ℎ=7,则a>07. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc> 0;②b2−4ac<0;③4a−2b+c<0;④b=−2a.则其中结论正确的是()A.①③B.③④C.②③D.①④二、填空题(本题共计10 小题,每题3 分,共计30分,)8. 抛物线y=x2+x+2上三点(−2, a)、(−1, b),(3, c),则a、b、c的大小关系是________.9. 将函数y=−12(x−1)2+5图象向________平移________个单位可得函数y=−12(x+1)2+5的图象.10. 抛物线y=−3x2+8向右平移5个单位的抛物线的函数关系式是________.11. 已知二次函数y=x2,在−1≤x≤3内,函数的最小值为________.12. 不等式x2+px>4x+p−3对于一切0≤p≤4均成立,则实数x的取值范围是________.13. 已知抛物线y=x2−kx−8经过点P(2, −8),则k=________,这条抛物线的顶点坐标是________.14. 用配方法将抛物线y=x2+2√3x+1化成y=(x+ℎ)2+k的形式是________.15. 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为________米.16. 在二次函数y=ax2+bx+c的图象如图所示,下列说法中:①b2−4ac<0;>0;③abc>0;④a−b−c>0,说法正确的是________(填序②−b2a号).17. 如图,在平面直角坐标系中,抛物线y=−x2−4x+1与y轴交于点A,过点A平行于x轴的直线交抛物线y=x2于点B、C两点,点P在抛物线y=−x2−4x+1上且在x轴的上方,连接PB、PC,则△PBC面积的最大值是________.三、解答题(本题共计6 小题,共计60分,)18. 已知抛物线y=x2−2x−3.(1)直接写出抛物线的开口方向、对称轴和顶点坐标;(2)若抛物线与x轴的两个交点为A、B,与y轴的一个交点为C,画草图,求△ABC的面积.19. 利用二次函数y=12x2+x+2的图象和性质,求方程−12x2+x+2=0在3和4之间的根的近似值.(结果精确到0.1)20. 已知二次函数y=x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(1, 0),与y轴的交点坐标为(0, −3).(1)求出b、c的值,并写出此二次函数的解析式;(2)根据图象,直接写出函数值y为正数时,自变量x的取值范围.21. 如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=−112x2+23x+53.则他将铅球推出的距离是10m.22. 抛物线y=−x2+2x+3的顶点为D,它与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求顶点D的坐标;(2)求直线BC的解析式;(3)求△BCD的面积;(4)当点P在直线BC上方的抛物线上运动时,△PBC的面积是否存在最大值?若存在,请求出这个最大值,并且写出此时点P的坐标;若不存在,请说明理由.23. 已知如图,在平面直角坐标系xOy中,点A,B,C分别为坐标轴上的三个点,且OA= 1,OB=3,OC=4.(1)求经过A,B,C三点的抛物线的解析式;(2)在平面直角坐标系xOy中是否存在一点P,使得以点A,B,C,P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点M为该抛物线上一动点,在(2)的条件下,请求出使|PM−AM|最大时点M的坐标,并直接写出|PM−AM|的最大值.参考答案一、选择题(本题共计7 小题,每题 3 分,共计21分)1.【答案】B【考点】二次函数的定义【解答】解:A、y=ax2+bx+c,其中a≠0,故本选项错误;B、y=3x2+1,故本选项正确;C、y=2(x+1)2−2x2,整理后不含二次项,故本选项错误;+x2,不是整式,故本选项错误;D、y=1x故选B.2.【答案】B【考点】二次函数图象与系数的关系【解答】解:根据图象,当x=1时,y=a+b+c>0,当x=−1时,y=a−b+c<0,可知①②正确;>0,且抛物线开口向下,a<根据图象与y轴的交点位置可知c>0,根据对称轴x=−b2a0,可知b>0,abc<0,故③⑤正确;=1得b=−2a,可知④错误.根据对称轴x=−b2a正确的是①②③⑤4个,故选B.3.【答案】D【考点】根据实际问题列二次函数关系式【解答】解:原边长为6的正方形面积为:6×6=36,边长增加x后边长变为:x+6,则面积为:(x+6)2,∴ y=(x+6)2−36=x2+12x.故选:D.4.【答案】A【考点】二次函数的最值【解答】解:∴ 二次函数y=a(x+1)2−b(a≠0)有最小值,∴ 抛物线开口方向向上,即a>0;又最小值为1,即−b=1,∴ b=−1,∴ a>b.故选A.5.【答案】D【考点】二次函数图象上点的坐标特征二次函数图象与系数的关系抛物线与x轴的交点【解答】∴ 二次函数y=ax2+bx+c(a≠0)过点(0, 1)和(−1, 0),∴ c=1,a−b+c=0.>0,①∴ 抛物线的对称轴在y轴右侧,∴ x=−b2a∴ a与b异号,∴ ab<0,正确;②∴ 抛物线与x轴有两个不同的交点,∴ b2−4ac>0,∴ b2>4ac,正确;③∴ 抛物线开口向下,∴ a<0,∴ ab<0,∴ b>0.∴ a−b+c=0,c=1,∴ a=b−1,∴ a<0,∴ b−1<0,b<1,∴ 0<b<1,正确;④由图可知,当x<−1时,y<0,正确;综上所述,正确的结论有①②③④.6.【答案】C【考点】二次函数的性质待定系数法求二次函数解析式二次函数图象上点的坐标特征【解答】当x=1时,y=1;当x=8时,y=8;代入函数式得:,∴ a(8−ℎ)2−a(1−ℎ)2=7,整理得:a(9−2ℎ)=1,若ℎ=4,则a=1,故A错误;若ℎ=5,则a=−1,故B错误;若ℎ=6,则a=-,故C正确;若ℎ=7,则a=-,故D错误;7.【答案】B【考点】二次函数图象与系数的关系【解答】解:由抛物线的开口向下,得到a<0,>0,∴ b>0,∴ −b2a由抛物线与y轴交于正半轴,得到c>0,∴ abc<0,选项①错误;又抛物线与x轴有2个交点,∴ b2−4ac>0,选项②错误;∴ x=−2时对应的函数值为负数,∴ 4a−2b+c<0,选项③正确;=1,即b=−2a,选项④正确,∴ 对称轴为直线x=1,∴ −b2a则其中正确的选项有③④.故选B二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 8.【答案】c >a >b【考点】二次函数图象上点的坐标特征【解答】解:∴ 二次函数的解析式为y =x 2+x +2=(x +12)2+74, ∴ 抛物线的对称轴为直线x =−12,∴ (−2, a)、(−1, b),(3, c),∴ 点(3, c)离直线x =−12最远,(−1, b)离真相x =−12最近, 而抛物线开口向上,∴ c >a >b ;故答案为c >a >b .9.【答案】左,2【考点】二次函数图象与几何变换【解答】解:由“左加右减”的原则将函数y =−12(x −1)2+5的图象向左平移2个单位,所得二次函数的解析式为:y =−12(x +1)2+5; 故答案为:左,2.10.【答案】y =−3(x −5)2+8【考点】二次函数图象与几何变换【解答】解:∴ 抛物线y =−3x 2+8顶点坐标为(0, 8),向右平移5个单位后,顶点坐标为(5, 8),由顶点式,得平移后抛物线解析式为y =−3(x −5)2+8.故本题答案为:y =−3(x −5)2+8.11.【答案】【考点】二次函数的最值【解答】解:y=x2的对称轴为x=0,且−1≤x≤3,故x=0时,取最小值,最小值为0,故答案为:0.12.【答案】x<−1或x>3.【考点】二次函数与不等式(组)【解答】∴ x2+px>4x+p−3,∴ x2−1>4x−px+p−4,∴ x2−1>(4−p)x+p−4,∴ x2−1>(4−p)(x−1),当p=4时,x2−1>0,画出函数y=x2−1的图象,找出x轴上方所对应的x的取值范围得到x>1或x<−1;当p=0时,x2−4x+3>0,画出函数y=x2−4x+3的图象,找出x轴上方所对应的x的取值范围得到x<1或x>3;当0<p<4,①当x>1,不等式变形为x+1>4−p>0,解得x>−1,则x>1;②当x<1,不等式变形为x+1<4−p,则x+1<0,解得x<−1,则x<−1;∴ x>1或x<−1;综上所述,实数x的取值范围为x<−1或x>3.13.【答案】2,(1, −9)【考点】待定系数法求二次函数解析式【解答】解:∴ 抛物线y=x2−kx−8经过点P(2, −8),∴ 4−2k−8=−8,解得k=2,∴ 此抛物线的解析式为y=x2−2x−8,配方得y=(x−1)2−9,∴ 这条抛物线的顶点坐标是(1, −9).14.【答案】y=(x+√3)2−2【考点】二次函数的三种形式【解答】解:y=x2+2√3x+1=x2+2√3x+3−3+1=(x+√3)2−2.故化成y=(x+ℎ)2+k的形式是y=(x+√3)2−2.15.【答案】0.5【考点】二次函数的应用【解答】解:以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0, 2.5),B(2, 2.5),C(0.5, 1),设函数解析式为y=ax2+bx+c,把A,B,C三点分别代入得出c=2.5,同时可得4a+2b+c=2.5,0.25a+0.5b+c=1,解之得a=2,b=−4,c=2.5.∴ y=2x2−4x+2.5=2(x−1)2+0.5.∴ 2>0,∴ 当x=1时,y=0.5米.故答案为:0.5.16.【答案】②③④【考点】二次函数图象与系数的关系【解答】解:由图可知,抛物线与x轴有2个交点,所以b2−4ac>0,故①错误;>0,故②正确;对称轴在y轴右侧,则x=−b2a抛物线开口向上,则a>0,而对称轴在y轴右侧,则a、b异号,所以b<0,其与y轴的交点(0, c)位于y轴的负半轴,则c<0,所以abc>0,故③正确;∴ a>0,b<0,c<0,∴ a−b−c>0,故④正确;故答案为:②③④.17.【答案】4【考点】二次函数图象上点的坐标特征抛物线与x轴的交点【解答】当x=0时,y=−x2−4x+1=1,则A(0, 1),当y=1时,x2=1,解得x1=1,x2=−1,则B(−1, 1),C(1, 1),∴ BC=2,设P(x, −x2−4x+1),P点在BC上方时,△PBC面积有最大值,⋅2⋅(−x2−4x+1−1)=−x2−4x=−(x+2)2+4,∴ S△PBC=12∴ 当x=−2时,△PBC面积的最大值为4.三、解答题(本题共计6 小题,每题10 分,共计60分)18.【答案】解:(1)∴ y=x2−2x−3=(x−1)2−4,∴ 该抛物线开口向上,对称轴为x=1,顶点坐标为(1, −4).(2)按点A在点B的左侧画出草图,如图所示.∴ y=x2−2x−3=(x+1)(x−3),∴ 点A(−1, 0),点B(3, 0),当x=0时,y=−3,∴ 点C(0, −3),∴ S△ABC=12AB⋅OC=12×[3−(−1)]×|−3|=6.【考点】抛物线与x轴的交点【解答】解:(1)∴ y=x2−2x−3=(x−1)2−4,∴ 该抛物线开口向上,对称轴为x=1,顶点坐标为(1, −4).(2)按点A在点B的左侧画出草图,如图所示.∴ y=x2−2x−3=(x+1)(x−3),∴ 点A(−1, 0),点B(3, 0),当x=0时,y=−3,∴ 点C(0, −3),∴ S△ABC=12AB⋅OC=12×[3−(−1)]×|−3|=6.19.【答案】解:方程−12x2+x+2=0根是函数y=12x2+x+2与x轴交点的横坐标.如图所示:二次函数y=12x2+x+2的图象,由图象可知方程有两个根,一个在−2和−1之间,另一个在3和4之间.当x=3.2时,y=0.08;当x=3.3时,y=−0.145;因此,x=3.2是方程的一个近似根,故方程−12x2+x+2=0在3和4之间的根的近似值为x≈3.2.图象法求一元二次方程的近似根【解答】解:方程−12x 2+x +2=0根是函数y =12x 2+x +2与x 轴交点的横坐标.如图所示:二次函数y =12x 2+x +2的图象,由图象可知方程有两个根,一个在−2和−1之间,另一个在3和4之间.当x =3.2时,y =0.08;当x =3.3时,y =−0.145;因此,x =3.2是方程的一个近似根,故方程−12x 2+x +2=0在3和4之间的根的近似值为x ≈3.2. 20.【答案】解:(1)由二次函数y =x 2+bx +c 的图象经过(1, 0)和(0, −3)两点,得{1+b +c =0c =−3, 解这个方程组,得{b =2c =−3; ∴ 抛物线的解析式为y =x 2+2x −3.(2)当x <−3或x >1时,y >0.【考点】待定系数法求二次函数解析式二次函数与不等式(组)【解答】解:(1)由二次函数y =x 2+bx +c 的图象经过(1, 0)和(0, −3)两点,得{1+b +c =0c =−3, 解这个方程组,得{b =2c =−3; ∴ 抛物线的解析式为y =x 2+2x −3.(2)当x <−3或x >1时,y >0.21.【答案】当y =0时,−112x 2+23x +53=0,解之得x 1=10,x 2=−2(不合题意,舍去),所以推铅球的距离是10米.二次函数的应用【解答】当y =0时,−112x 2+23x +53=0,解之得x 1=10,x 2=−2(不合题意,舍去),所以推铅球的距离是10米.22.【答案】函数的对称轴为:x =1,当x =1时,y =−1+2+3=4,故点D(1, 4);y =−x 2+2x +3的顶点为D ,它与x 轴交于A ,B 两点,与y 轴交于点C ,则点A 、B 、C 的坐标分别为:(−1, 0)、(3, 0)、(0, 3),将点B 、C 的坐标代入一次函数表达式:y =kx +b 得:{0=3k +b b =3 ,解得:{k =−1b =3, 故直线BC 的表达式为:y =−x +3;过点D 作DG // y 轴交BC 于点G ,则点G(1, 2),△BCD 的面积=12×DG ×OB =12×(4−2)×3=3; 过点P 作y 轴的平行线交BC 于点H ,设点P(x, −x 2+2x +3),点H(x, −x +3),则S △PBC =12×PH ×OB =32(−x 2+2x +3+x −3)=−32x(x −3), ∴ −32<0,∴ S △PBC 有最大值,最大值为:278,此时点P(32, 154).【考点】二次函数综合题【解答】函数的对称轴为:x =1,当x =1时,y =−1+2+3=4,故点D(1, 4);y =−x 2+2x +3的顶点为D ,它与x 轴交于A ,B 两点,与y 轴交于点C ,则点A 、B 、C 的坐标分别为:(−1, 0)、(3, 0)、(0, 3),将点B 、C 的坐标代入一次函数表达式:y =kx +b 得:{0=3k +b b =3 ,解得:{k =−1b =3, 故直线BC 的表达式为:y =−x +3;过点D 作DG // y 轴交BC 于点G ,则点G(1, 2),△BCD 的面积=12×DG ×OB =12×(4−2)×3=3;过点P 作y 轴的平行线交BC 于点H ,设点P(x, −x 2+2x +3),点H(x, −x +3),则S △PBC =12×PH ×OB =32(−x 2+2x +3+x −3)=−32x(x −3), ∴ −32<0, ∴ S △PBC 有最大值,最大值为:278,此时点P(32, 154). 23.【答案】解:(1)设抛物线的解析式为y =ax 2+bx +c .由题意可知,A(1, 0),B(0, 3),C(−4, 0),∴ {a +b +c =0,c =3,16a −4b +c =0,解得:a =−34,b =−94,c =3,∴ 经过A ,B ,C 三点的抛物线的解析式为y =−34x 2−94x +3.(2)在平面直角坐标系xOy 中存在一点P ,使得以点A ,B ,C ,P 为顶点的四边形为菱形,理由如下:如图,∴ OB =3,OC =4,OA =1,∴ BC =AC =5.当BP 平行且等于AC 时,四边形ACBP 为菱形,∴ BP =AC =5,且点P 到x 轴的距离等于OB ,∴ 点P 的坐标为(5, 3).当点P 在第二、三象限时,以点A ,B ,C ,P 为顶点的四边形只能是平行四边形,不是菱形,则当点P 的坐标为(5, 3)时,以点A ,B ,C ,P 为顶点的四边形为菱形.(3)设直线PA 的解析式为y =kx +b(k ≠0).∴ A(1, 0),P(5, 3),∴ {5k +b =3,k +b =0, 解得:{k =34,b =−34, ∴ 直线PA 的解析式为y =34x −34. 当点M 与点P ,A 不在同一直线上时,根据三角形的三边关系可得:|PM −AM|<PA ,当点M 与点P ,A 在同一直线上时,|PM −AM|=PA ,∴ 当点M 与点P ,A 在同一直线上时,|PM −AM|的值最大,即点M 为直线PA 与抛物线的交点,解方程组{y =34x −34,y =−34x 2−94x +3, 得{x 1=1,y 1=0 或{x 2=−5,y 2=−92, ∴ 当点M 的坐标为(1,0)或(−5, −92)时,|PM −AM|的值最大,此时|PM −AM|的最大值为5.【考点】二次函数综合题待定系数法求二次函数解析式【解答】解:(1)设抛物线的解析式为y =ax 2+bx +c .由题意可知,A(1, 0),B(0, 3),C(−4, 0),∴ {a +b +c =0,c =3,16a −4b +c =0,解得:a =−34,b =−94,c =3, ∴ 经过A ,B ,C 三点的抛物线的解析式为y =−34x 2−94x +3. (2)在平面直角坐标系xOy 中存在一点P ,使得以点A ,B ,C ,P 为顶点的四边形为菱形,理由如下:如图,∴ OB =3,OC =4,OA =1,∴ BC =AC =5.当BP 平行且等于AC 时,四边形ACBP 为菱形,∴ BP =AC =5,且点P 到x 轴的距离等于OB ,∴ 点P 的坐标为(5, 3).当点P 在第二、三象限时,以点A ,B ,C ,P 为顶点的四边形只能是平行四边形,不是菱形,则当点P 的坐标为(5, 3)时,以点A ,B ,C ,P 为顶点的四边形为菱形.(3)设直线PA 的解析式为y =kx +b(k ≠0).∴ A(1, 0),P(5, 3),∴ {5k +b =3,k +b =0, 解得:{k =34,b =−34, ∴ 直线PA 的解析式为y =34x −34.当点M与点P,A不在同一直线上时,根据三角形的三边关系可得:|PM−AM|<PA,当点M与点P,A在同一直线上时,|PM−AM|=PA,∴ 当点M与点P,A在同一直线上时,|PM−AM|的值最大,即点M为直线PA与抛物线的交点,解方程组{y=34x−34,y=−34x2−94x+3,得{x1=1,y1=0或{x2=−5,y2=−92,∴ 当点M的坐标为(1,0)或(−5, −92)时,|PM−AM|的值最大,此时|PM−AM|的最大值为5.。
二次函数单元测试题及答案
二次函数单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是二次函数的一般形式?A. y = ax^2 + bx + cB. y = (x - h)^2 + kC. y = ax^2 + bx + c + dD. y = ax^2 + bx答案:C2. 若二次函数y = ax^2 + bx + c的图像开口向上,则a的值是:A. 正数B. 负数C. 零D. 任意实数答案:A3. 二次函数y = ax^2 + bx + c的顶点坐标是:A. (-b, c)B. (-b/2a, c)C. (-b/a, c)D. (-b/2a, 4ac - b^2 / 4a)答案:D4. 二次函数y = ax^2 + bx + c的对称轴是:A. x = -bB. x = -b/2aC. x = b/2aD. x = b/a答案:B5. 若二次函数y = ax^2 + bx + c与x轴有两个交点,则判别式Δ的值是:A. Δ > 0B. Δ < 0C. Δ = 0D. Δ ≤ 0答案:A二、填空题(每题2分,共10分)6. 二次函数y = 2x^2 - 4x + 3的顶点坐标是________。
答案:(1, 1)7. 若二次函数y = ax^2 + bx + c的图像与y轴交于(0, k),则k等于________。
答案:c8. 当a > 0时,二次函数y = ax^2 + bx + c的图像开口________。
答案:向上9. 二次函数y = -3x^2 + 6x + 5的对称轴方程是________。
答案:x = 110. 若二次函数y = ax^2 + bx + c与x轴相交于两点,则判别式Δ必须________。
答案:大于0三、解答题(每题5分,共20分)11. 已知二次函数y = ax^2 + bx + c的图像经过点(1, 2)和(-1, 0),求a和b的值。
解答:将点(1, 2)代入函数得:a + b + c = 2将点(-1, 0)代入函数得:a - b + c = 0两式相减得:2b = 2,即b = 1将b代入任一式得:a + c = 1由于题目条件不足,无法唯一确定a和c的值。
二次函数单元综合测试卷(含答案)
二次函数综合测试卷一、填空:(30分)1.二次函数的图象经过三个定点(2,0),(3,0),(•0,-•1),则它的解析式为________,该图象的顶点坐标为__________.2.当k=________时,直线x+2y+k+1=0和2x+y+2k=0的交点在抛物线y=-x2上.3.已知二次函数y=x2-2(k+1)x+k2+2的图象与x轴交点的横坐标分别为x1,x2,且(x1+1)(x2+1)=8,则k的值为__________.4.如果y与x2成正比例,并且它的图象上一点P的横坐标a和纵坐标b分别是方程x2-x-6=0的两根,那么这个函数的解析式为_________.5.抛物线y=x2-4x+11的对称轴是直线________,顶点坐标为________.6.如果抛物线y=-23x2+(m+2)x+27m的对称轴为直线x=32,则m的值为_________.7.把函数y=5x2+10mx+n的图象向左平移2个单位,向上平移3个单位,•所得图象的函数解析式为y=5x2+30x+44,则m=_______,n=_______.8.二次函数y=a x2+bx+c中的a、b、c满足条件________时,•它的图象经过坐标系中的四个象限.9.开口向下的抛物线y=a(x+1)(x-4)与x轴交于A、B两点,与y•轴交于点C.•若∠ACB=90°,则a的值为________.10.如图,二次函数y=x2-ax+a-5的图象交x轴于点A和B,交y轴于点C,当线段AB•的长度最短时,点C的坐标为________.二、选择题:(20分)11.在同一直角坐标系内,二次函数y1=ax2+bx+c与y2=cx2+bx+a的图象大致为()12.在同一直角坐标系内,函数y=ax2+bx与y=bx(b≠0)的图象大致为()13.给出下列四个函数:y=-2x,y=2x-1,y=3x(x>0),y=-x2+3(x>0),其中y随x•的增大而减小的函数有()A.3个 B.2个 C.1个 D.0个14.当m取任何实数时,抛物线y=-2(x-m)2-m的顶点所在的直线为()A.x轴 B.y轴 C.y=x D.y=-x15.当m取任何实数时,抛物线y=-2(x+m)2-m2的顶点所在的曲线为()A.y=x2 B.y=-x2 C.y=x2(x>0) D.y=-x2(x>0)16.已知抛物线y=ax2+bx+c(a≠0)与抛物线y=x2-4x+3关于x轴对称,则a、b、c•的值分别是() A.-1,4,-3 B.-1,-4,-3 C.-1,4,3 D.-1,-4,317.已知抛物线y=a x2+bx+c(a≠0)与抛物线y=x2-4x+3关于y轴对称,则函数y=ax2+bx+c的解析式为()A.y=x2+4x+3 B.y=x2-4x-3 C.y=x2+4x-3 D.y=-x2-4x+318.从一张矩形纸片ABCD的较短边AD上找一点E,过这点剪下两个半圆,它们的直径分别是AE、DE,要使剪下的两个半圆的面积和最小,点E应选在()A.边AD的中点外 B.边AD的13处 C.边AD的14处 D.边AD的15处19.对某条路线的长度进行n次测量,得到n个结果x1,x2,…,x n,如果用x作为这条路线长度的近似值,当x=p时,(x-x1)2+(x-x2)2+…+(x-x n)2最小,则p的值为()A.1n(x1+x2+…+x n) B.1n(x1-x2-…-x n)C.1nn+(x1+x2+…+x n) D.1nn+(x1+x2+…+x n)20.已知函数y=-(x-1)2-(x-3)2-(x-5)2-(x-7)2,当x=p时,函数y取得最大值,则p•的值为()A.4 B.8 C.10 D.16三、解答题:(90分)1.如图,△OAB是边长为2的等边三角形,直线x=t•截这个三角形所得位于直线左方的图形面积为y.(1)写出以自变量为t的函数y的解析式;(2)画出(1)中函数y的图象.2.如图,AB是半径为R的圆的直径,C为直径AB上的一点,•过点C•剪下两个正方形ADCE和BFCG,它们的对角线分别是AC、CB.要使剪下的两个正方形的面积和最小,•点C应选在何处?3.已知一个二次函数的图象过点A(-1,10),B(1,4),C(2,7),点D和B•关于抛物线的对称轴对称,问是否存在与抛物线只有一个公共点D的直线?如果存在,求出符合条件的直线;如不存在,请说明理由.4.如图,在直角坐标系xOy中,A、B是x轴上的两点,以AB为直径的圆交y轴于C,设过A、B、C三点的抛物线的解析式为y=x2-mx+n,方程x2-mx+n=0的两根倒数和为-2.(1)求n的值;(2)求此抛物线的解析式;(3)设平行于x轴的直线交此抛物线于E、F两点,问是否存在此线段EF•为直径的圆恰好与x轴相切,若存在,求出此圆的半径;若不存在,说明理由.5.某电厂规定,该厂家属区的每户居民如果一个月的用电量不超过x度,•那么这个月这户居民只交10元用电费.如果超过x度,这个月除了要交10元用电费外,超过部分按每度元交费.(1)该厂某户居民1月份用电90度,超过了x度的规定,试用x的代数式表示超过部分应交的电费(元);(2)下表是这户居民2月、3月的用电情况和交费情况,请根据表中的数据,•求出电厂规定的这个标准x度.月份用电量(度)交电费总数(元)2月 80 253月 45 106.如图(1),平面直角坐标系中有一张矩形纸片OABC,O为坐标原点,A•点坐标为(10,0),C点坐标为(0,6).D是BC边上的动点(与点B、C不重合),现将△COD沿OD翻折,得到△FOD;再在AB边上选取适当的点E,使△BDE沿DE翻折,得到△GDE,并使直线DG,DF重合.(1)如图②,若翻折后点F落在OA边上,求直线DE的函数关系式;(2)设D(a,6),E(10,b),求b关于a的函数关系式,并求b的最小值;(3)一般地,请你猜想直线DE与抛物线y=-124x2+6的公共点的个数,•在图②的情形中通过计算验证你的猜想;如果直线DE与抛物线y=-124x2+6始终有公共点,请在图①中作出这样的公共点.附加题:(10分)当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x 2-2mx+m 2+3m-2. ① 得y=(x-m )2+3m-2 ②抛物线的顶点坐标为(m ,3m-2),即32x my m =⎧⎨=-⎩ 当m 的值变化时,x ,y 的值也随之变化,•因而y 值也随x 值的变化而变化.将③代入④,得y=3x-2 ⑤可见不论m 取任何实数抛物线顶点的纵坐标y 和横坐标x 都满足关系式y=3x-2,即抛物线①的顶点总在直线y=3x-2上.在上述过程中,由①到②所用的数学方法是__________;由③、④到⑤所用的数学方法是________.请解答:求出抛物线y=x 2-4mx+4m 2-2m•的顶点的纵坐标y 和横坐标x 之间的关系式.答案:一、填空: 1.y=-16x 2+56x-1 (52,124)2.13±63 3.14.y=-29x 2和y=34x 25.x=2 (2,7) 6.0 7.1 18.a 、c 异号,b 为任何实数 9.-10.(0,-3)(设A (x 1,0),B (x 2,0).(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=a 2-4a+20=(a-2)2+16.当a=2时,•线段AB 的长度最短为4,此时y=x 2-2x-3,点C 的坐标为(0,-3) 二、选择题:11.D 12.D 13.A 14.D 15.B 16.A 17.A 18.A 19.A 20.A 三、解答题:1.(1)y=223(01)23(2)3(2)2t t t t ⎧≤≤⎪⎪⎨⎪--+≤≤⎪⎩(2)如第1题图.2.设AC 长为x ,BC 长为2R-x ,S 正方形ADCE =12x 2,S 正方形BFCG =12(2R-x )2. 两个正方形面积之和为y=12x 2+12(2R-x )2=x 2-2Rx+2R 2=(x-R )2+R 2, 当x=R 时,两个正方形面积之和有最小值R 2,此时点C 应选在AB•的中点处,即圆心.3.过点A 、B 、C 的抛物线的解析式为y=2x 2-3x+5,其对称轴为直线x=34. 因D 和B 关于直线x=34对称,所以D 点坐标为(12,4). 与抛物线只有一个公共点D 的直线有两条:(1)平行于y 轴,即直线x=12. (2)不平行于y 轴,设直线为y=kx+b ,因为过D 点,所以4=12k+b . 即k=8-2b ,(8-2b )x+b=2x 2-3x+5.2x 2+(2b-11)x+5-b=0.方程有两个相等的实数根,△=(2b-11)2-8(5-b )=0,解得b=92,k=-1.所以y=-x+92.符合条件的直线为y=-x+92和x=12. 4.(1)设A (x 1,0),B (x 2,0),则OA=-x 1,OB=x 2.因为AB 是直径,OC ⊥AB ,所以CO 2=OA·OB ,•即n 2=-x 1x 2. 又x 1x 2=n ,所以n 2=-n ,n=-1,n=0(舍去). (2)11x +21x =1212x x x x +=-2,又x 1+x 2=m ,x 1x 2=-1,1m -=-2,m=2, 所求的抛物线的解析式为y=x 2-2x-1.(3)由(2)得抛物线的对称轴为x=1.设满足条件的圆的半径为│a │, 则点F•的坐标为(1+│a │,a ),点F 在抛物线上,a=(1+│a │)2-2(1+│a │)-1,即a 2-a-2=0,a 1=2,a 2=-1, 所求的圆的半径为1或2,故存在以EF 为直径的圆,恰好与x 轴相切. 5.(1)100x(90-x )元 (2)表格中的数据告诉我们,这户居民2月份用电超标,3•月份用电不超标, 可见45≤x<80,列出方程10+100x(80-x )=25,即x 2-80x+150=0,解得x 1=30,x 2=50. 因45≤x<80,所以x=30,电厂规定的标准是30度.6.(1)解:根据题意,可知D (6,6),E (10,2),直线DE 的函数关系式为y=-x+12. (2)解:根据题意,可知∠CDO=∠ODF ,∠BDE=∠GDE .∠CDO+∠ODF+∠BDE+∠GDE=180°,•∠CDO+∠BDE=90°,∠COD+∠CDO=90°,∠COD=∠BDE .又∠COD=∠DBE=90°,△COD ≌△BDE .CE COBE BD=. 根据题意,可知BE=6-b ,BD=10-a ,6610a b a =--,b+16a 2-53a+6=16(a-5)2+116. 当a=5时,b 最小值=116.(3)猜想:直线DE 与抛物线y=-124x 2+6只有1个公共点. 证明:由(1)可知,DE 所在直线为y=-124x+12. 代入抛物线y=-x 2+6,消去y ,得-124x 2+6=-x+12.化简,得x 2-24x+144=0,△=0. 直线DE 与抛物线y=-124x 2+6只有1个公共点. 作法一:延长OF 交DE 于点H ,作法二:在DB 上取点M ,使DM=CD ,过M 作MH ⊥BC ,交DE 于点H . 附加题:配方法; 消元法; y=-4x.。
《二次函数》单元测试卷 (含答案)
《二次函数》单元测试卷 (含答案)考生姓名:______________ 考号:______________时间限制:90分钟一、选择题(每小题2分,共30分)(每小题2分,共30分)1. 下列函数中,是二次函数的是()A. y = x + 2B. y = 2x^2 + 3x + 1C. y = 1/xD. y = √x2. 设二次函数 f(x) = 2x^2 + 5x - 3,那么它的判别式为()A. -13B. 17C. 29D. -393. 若二次函数的图象与x轴有两个交点,则该二次函数的判别式必须为()A. 大于0B. 等于0C. 小于0D. 无法确定4. 已知二次函数 f(x) = 3x^2 + 4x + 2,那么它的对称轴为()A. x = -2/3B. x = -4/3C. x = 4/3D. x = 2/35. 设函数 f(x) = ax^2 + bx + c,若a > 0,则函数图象开口向()A. 上B. 下C. 左D. 右...二、填空题(每小题3分,共30分)(每小题3分,共30分)1. 设二次函数 f(x) = 2x^2 - 5x + 3,那么它的顶点坐标为()答案:(5/4, 37/8)2. 若二次函数 y = ax^2 + bx + c 的顶点坐标为 (2, -3),则 a + b+ c 的值为()答案:-53. 设二次函数 f(x) = -x^2 + 4x + 5,那么它的对称轴的方程为()答案:x = 24. 若二次函数的图象与y轴相交于点 (0, 6),则该二次函数必定为()答案:f(x) = 2x^2 + 35. 设二次函数 f(x) = ax^2 + bx + c,若a > 0,则函数的值域为()答案:( -∞, f(c) ]...三、解答题(共40分)(共40分)1. 解方程 3x^2 - 2x - 1 = 0解答:首先,我们可以求出这个二次方程的判别式:Δ = b^2 - 4ac = (-2)^2 - 4*3*(-1) = 4 + 12 = 16因为判别式大于0,所以方程有两个不相等的实根。
二次函数单元测试题及答案
二次函数单元测试题及答案The document was prepared on January 2, 2021二函数单元测试一含答案一、选择题:1.下列函数中,是二次函数的是 A. 28xy =B.18+=x yC.x y 8=D. 182+=x y2. 二次函数12)12(2+--=x k x y ,当1>x 时,y 随着x 的增大而增大,当1<x 时,y 随着x 的增大而减小,则k 的值应取A .12B .11C .10D .93.2A. B. C. D.4.在函数,自变量x 的取值范围是 A. x ≥-2且x ≠±3 B. x ≥-2且x ≠3 C. x >-2且x ≠-3 D. x >-2且x ≠35.无论m 为何实数,二次函数m x m x y +--=)2(2的图象总是过定点A.-1,3B.1,0C.1,3D.-1,06.在直角坐标系中,坐标轴上到点P-3,-4的距离等于5的点共有 个 个 个 个7. 下列四个函数中,y 的值随着x 值的增大而减小的是A .x y 2=B .()01>=x x y C .1+=x y D .()02>=x x y 8.抛物线c bx ax y ++=2的图象如图,OA=OC,则 A .b ac =+1 B .c ab =+1 C .a bc =+1 D .以上都不是9.在同一坐标系中,一次函数和二次函数c ax y +=2的图象大致为10.若0>b ,则二次函数12-+=bx x y 2的图象的顶点在A .第一象限B .第二象限C .第三象限D .第四象限二、填空题:11.已知二次函数解析式为562+-=x x y ,则这条抛物线的对称轴为直线x = ,满足y <0的x 的取值范围是 ,将抛物线562+-=x x y 向 平移 个单位,则得到抛物线962+-=x x y .12.请写出一个开口向上,对称轴为直线2=x ,且与y 轴的交点坐标为0,3的抛物线的解析式 .13. c bx ax y ++=2中,0<a ,抛物线与x 轴有两个交点A2,0B-1,0,则02>++c bx ax 的解是____________,02<++c bx ax 的解是____________.14.已知抛物线y ax bx c =++2经过点A-2,7,B6,7,C3,-8,则该抛物线上纵坐标为-8的另一点的坐标是________.15.如右图所示,长方体的底面是边长为x cm 的正方形,高为6cm,请你用含x 的代数式表示这个长方体的侧面展开图的面积S=________,长方体的体积为V=__________,各边长的和L=__________,在上面的三个函数中,_______是关于x 的二次函数.16.抛物线22++=x x y 与直线4=y 有___个交点,交点坐标是_________________.三、解答题: 17.当二次函数图象与x 轴交点的横坐标分别是1,321=-=x x ,且与y 轴交点为0,-2,求这个二次函数的解析式.18.求抛物线3522--=x x y 与坐标轴的交点坐标,并求这些交点所构成的三角形面积.19. 一男生推铅球,铅球出手后运动的高度)(m y ,与水平距离)(m x 之间的函数关系是35321212++-=x x y ,那么这个男生的铅球能推出几米20.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m 件与每件的销售价x 元满足一次函数关系x m 3162-=,请写出商场卖这种商品每天的销售利润y 元与每件销售价x 元之间的函数关系式.21. 心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x单位:分钟之间满足函数关系-+=xxy,y的值越大,表示接受能力越强.+x30)≤0(431.02≤6.21若用10分钟提出概念,学生的接受能力y的值是多少2如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了通过计算来回答.22.如图有一座抛物线形拱桥,桥下面在正常水位是AB宽20米,水位上升3m就达到警戒线CD,这是水面宽度为10米,1在如图的坐标系中求抛物线的解析式;2若洪水到来时,水位以每小时米的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶参答案一、选择题:;;;;;;;;; .二、填空题:新课标第一网xkb11. 3 , 51<<x ,上 , 4 ; 12. 342+-=x x y 答案不唯一;13. 21<<-x , 1-<x 或2>x ; 14. )8,1(-;15. x 24,26x ;248+x ,26x V =; 16. 两,-2,4和1,4.三、解答题:新 课标 第一 网 17. 234322-+=x x y . 18. )0,3( ,),(021- ,)3,0(- , 面积421. 19. 10米.提示:令0=y ,横坐标正值即为所求.20. )5430(486025232≤≤-+-=x x x y . 21.159=y ;2用8分钟与用10分钟相比,学生的接受能力减弱了;用15分钟与用10分钟相比,接受能力增强了.新 课 标第 一网x kb 22. 1 2251x y -=;25小时 .。
二次函数单元测试卷(答案)
二次函数单元测试卷(答案)1.已知函数y=2x^2+3x-1的自变量x取值范围为[-2,1],则在该范围内,该函数的最大值为_____,最小值为_____。
答案:最大值为3,最小值为-1.2.已知二次函数y=ax^2+bx+c的图象经过点(1,2)和点(3,4),则a+b+c的值为_____。
答案:a+b+c的值为6.3.抛物线y=-x^2+2x+3的顶点坐标为_____。
答案:(1,4)。
4.已知函数y=x^2-4x+5,则将其表示成y=a(x-h)^2+k的形式为_____。
答案:y=(x-2)^2+1.5.抛物线y=ax^2+bx+c的对称轴方程为x=2,且经过点(0,1),则a+b+c的值为_____。
答案:a+b+c的值为1.6.已知二次函数y=ax^2+bx+c的图象与x轴交于点(1,0)和点(3,0),则a的值为_____。
答案:a的值为-1/4.7.抛物线y=2x^2-4x+1的最小值为_____。
答案:最小值为-3.8.已知二次函数y=ax^2+bx+c的图象经过点(1,1),且在x=2处取得最大值,最大值为2,则a、b、c的值分别为_____。
答案:a=1,b=-6,c=7.11.二次函数 $y=(x-2)^2+3$ 的一般形式为 $y=ax^2+bx+c$,其中 $a=1$,$b=-4$,$c=7$。
12.一个开口向上,顶点坐标是 $(-2,1)$ 的函数解析式为$y=a(x+2)^2+1$,其中 $a>0$。
13.由于该二次函数的顶点坐标为 $(2,4)$,因此解析式为$y=a(x-2)^2+4$,其中 $a>0$。
又因为该函数的形状与抛物线$y=4x^2$ 相同,所以 $a=4$,最终得到 $y=4(x-2)^2+4$。
14.将原点代入抛物线方程 $y=x^2+kx+(k+3)$,得到$k=0$。
15.由于抛物线 $y=-2x^2-8x+m$ 经过点 $(-1,y_1)$,$(-2,y_2)$,$(-4,y_3)$,因此可以列出以下方程组:begin{cases}-2(-1)^2-8(-1)+m=y_1 \\ -2(-2)^2-8(-2)+m=y_2 \\ -2(-4)^2-8(-4)+m=y_3\end{cases}$$解得 $m=-6$,$y_1=-2$,$y_2=2$,$y_3=10$,因此$y_3>y_2>y_1$。
二次函数单元测试题及答案
二次函数单元测试题及答案一、选择题(每题3分,共30分)1. 二次函数y=ax^2+bx+c(a≠0)的图象开口向上,则a的取值范围是()。
A. a>0B. a<0C. a=0D. a≠0答案:A2. 抛物线y=x^2-4x+3的顶点坐标是()。
A. (1,0)B. (2,1)C. (2,-1)D. (4,3)答案:C3. 若抛物线y=-2x^2+4x-1与x轴有两个交点,则这两个交点的坐标是()。
A. (1/2,0) 和 (3/2,0)B. (1,0) 和 (3,0)C. (1,0) 和 (-3,0)D. (-1,0) 和 (3,0)答案:B4. 二次函数y=ax^2+bx+c(a≠0)的对称轴是直线x=1,则b的值是()。
A. -2aB. 2aC. -aD. a答案:B5. 抛物线y=x^2-6x+8与x轴的交点个数是()。
A. 0B. 1C. 2D. 3答案:C6. 二次函数y=-x^2+2x+3的图象与y轴的交点坐标是()。
A. (0,3)B. (0,-3)C. (0,2)D. (0,-2)答案:A7. 二次函数y=x^2-2x-3与x轴的交点个数是()。
A. 0B. 1C. 2D. 3答案:C8. 抛物线y=-2x^2+4x+1的顶点坐标是()。
A. (1,3)B. (2,5)C. (-1,3)D. (-2,5)答案:A9. 二次函数y=x^2-4x+c的图象经过点(2,0),则c的值是()。
A. 0B. 4C. 8D. 16答案:C10. 抛物线y=x^2-6x+8与直线y=2x-4的交点坐标是()。
A. (2,0) 和 (4,4)B. (2,0) 和 (4,0)C. (2,4) 和 (4,0)D. (0,2) 和 (4,4)答案:A二、填空题(每题3分,共15分)11. 二次函数y=2x^2-4x+1的顶点坐标是()。
答案:(1,-1)12. 二次函数y=-3x^2+6x-3与x轴的交点坐标是()。
二次函数单元测试题及答案
二次函数单元测试题及答案一、选择题1. 已知二次函数\( y = ax^2 + bx + c \),当\( a < 0 \)时,抛物线的开口方向是:A. 向上B. 向下C. 向左D. 向右答案:B2. 对于二次函数\( y = -2x^2 + 3x + 1 \),其顶点的横坐标是:A. \( -\frac{1}{2} \)B. \( -\frac{3}{2} \)C. \( \frac{3}{4} \)D. \( \frac{1}{4} \)答案:C3. 若二次函数\( y = x^2 + 2x + 1 \)与x轴有交点,则交点的个数是:A. 0B. 1C. 2D. 3答案:B二、填空题4. 二次函数\( y = 3x^2 - 6x + 5 \)的对称轴方程是\_\_\_\_\_\_\_\_\_\_\_\_。
答案:\( x = 1 \)5. 当\( x = 2 \)时,二次函数\( y = x^2 - 4x + 3 \)的值为\_\_\_\_\_\_\_\_\_\_\_\_。
答案:-1三、解答题6. 已知二次函数\( y = -x^2 + 2x + 3 \),求其与x轴的交点坐标。
解:令\( y = 0 \),得\( -x^2 + 2x + 3 = 0 \)。
解此方程,我们可以使用求根公式:\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]代入\( a = -1, b = 2, c = 3 \),得:\[ x = \frac{-2 \pm \sqrt{4 + 12}}{-2} = \frac{-2 \pm\sqrt{16}}{-2} = 1 \pm 2 \]因此,与x轴的交点坐标为\( (-1, 0) \)和\( (3, 0) \)。
7. 已知抛物线\( y = 2x^2 - 4x + 1 \),求其顶点坐标。
解:顶点的横坐标可以通过公式\( x = -\frac{b}{2a} \)求得,代入\( a = 2, b = -4 \),得:\[ x = -\frac{-4}{2 \times 2} = 1 \]将\( x = 1 \)代入原方程求得\( y \)值:\[ y = 2(1)^2 - 4(1) + 1 = 2 - 4 + 1 = -1 \]因此,顶点坐标为\( (1, -1) \)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数单元测试卷
一、选择题(每小题3分,共30分)
1. 当-2≤ x ≦1,二次函数y=-(x-m )2
+ m 2
+1有最大值4,则实数m 值为( )
4
7
B. 3或-3 或-3 D. 2或3或-
4
7 2. 函数
2
2y mx x m =+-(m 是常数)的图像与x 轴的交点个数为( )
A. 0个 B .1个 C .2个 D .1个或2个
3. 关于二次函数
2
y ax bx c =++的图像有下列命题:①当0c =时,函数的图像经过原点;②当0c >,且函数的图像开口向下时,方程2
0ax bx c ++=必有两个不相等的实根;③函数图像最高点的纵坐标是
2
44ac b a -;④当0b =时,函数的图像关于y 轴对称.其中正确命题的个数是(
)
A. 1个
B .2个
C .3个
D .4个
4. 关于x 的二次函数
2
2(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是( )
A .
1
16m <-
B .
116m -
≥且0m ≠ C .1
16m =-
D .
1
16m >-
且0m ≠
5. 下列二次函数中有一个函数的图像与x 轴有两个不同的交点,这个函数是( ) A .2
y x =
B .24y x =+
C .2325y x x =-+
D .2
351y x x =+-
6. 若二次函数2
y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x +时,函数值为( )
A .a c +
B .a c -
C .c -
D .c
7. 下列二次函数中有一个函数的图像与坐标轴有一个交点,这个函数是( ) A .1x y 2
—=
B .24y x =+
C .1x 2x y 2+=—
D .2
351y x x =+-
8. 抛物线2
321y x x =-+-的图象与坐标轴交点的个数是( )
A .没有交点
B .只有一个交点
C .有且只有两个交点
D .有且只有三个交点
9. 函数2
y ax bx c =++的图象如图所示,那么关于x 的一元二次方程2
30ax bx c ++-=的根的情况是(
)
A .有两个不相等的实数根
B .有两个异号的实数根
C .有两个相等的实数根
D .没有实数根
10..若把函数y=x 的图象用E (x ,x )记,函数y=2x+1的图象用E (x ,2x+1)记,……则 E (x ,122+-x x )可以由E (x ,2
x )怎样平移得到
A .向上平移1个单位
B .向下平移1个单位
C .向左平移1个单位
D .向右平移1个单位 二、填空题(每小题3分,共24分) 11. 抛物线2
283y x x =--与x 轴有
个交点,因为其判别式2
4b ac -=
0,相应二次方
程2
3280x x -+=的根的个数为
.
12. 关于x 的方程2
5mx mx m ++=有两个相等的实数根,则相应二次函数2
5y mx mx m =++-与x 轴必
然相交于
点,此时m =
.
13. 抛物线2
(21)6y x m x m =---与x 轴交于两点1(0)x ,
和2(0)x ,,若121249x x x x =++,要使抛物线经过原点,应将它向右平移
个单位.
14.
如图所示,函数2
(2)(5)y k x k =-+-的图像与x 轴只有一个交点,则交点的横坐标0x =
.
15. 已知二次函数212y x bx c =-
++,关于x 的一元二次方程21
02
x bx c -++=的两个实 根是1-和5-,则这个二次函数的解析式为
16. 若函数y=(m ﹣1)x 2
﹣4x+2m 的图象与x 轴有且只有一个交点,则m 的值为 17.
y =x
2-k 2与抛物线y =x 2
+2x +2-2k 的交点在第 象限.
18. 将二次三项式x 2
+16x+100化成(x+p )2
+q 的形式应为 三、解答题(本大题共7小题,共66分)
19..(7分)已知一个二次函数的图象经过点(0,0),(1,﹣3),(2,﹣8),求函数解析式。
20. (8分)已知抛物线2
1()3
y x h k =--+的顶点在抛物线2
y x =上,且抛物线在x 轴上截得的线段长是
h 和k 的值.
21. (8分)已知函数2
2y x mx m =-+-.
(1)求证:不论m 为何实数,此二次函数的图像与x 轴都有两个不同交点; (2)若函数y 有最小值5
4
-,求函数表达式.
22.(9分) 已知二次函数2
2
24y x mx m =-+.
(1)求证:当0m ≠时,二次函数的图像与x 轴有两个不同交点;
(2)若这个函数的图像与x 轴交点为A ,B ,顶点为C ,且△ABC 的面积为表达式
23. (10分)下图是二次函数2
y ax bx c =++的图像,与x 轴交于B ,C 两点,与y 轴交于A 点. (1)根据图像确定a ,b ,c 的符号,并说明理由;
(2)如果A 点的坐标为(03)-,,45ABC ∠=,60ACB ∠=,求这个二次函数的函数表达式.
24.(12分) 已知抛物线22
2m y x mx =-+与抛物线2234
m y x mx =+-在直角坐标系中的位置如图所示,
其中一条与x 轴交于A ,B 两点.
(1)试判断哪条抛物线经过A ,B 两点,并说明理由; (2)若A ,B 两点到原点的距离AO ,OB 满足条件112
3
OB OA -=,求经过A ,B 两点的这条抛物线的函数式.
25. (12分)已知抛物线2
y ax bx c =++与y 轴交于C 点,与x 轴交于1(0)A x ,
,212(0)()B x x x <,两点,顶点M 的纵坐标为4-,若1x ,2x 是方程22
2(1)70x m x m --+-=的两根,且221210x x +=.
(1)求A ,B 两点坐标; (2)求抛物线表达式及点C 坐标;
(3)在抛物线上是否存在着点P ,使△PAB 面积等于四边形ACMB 面积的2倍,若存在,求出P 点坐标;若不存在,请说明理由.
参考答案
一、选择题(每选对一题得3分,共30分)
1.C 2.C 3.D 4.B 5.D 6.D 7.B 8.B 9.C 10.D 二、填空题(每填对一题得3分,共24分) 11.0 < 0 12.一 6
25
或9 7 15.2
5-x 3-x 21-
y 2= 16.-1或1或2 17.2 18.()368x 2
++ 三、解答题( 7小题,共66分)
19.(7分)解:x 2--x y 2
= 20.⎩⎨
⎧==⎩⎨
⎧==4
k 2
-h 4k 2h 或 21.(1)略 (2)13x -x y 1-x -x y 2
2
+==或 22.(1)略 (2)48x x 2y 48x -x 2y 2
2
++=+=或 23.(1)a>0,b>0,c<0
(2)A(0,-3), B(-3, 0 ) C(0 , -3 )
3-x 1-3x 3
3y 2)(+=
24.(1)4
m 3-mx x y 2
2
+= (2)设A (x 1 ,0),B(x 2 ,0), 则有
3
2
x 1x 121=+
解得3-x 2x y 2
+=
25. (1)A(-1,0), B(3, 0 ) (2)3-x 2-x y 2=,C (0,-3) (3)存在。
P1()()
9,131P29,131-+,.。