采样控制系统的分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热工过程自动控制原理实验报告
白思平 03015413
实验八采样控制系统的分析
一、实验目的
1. 熟悉并掌握Simulink 的使用;
2. 通过本实验进一步理解香农定理和零阶保持器ZOH 的原理及其实现方法;
3. 研究开环增益K 和采样周期T 的变化对系统动态性能的影响; 二、实验原理
1. 采样定理
图2-1为信号的采样与恢复的方框图,图中X(t)是t 的连续信号,经采样开关采样后,变为离散信号)(*t x 。
图2-1 连续信号的
采样与恢复
香农采样定理证明要使被采样后的离散信号X *(t)能不失真地恢复原有的连续信号X(t),其充分条件为:
max 2ωω≥S
式中S ω为采样的角频率,max ω为连续信号的最高角频率。由于T
S π
ω2=
,因而式可为 max
ωπ≤
T T 为采样周期。
2. 采样控制系统性能的研究
图2-2为二阶采样控制系统的方块图。
图2-2
采样控制系统稳定的充要条件是其特征方程的根均位于Z 平面上以坐标原点为圆心的单位圆内,且这种系统的动、静态性能均只与采样周期T 有关。 由图2-2所示系统的开环脉冲传递函数为:
]2
5
.05.01[)1(25])2(2[)1(25])15.0()1(25[)(21212++--=+-=+-==---S S S Z Z S S Z Z S S e Z z G S T
]5.015.0)1([
)1(25221T
e Z Z
Z Z Z TZ Z Z ---+----=
)
)(1()]
21()12[(5.122222T T T T e Z Z Te e Z e T --------++-=
闭环脉冲传递函数为:
)]21(]12[5.12)1()]
21(12[5.12)()(222222
222T
T T T T T T T Te e Z e T e Z e Z Te e Z e T z R z C ----------++-+++---++-=)( 5
.12)5.1125()5.115.1325()]
21(12[5.12222
222++-+-+--++-=-----T e Z e T Z Te e Z e T T
T T T T )( 根据上式,根据朱利判据可判别该采样控制系统否稳定,并可用迭代法求出该系统的阶跃输出响应。 三、实验设备:
装有Matlab 软件的PC 机一台 四、实验内容
1. 使用Simulink 仿真采样控制系统
2. 分别改变系统的开环增益K 和采样周期T S ,研究它们对系统动态性能及稳态精度的影响。 五、实验步骤
5-1. 验证香农采样定理
利用Simulink 搭建如下对象,如图2-3。
图2-3
设定正弦波的输入角频率w = 5,选择采样时间T 分别为0.01s 、0.1s 和1s ,观察输入输出波形,并结合香农定理说明原因。
5-2.采样系统的动态特性
利用Simulink 搭建如下二阶系统对象,如图2-4。
当系统的增益K=10,采样周期T 分别取为0.003s ,0.03s ,0.3s 进行仿真实验。 更改增益K 的值,令K=20,重复实验一次。 系统对象simulink 仿真图:
图
2-4
六、实验报告及思考题
1.采样-保持器在各种采样频率下的波形
(1)验证香农采样定理
正弦波的输入角频率w = 5,采样时间T分别为0.01s、0.1s和1s
T=0.01S
T=0.1S
T=1s
由以上图像可知,当T=0.01s时,输入输出的波形几乎一致;当T=0. 1s,输出波形虽然大致成正弦波形,但是
明显成阶梯状,信号还原较差;当T=1s ,输出波形杂乱无章,信号几乎没有得到还原。
由T
2π
ω=s 可算出三张图对应的采样频率分别为:πω
200=s ,π20,π2,而输入正弦波的角频率为ω
=5rad/s ,符合香农定理所述,当max ωω2≥s 时,信号才可能被复现,且max 2ωωs 比值越大,复现的信号与原信号的误差才越小。
(2)采样系统的动态特性
当系统的增益K=10,采样周期T 分别取为0.003s ,0.03s ,0.3s 进行仿真实验。
T=0.003
T=0.03
T=0.3
更改增益K的值,令K=20,重复实验一次。
T=0.003
T=0.03
T=0.3
由上面的曲线图可知,当T=0.003s时,由于采样周期小,频率高,输入输出曲线几乎一致,复现较好;当T=0.03s 时,由于采样周期变大,频率变小,输入与输出曲线开始有明显的偏差,且增大开环增益系数K的值,偏差越明显;当T=0.3s时,由于采样周期过大,频率过高,对于一个原先稳定的连续系统,加入采样器和零阶保持器后,降低了系统的稳定裕量,是系统出现不稳定。同时通过T=0.3s时的曲线,可以看出加入零阶保持器后相位会产生滞后。增加开环增益系数,系统稳定性裕量下降的更快。
2.连续二阶线性定常系统,不论开环增益K多大,闭环系统均是稳定的,而为什么离散后的二阶系统在K大到某一值会产生不稳定?
答:连续二阶线性定常系统,不论开环增益K多大,闭环系统均是稳定的,在加入采样器和零阶保持器后,随着开环增益增大,系统稳定性也会变化。所以有了采样器和零阶保持器后,为例保证系统稳定,K值就要受到限制,同时如果缩短采样周期,采样系统更接近于相应的连续控制系统,采样系统的稳定性将得到提高。