数值计算中的误差

合集下载

数值计算中的误差分析与修正方法

数值计算中的误差分析与修正方法

数值计算中的误差分析与修正方法引言:在现代科学和工程领域中,数值计算扮演着至关重要的角色,因为它能够为研究人员和工程师们提供精确、高效的解决复杂问题的手段。

然而,由于计算机的本质限制,数值计算常常会引入各种误差,从而影响计算结果的准确性和可靠性。

本文将探讨数值计算中常见的误差类型以及相应的分析和修正方法,旨在提高计算结果的精确性。

一、误差类型和来源1. 舍入误差:舍入误差是由于现代计算机内部对数字表示进行近似导致的。

由于计算机使用有限的二进制位数来表示实数,因此无法精确表示一些无理数或十进制小数。

这导致在执行算术运算时,结果会舍入到最接近的有效数字,从而引入舍入误差。

2. 截断误差:截断误差是由于截断或近似无限序列或函数而导致的。

例如,在数值积分中,将无限积分区间截断为有限部分,即使使用复杂的数值积分方法,仍然会产生截断误差。

3. 模型误差:模型误差是由于对实际问题建立的数学模型的简化或近似而引入的。

实际问题往往非常复杂,而为了进行数值计算,必须对问题进行适当建模。

然而,简化和近似会导致模型与真实情况之间存在差异,从而引入模型误差。

4. 数值不稳定性:数值计算中有些问题可能非常敏感,稍许输入变动可能会导致输出结果的巨大变化。

这种情况称为数值不稳定性。

例如,当计算具有较大条件数的线性系统或求根问题时,数值不稳定性可能会使结果产生较大的误差。

二、误差分析方法1. 误差界估计:误差界估计是一种常用的误差分析方法,它通过推导数值计算结果与真实结果之间的差距来提供一个误差界。

误差界估计方法利用数学技巧和数值分析原理,将误差的上界或下界与计算结果相关的因素联系起来,从而得到计算结果的误差范围。

2. 扩展精度计算:扩展精度计算是通过在计算过程中使用更高的精度,以减小舍入误差对最终结果的影响。

一种常见的方法是使用任意精度算法,例如多重精度算法。

这种方法的缺点是执行速度较慢,但可以显著减小舍入误差。

3. 自适应步长算法:自适应步长算法是为了减小截断误差而设计的一种方法。

1-2数值计算的误差

1-2数值计算的误差
从实际问题中抽象出数学模型 —— 模型误差 /* Modeling Error */
3. 截断误差
当得不到数学模型的精确解时,要用 数值计算方法求它的近似解,由此产生 的误差称为截断误差或方法误差 求近似解 —— 方法误差 (截断误差) /* Truncation Error */
例如:在微积分中sinx可展开成
"Hmm," says the physicist, "You mean that some Scottish sheep are black." "No," says the mathematician, "All we know is that there is at least one sheep in Scotland, and that at least one side of that one sheep is black!"
( x1 x2 ) ( x1 ) ( x2 )
e( x1 ) e( x2 ) er ( x1 x2 ) x1 x2
r ( x1 x2 )
( x1 ) ( x2 )
x1 x2
和的误差(限)等于误差(限)之和
(2)减法运算:
( x x ) ( x x ) 1 2 1 2 e( x1 x2 ) e( x1 ) e ( 差来源的分类 数 二、误差分析的重要性 值 三、绝对误差 计 算 四、相对误差 的 五、有效数字 误 六、数值运算的误差传播 差
1.观测误差
通过测量得到模型中参数的值 —— 观测误差 /* Measurement Error */
注:通常根据测量工具的精度,可以知

数值计算中的误差估计与分析

数值计算中的误差估计与分析

数值计算中的误差估计与分析在数值计算中,误差是无法避免的。

无论是数值积分、求根、线性方程组求解还是常微分方程求解,我们都需要对误差进行估计与分析,以保证结果的可靠性。

1.舍入误差:计算机中数字的存储精度是有限的,常用的浮点数表示法只能表示有限位数的小数。

当进行计算时,由于舍入操作会使结果产生一定的误差。

舍入误差是由于浮点数计算机表示能力造成的,它依赖于计算机所采用的机器数系统。

2.截断误差:在数值计算方法中,我们通常会使用有限项的级数展开式或多项式插值来近似解析解。

但由于展开或插值时的截断限制,会导致结果与真实结果之间的误差。

3.近似误差:数值计算方法本身就是在对问题进行近似求解,所以解的精确性受到近似精度的限制。

比如,对于数值积分来说,选择积分点的个数、插值多项式的次数都会影响结果的准确性。

4.舍入误差传播:在多步计算的过程中,每一步的舍入误差都会传播到下一步计算中,进而影响最终结果。

舍入误差的传播是一个累积效应,有时即使每一步舍入误差非常小,但在多步计算的累加下,也会导致结果产生很大的误差。

二、误差估计方法1.精度估计:对于一些数值方法,可以通过理论分析推导出误差的范围。

例如,对于数值积分,可以通过误差估计公式进行分析。

这种方法需要对问题进行数学建模,并具备一定的数学推导能力。

2.实验估计:对于一些复杂问题,很难通过理论分析得到精确的误差范围。

此时可以通过实验的方式来估计误差。

实验方法可以是计算机模拟实验,也可以是通过比较数值方法与解析解的差异来估计误差。

3.改进方法:除了估计误差大小,我们还可以通过改进数值方法来减小误差。

比如,可以采用更高阶的数值积分公式、使用更精确的数值微分方法等。

这些改进方法在一定程度上可以提高数值计算的准确性,并减小误差。

三、误差分析策略1.迭代策略:很多数值方法都是通过迭代来逐步逼近真实解的。

在迭代过程中,我们可以通过观察迭代序列的变化情况来判断结果是否趋近真实解,以及误差的变化是否在可接受范围内。

计算方法(1)-数值计算中的误差

计算方法(1)-数值计算中的误差

* r
(
x)
1)乘方运算结果的相对误差增大为原值 x的p倍,降低精度.
2)开方运算结果的相对误差缩小为原值
x的1/q倍,精度得到提高.
三.算例的误差分析
x
3
2 2

1 1

24
§6 算法的数值稳定性
一.算法稳定性的概念
凡一种算法的计算结果受舍入误差的影 响小者称它为数值稳定的算法.
例4 解方程 x2 (109 1)x 109 0
方程精确解: x1 10 9 , x2 1
利用求根公式
x1,2


b

b2 4ac 2a
x1 10 9 , x2 0
25

当多个数在计算机中相加时,最好从
绝对值最小的数到绝对值最大的数依次相
加,可使和的误差减小.
二.算法的改进
2 2

1 1

3
计算结 果
2 7/5
2 17 /12
1 ( 2 1)6

2 6

0.0040960

5
6


0.00523278
5
12
2 99 70 2
1
1 0.16666667
6
3
6
1



5
6
0.00523278
12 6
计算方法
1
第一章 数值计算中的误差
§1 引言 §2 误差的种类及其来源 §3 绝对误差和相对误差 §4 有效数字及其与误差的关系 §5 误差的传播与估计 §6 算法的数值稳定性

数值计算中的误差

数值计算中的误差

∴ n=3
r*=1/2x1 10-(n-1)=1/2*3 10-2=17%
1.3.4 有效数字与相对误差
例8 已知近似数x*有两位有效数字,试求其相
对误差限
解:已知 n=2 代入公式 r*=1/2x1 10-(n-1)得
r*=1/2x1 10-1
x*的第一位有效数字x1没有给出,可进行如下 讨论:当
e(x* ) x x* dx
er (x* )
e* x

x x* x

dx x
d ln x
1.4.2 算术运算误差
由d( x±y)=dx±dy 可得两数之和(差)的
误差等于两数的误差之和(差);
由 d ln(x y) d ln x d ln y 可得两数之积
的相对误差等于两数的相对误差之和;
定义1.2 设存在一个正数,使
e* x x* *
则称为近似值的绝对误差限,简称误差限或精度。
1.3 误差的度量
例1 设x ==3.1415926… 近似值x* =3.14,它的绝 对误差是 0.001 592 6…,有 ‌ x-x*=0.0015926… 0.002=0.210-2
一般情况,当f(x)≈f(x*)时,可用泰勒展开 f (x) f (x* ) f (x* )(x x* ) f (x) (x x* )2

d
ln
x y


d
ln
x

d
ln
y
可得两数商的相
对误差可看作是被除数与除数的相对误差之差

例12 正方形的边长约为100cm,怎样测量才能使其 面积误差不超过1cm2 ?

数值计算中的误差

数值计算中的误差

曲线拟合的最小二乘法
法方程:带权离散内积 正交多项式法:关于离散点集的带权正交多项式

3
第四章

数值积分
插值型求积公式
机械求积公式,代数精度及其计算方法,收敛性,稳定性 梯形公式,抛物线(Simpson)公式,Newton-Cotes公式 余项估计(三步曲)
复合求积公式:复合梯形公式,复合Simpson公式 Romberg算法

梯形法的递推计算,Romberg外推思想与计算过程
Gauss求积公式
Gauss点的计算,Gauss系数的计算 Gauss-Legendre公式,Gauss-Chebyshev公式

数值微分
向前一阶差分,向后一阶差分,余项计算 中心差分(一阶导数,二阶导数,推导过程),余项计算

4
正交多项式
正交多项式族,首项系数为 1 的正交多项式递推公式 Legendre多项式,Chebyshev多项式,Chebyshev插值多项式

最佳逼近
最佳平方逼近:法方程,Hilbert矩阵,正交多项式法(推广到一般区间) n 次多项式的 n-1 次最佳一致逼近(推广到一般区间) ,Chebyshev级数
Hermite 插值

两点三次,三点三次,推导过程,余项推导
分段低次插值

分段线性插值,分段Hermite插值,余项推导
三次样条插值

三次样条函数,三弯矩方程2第三章源自范数与内积函数逼近
范数与内积的定义,常见范数与内积:Rn, C[a, b] 正交,Cauchy-Schwarz 不等式,Gram矩阵 带权内积,权函数,内积导出范数
第一章 数值计算中的误差

第一章数值计算中的误差

第一章数值计算中的误差

用 x ± ε 表示一个近似值,这在实际计算中很不方便。当在实际运算中遇到的数的位数 很多时,如π , e 等,常常采用四舍五入的原则得到近似值,为此引进有效数字的概念。
定义 3:当近似值 x* 的误差限是其某一位上的半个单位时,我们就称其“准确”到这一位,
xn n!
&1+
x
+
x2 2!
+"+
xn n!
近似代替
ex
,这时的截断误差为
Rn
(x)
=
eξ (n +1)!
x n +1
,
ξ 介于 0 与 x 之间。
这种误差就是截断误差。
sin x = x − x3 + x5 − ...... , 用近似计算公式 sin x ≈ x - x3 + x5 截断误差估计
实际问题→数学模型→计算方法→程序设计→上机计算 由实际问题应用有关科学知识和数学理论建立数学模型这一过程,通常作为应用数学的 任务。而根据数学模型提出求解的计算方法直到编出程序上机算出结果,进而对计算结果进 行分析,这一过程则是计算数学的任务,也是数值计算方法的研究对象。 数值计算方法(也称数值分析或计算方法)是计算数学的一个主要部分,它是一门把数 学理论与计算机紧密结合起来进行研究的实用性很强的学科。它主要研究用计算机求解各种 数学问题的数值方法及其相关理论。
的绝对误差限为 0.0005
显然,误差限 ε(x)总是正数,且
ε (x) = x − x* ≤η
(1.3.3)

x * −η ≤ x ≤ x * +η
这个不等式,在应用上常常采用如下写法
x = x * ±η
(1.3.4) (1.3.5)

数值计算中的误差课件

数值计算中的误差课件
在进行数值计算时,舍入误差是不可避免的,但可以通过一些方法来减小其影响。
截断误差
01
02
03
04
截断误差是由于对无限循环小 数或无穷级数进行截断而产生
的误差。
当我们使用有限项来近似表示 一个无限循环小数或无穷级数
时,就会产生截断误差。
截断误差的特点是它是一个无 界误差,可能会随着近似项的 增加而逐渐减小,但永远不会
VS
结论
根据误差分析报告,得出关于模型准确性 的结论。例如,如果误差分析结果表明模 型预测结果不够准确,那么需要进一步改 进模型或调整模型参数。
THANKS
感谢观看
数据类型
选择适当的数据类型可以减少计算过程中的误差。例如,对于精度要求较高的 计算,应使用浮点数;对于范围较大的数值,应使用定点数。
利用数值稳定性技巧
舍入策略
采用适当的舍入策略可以减少误差。例如,四舍五入或向上取整可以减少舍入误 差。
迭代收敛
通过迭代法求解方程时,应选择收敛速度较快的算法以减少误差。例如,梯度下 降法和牛顿法具有较好的收敛性能。
03
算法误差分析
迭代法与收敛性
迭代法
迭代法是一种通过不断逼近解来 求解方程的方法。常见的迭代法 有Jacobi迭代法、Gauss-Seidel
迭代法等。
收敛性
收敛性是指迭代法是否能得到准确 解的过程。一般来说,收敛速度越 快,误差越小。
误差分析
对于不同的迭代法,需要进行误差 分析,比较各种方法的优劣。
最小二乘法与回归分析
数据拟合
最小二乘法可以找到最佳 拟合数据的数据集,但可 能存在过拟合现象。
病态性
当数据集具有病态性时, 使用最小二乘法可能导致 误差增大。

计算方法(1)-数值计算中的误差

计算方法(1)-数值计算中的误差

f
(x1, x2 )

f
(x1*, x2* )


f x1
*

(x1

x1* )


f x2
*

(x2

x2* )


1 2!

2 f x12
*
(x1

x1* )2

2
2 f x1x2
*

2
§1 引言
一.用数值计算方法解决实际问题 的步骤
1.将实际问题抽象成数学问题,即建立 数学模型;
2.选用合适的算法,编制出计算机程序; 3.上机调试并计算,以得出所欲求解的
结果.
3
二.数值计算方法
1.定义 将所欲求解的数学模型简化
成一系列算术运算和逻辑运算,以便在计 算机上求出问题的数值解,并对算法的收 敛性、稳定性和误差进行分析、计算.
21
例: 比较算法
① 计算 3.01 3 (精确到第五位数字).
② 计算 1 cosx .
2.乘法运算的误差传播

* r

n
xi
n

* r
(
xi
)
i1 i1
1) 近似值之积的
相对误差等于相乘
各因子的相对误差
的代数和.

n i 1
xi
误差增长因子16的绝对误差的倍数经传播后增大或缩小表示增长因子的绝对误差缩小的倍数经传播后增大或表示的绝对误差增长因子的相对误差的倍数经传播后增大或缩小表示增长因子的相对误差缩小的倍数经传播后增大或表示的相对误差增长因子误差增长因子的绝对误差增长因子的相对203

数值计算中的误差分析

数值计算中的误差分析

数值计算中的误差分析在数值计算中,误差是一个不可避免的问题。

无论是在实际应用中还是在理论研究中,我们都需要对计算结果中的误差进行分析和评估。

本文将探讨数值计算中的误差分析方法和其在实际应用中的重要性。

一、误差的来源与分类在数值计算中,误差可以来源于多个方面。

主要可以分为以下两类:1.截断误差截断误差是由于数值计算中采用有限的近似方法而引入的误差。

在求解数学问题时,为了简化运算或逼近实际情况,我们通常需要对数学模型进行近似处理。

这个过程中,我们往往需要将无穷级数截断为有限项,或者使用近似公式。

这些近似方法往往会引入截断误差。

当近似的项数增多时,截断误差会减小。

因此,截断误差可以通过增加计算的精确度来降低。

2.舍入误差舍入误差是由于计算机内部存储数值时产生的。

计算机内部采用有限的二进制表示数值,因此会存在舍入误差。

特别是在进行数值计算时,计算机需要将结果截断或者四舍五入到有限位数。

这个过程中,会引入舍入误差。

舍入误差的大小取决于计算机的精度和数值的表示范围。

为了减小舍入误差,我们需要选择合适的计算精度或者采用更高级别的计算机。

二、误差分析方法为了评估数值计算中的误差,我们需要采用一些误差分析方法。

以下是常用的几种方法:1.绝对误差与相对误差绝对误差和相对误差是最直观、常用的误差度量方法。

绝对误差是指计算结果与真实值之间的差距,用于衡量计算结果的准确性。

相对误差是绝对误差除以真实值的比值,用于衡量计算结果的相对准确性。

绝对误差和相对误差越小,计算结果越接近真实值。

2.截断误差估计在数值计算中,我们经常需要通过截断误差来评估近似方法的精度。

截断误差估计方法可以根据近似方法的性质和推导出来的误差界,对近似结果进行误差估计。

这种方法通常需要对数学模型和数值方法有一定的了解和掌握。

3.稳定性分析稳定性分析是评估数值计算方法对输入数据中扰动的敏感程度。

当输入数据存在微小变化时,计算结果也会相应地发生变化。

稳定性分析可以帮助我们判断计算方法的可靠性,并找到对输入数据扰动不敏感的计算方法。

数值计算方法 数值计算的误差 - 数值计算的误差

数值计算方法 数值计算的误差 - 数值计算的误差
再如:函数 f (x) 用泰勒多项式近似代替
pn ( x)
f (0)
f (0) x 1!
f (0) x 2 2!
f (n) (0) x n n!
则截断误差是: Rn (x)
f (x) Pn (x)
f (n1) ( ) xn1
(n 1)!
(0 x)
6
误差的分类
四、舍入误差: 数字计算过程中产生的误差
第 一
绪论

1
1 话说科学计算 2 话说《数值计算方法》课程 3 误差与有效数字 4 误差的传播与改善
2
误差的概念 有效数字 误差的分类 误差的传播
3
误差的分类
假设产生误差
一、模型误差__数学模型与实际问题之间出现的误差.
实验:交通流量问题
问题分析与建立模型:
模型假设: (1) 全部流入网络的流量
( 12 )6 29
0.00501995
0.005050633883
4
1 99 70 2
1 0.00507614 197
12 0.00504626 2378
0.005050633883
20
比较与思考
Mathematica 的效果
0.005050633883 0.005050633883 0.005050633883 0.005050633883
改 善
一般情况,当f ( x) f ( x* )时 可用泰勒展开
f ( x) f ( x* ) f '( x* )( x x* ) f ''( x* ) ( x x* )
2
取右端的有限项近似代替左端。
22
防止大数吃小数

数值计算中的误差

数值计算中的误差
这就是算法的数值稳定性问题。
p( x) a0 xn a1xn an1x an
an1 ) x an
p( x) (((a0 x a1 ) x a2 ) x
内江师范学院数学与信息科学学院 吴开腾 制作
二、误差的种类及其来源
过失误差或疏忽误差 模型误差
非过失误差 观测误差 截断误差
*
例如 3.14159265 的五、六位有 效数字分别为:
1 3.1416 , 2 3.14159
•数字的规格化形式
一般说,设有一个数 x ,其近似值 x 的规格化形式
*
x 0.1 2 n 10
*
m
(5)
1 , 2 ,, n 都是0,1,2,3,4,5,6,7,8,9中的一个数 式中: 字, 1 0 ;n是正整数;m是整数。
内江师范学院数学与信息科学学院 吴开腾 制作
(7)
计算题
绝对误差和相对误差的计算以及有效数字?
例1 当用 3.1416 来表示 它的相对误差是多少?
的近似值时,
3 ,由(7)有
1 解: 3.1416 具有五位有效数字,
* r
1 1 51 4 ( x) 10 10 23 6
内江师范学院数学与信息科学学院 吴开腾 制作
五、防止误差传播的若干方法
应选用数值稳定的计算算法,避开不稳定的算式; 注意简化计算步骤,减少运算次数; 大数“淹没”小数的现象发生;
应避免两相近数相减(变换);
绝对值太小的数不宜作为除数;
注意计算过程中误差的传播与积累。
内江师范学院数学与信息科学学院 吴开腾 制作
1 x 99 70 2
6

数值计算中的误差

数值计算中的误差

数值计算中的误差数值计算过程中的误差是指由于各种原因产生的计算结果与真实结果之间的差异。

这些误差可以分为三类:截断误差、舍入误差和传播误差。

截断误差是由于计算过程中的近似方法导致的误差。

在数值计算中,通常使用有限的计算步骤来近似数值。

例如,使用泰勒级数展开式来近似一个函数,需要截断级数并且只保留有限的项。

这种近似方法会引入截断误差。

另一个例子是数值积分,将一个连续函数的积分区间离散化为有限个小区间,每个小区间的面积用一个代表性的值来近似。

这种近似方法也会引入截断误差。

舍入误差是由于计算机在进行数值计算时所产生的误差。

计算机中使用二进制来表示数字,而大多数实数是无法精确地用有限的二进制位数来表示的。

当进行数值计算时,计算机必须对数字进行舍入,即将无限位数的数字截断为有限的位数。

这种舍入操作会导致计算结果与实际结果之间产生误差。

另外,计算机在进行加减乘除等运算时,会出现舍入误差。

例如,计算机对两个非常接近的数字进行相减时(称为“减法消失现象”),由于舍入误差的累积,可能会得到一个较大的误差。

传播误差是由于数值计算中的多个步骤之间的误差传播而产生的误差。

当计算过程中的一个步骤的输出作为下一个步骤的输入时,前一步骤的误差会传播到后一步骤,从而导致误差的累积。

例如,在求解微分方程的数值方法中,每个时间步长的计算结果会成为下一个时间步长的初始值。

如果每个时间步长都具有一定的误差,误差会逐渐累积并导致整个计算过程的误差增加。

为了减小数值计算中的误差,一些方法可以采取。

例如,增加计算的精度,使用更高阶的近似方法来减小截断误差;使用更大的计算单位,避免舍入误差的累积;结合多个数值方法,控制误差传播。

此外,还可以通过数值稳定性的分析和合理的算法设计,来降低误差的产生和传播。

总之,数值计算中的误差是不可避免的,但可以通过合理的方法和技术来减小误差并提高计算结果的准确性。

对于一些关键性的计算,还可以通过数值计算的验证方法,如重复计算、精确解的对比等,来评估计算结果的可靠性和准确性。

数值计算课后全部答案(整合)

数值计算课后全部答案(整合)

目录第一章-----------------------------------------1 第二章-----------------------------------------4 第三章-----------------------------------------9 第四章-----------------------------------------15 第五章-----------------------------------------20 第六章-----------------------------------------27 第七章-----------------------------------------30第一章数值计算中的误差习题一1.1 下列各近似数的绝对误差限是最末位的半个单位,试指出它们各有几位有效数字。

1x =-3.105 , 2x =0.001, 3x =0.100, 4x =253.40, 5x =5000, 6x =5⨯310.答案:4,1,3,6,4,1.1.2 设100>*x >10,x 是*x 的有五位有效数字的的近似数,求x 的绝对误差限。

答案:当10<x<100时,因为有5位有效数字,所以绝对误差限为0.005. 1.3 求下列各近似数的相对误差限和有效数字位数: 1) 123x x x ++,2) 124x x x 3) 24x x 答案:()10.0005e x ≤()20.0005e x ≤()30.0005e x ≤ ()40.005e x ≤ ()50.5e x ≤ ()60.5e x ≤1)()()()()123123e x x x e x e x e x ++=++≤()()()123e x e x e x ++3221.5100.15100.510---≤⨯=⨯≤⨯2123()0.1510x x x ε-++=⨯123123123()()0.0004993...0.0004994r x x x e x x x x x x ε++++==≤++123x x x ++=-3.004 精确到小数点后两位,所以有三位有效数字。

《数值分析》第一章 数值计算中的误差

《数值分析》第一章 数值计算中的误差

值,其绝对误差限等于该近似值末位的半个单位。
14
§2 舍入方法与有效数字
2.2 舍入方法
2.2.2四舍五入法
• 例:设a=-2.18和b=2.1200是分别由准确值x和y 经过四舍五入而得到的近似值,问: a、b的绝 对误差限、相对误差限各是多少?
解: (a) 0.005 0.5 102
(b) 0.00005 0.5104
n位
≤ 0 . 0 … 0 999... < 0 . 0 … 0 1=1×10-n
n位
n-1位
• 截断法产生的绝对误差限不超过近似数a最末位 的1个单位。
11
§2 舍入方法与有效数字
2.2 舍入方法
2.2.2四舍五入法
• 四舍情况,
A=a0 a1 … am . am+1 … am+n
• 当am+n+1 =0,1,2,3,4时,
4
§2 舍入方法与有效数字
5
§2 舍入方法与有效数字
2.1 绝对误差与相对误差
• 近似数a的绝对误差 , 简称误差 设a是精确值A的近似值,
=a-A
• 绝对误差限 ||=|a-A|<(上界)
• 由上式可推知 a- <A<a+,也可表示为A=aAFra biblioteka-a
a+
6
§2 舍入方法与有效数字
2.1 绝对误差与相对误差
• 相对误差 : 绝对误差与精确值之比 =/A。 • 实际计算/a。
代替后误差
a A 1 2
A a Aa
Aa
• 相对误差限 ||=|/a |< /|a|= (上界)
• 绝对误差是有量纲的量,相对误差没有量纲,有时 亦用百分比、千分比表示。

12 数值计算的误差

12 数值计算的误差

实际问题
建立数 学模型
确定数 值解法
上机求解
模型误差、观测误差
截断误差
舍入误差
在此主要研究这两种误差
1.2.2
一、绝对误差
误差与有效数字
定义1 设 x为准确值, x * 为 x 的一个近似值, 称
e* x * x
为近似值的绝对误差,简称误差. 误差 e *可正可负,当绝对误差为正时近似值偏大,叫 强近似值; 当绝对误差为负时近似值偏小,叫弱近似值. 通常准确值 x 是未知的, 因此误差 e *也未知.
1 10 2 , 2 1 π 3.1416 10 4. 2 π 3.14
定义3
若近似值 x *的误差限是某一位的半个单位,
该位到 x *的第一位非零数字共有 n 位,就说 x *有 n 位有
效数字.
表示为
x* 10 m (a1 a2 10 1 an 10 ( n 1) ), (2.1)
若能根据测量工具或计算情况估计出误差绝对值的一个
上界,即
e * x * x *,
则 * 叫做近似值的误差限, 它总是正数.
例如,用毫米刻度的米尺测量一长度 x ,读出和该长 度接近的刻度 x * ,x* 它的误差限是 0.5mm , 是 x的近似值, 于是 x * x 0.5mm. 如读出的长度为 765mm , 则有 765 x 0.5 . 虽然从这个不等式不能知道准确的 x 是多少,但可知
* r
* r
*
x*
.
三、有效数字 当准确值 x 位数比较多时,常常按四舍五入的原则得 到 x 的前几位近似值 x * , 例如
x π 3.14159265

数值计算中的误差

数值计算中的误差

数值计算中的误差误差在数值计算中是一个重要的概念,它代表了测量结果和真实值之间的差异。

在实际计算中,由于测量的限制、近似数的使用以及计算机舍入等原因,都会引入误差。

了解误差的类型和影响因素,对于数值计算的准确性和可靠性至关重要。

首先,我们来了解误差的分类。

误差可以分为绝对误差和相对误差。

绝对误差是指测量结果与真实值之间的差异。

它可以通过计算差值来得到,即绝对误差=测量结果-真实值。

绝对误差通常用于描述实际测量的准确性。

相对误差是指绝对误差与真实值之间的比例。

它可以通过计算绝对误差与真实值的比值来得到,即相对误差=绝对误差/真实值。

相对误差通常用于描述测量结果的相对准确性,尤其是在比较不同尺度或量纲的测量结果时。

1.测量误差:测量仪器的精度和灵敏度决定了测量误差的大小。

不同的测量仪器具有不同的精度和灵敏度,因此测量结果可能会受到测量误差的影响。

2.近似数的使用误差:在数值计算中,由于一些数值无法精确表达,我们常常使用近似数进行计算。

这些近似数的使用会引入近似误差。

近似误差的大小取决于近似数的选择和使用方式。

3.计算机舍入误差:计算机在进行数值计算时,会对结果进行舍入。

舍入误差是由于舍入操作引入的误差。

舍入误差的大小取决于计算机的浮点数表示方式和舍入规则。

误差的计算和评估可以通过各种方法进行。

1.绝对误差的计算:绝对误差可以通过测量结果和真实值之间的差值来计算得出。

绝对误差的大小通常用于评估测量的准确性。

2.相对误差的计算:相对误差可以通过计算绝对误差与真实值之间的比值来计算得出。

相对误差的大小通常用于评估测量结果的相对准确性。

3.误差的传递:在复合计算中,误差可以通过误差传递公式进行计算。

误差传递公式可以帮助我们估计复合计算的误差范围。

误差在数值计算中具有重要的意义。

首先,误差的存在使我们意识到测量结果或计算结果并不是绝对准确的。

通过对误差的理解和评估,我们可以提供对结果的合理解释,并根据误差范围进行相应的决策。

数值计算中的误差分析与稳定性

数值计算中的误差分析与稳定性

数值计算中的误差分析与稳定性数值计算在现代科学和工程领域起着至关重要的作用。

然而,在进行数值计算时,由于数值计算机制的特性,会引入一定的误差,这些误差可能会对计算结果产生重要影响。

因此,在数值计算中,误差分析和稳定性的研究至关重要。

本文将讨论数值计算中的误差来源、误差分析方法以及提高计算稳定性的措施。

一、误差来源在数值计算中,误差可以来自多个方面,主要包括截断误差和舍入误差。

1. 截断误差:截断误差是由于使用有限的计算步骤来近似无限精度的数学运算而引入的误差。

例如,在求解微分方程时,使用数值方法进行离散化处理,会引入截断误差。

2. 舍入误差:舍入误差是由于计算机内部表示实数时所引入的误差。

计算机在存储和计算实数时,通常是以有限的二进制位数进行表示。

因此,无法准确表示所有实数。

在进行计算时,舍入误差会导致最终结果与精确结果之间存在差异。

二、误差分析方法为了评估数值计算的精度和稳定性,需要对误差进行分析。

下面介绍几种常见的误差分析方法。

1. 绝对误差:绝对误差是指计算结果与真实值之间的差距。

绝对误差可以通过减去真实值得到。

2. 相对误差:相对误差是绝对误差除以真实值的比值。

相对误差可以反映计算结果的相对精度。

3. 条件数:条件数是用于衡量在输入数据中的微小变动如何影响计算结果的稳定性的度量。

条件数越大,计算结果对输入数据的变动越敏感,稳定性越差。

三、提高计算稳定性的措施为了提高数值计算的稳定性,可以采取以下几种措施。

1. 使用高精度计算库:使用高精度计算库可以增加计算精度,减小误差的产生。

高精度计算库通常能够提供更多的有效位数,从而减小舍入误差。

2. 选择合适的数值方法:不同的数值方法在不同问题上表现不同的准确性和稳定性。

在进行数值计算时,应根据实际情况选择合适的数值方法,以提高计算的稳定性。

3. 控制计算步骤:合理控制计算步骤对于减小误差具有重要作用。

例如,在求解数值积分时,可以选择适当的积分方法和节点,以减小截断误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

使用计算机解决科学计算问题时大致经历如下几
个过程:
2
实际问题Leabharlann 数学模型数值计算方法
上机计算求出结果
程序设计
随着科学技术的突飞猛进,无论是工农业生
产还是国防尖端技术,例如机电产品的设计、建
筑工程项目的设计、气象预报和新型尖端武器的 研制、火箭的发射等,都有大量复杂的数值计算
3
问题急待解决。它们的复杂程度已达到非手工计 算所能解决的地步。数字式电子计算机的出现和 飞速发展大大推动了数值计算方法的进展,许多 复杂的数值计算问题现在都可以通过电子计算机 进行数值计算得到妥善解决。
题。
数值计算过程中会出现各种误差,它们可分 为两大类:一类是由于算题者在工作中的粗心大
7
意而产生的,例如笔误以及误用公式等,这类误 差称为“过失误差”或“疏忽误差”。它完全是 人为造成的,只要工作中仔细、谨慎,是完全可 以避免的;而另一类为“非过失误差”,在数值 计算中这往往是无法避免的,例如近似值带来的
p( x) an xn an1 xn1 a1 a0
5
的值时,若直接计算 ai xi (i 项相加,共需做
0,1,, n) ,再逐
n(n 1) 1 2 (n 1) n 2
次乘法和n 次加法。n=10时需做55次乘法和10次 加法。若用著名秦九韶(我国宋朝数学家)算法 ,将多项式P(x)改成
各问题的数据不同,计算快慢也会不同,一般是用
最坏情况下所花的时间来作讨论。设输入数据的规 模(size)是l(在网络问题中,l一般与节点数及弧数
有关,而对一般极值问题,l往往与变量数及约束
数有关),设在最坏情况下运算次数是f(l),则f(l) 称为算法的计算复杂性。
12
具有什么样的计算复杂性的算法被认为是好的呢?目 前计算机科学中广为接受的观点是:多项式时间算法, 即f(l)是关于l的一个多项式,或者以一个多项式为 上界的。例如, l 2 l , l 3 , l logl 等是好的算法;而指 数时间算法,即f(l)是关于l的指数式,或以一个指数 式为下界的,例如
第一章
§1 §2 §3 §4 §5 §6
数值计算中的误差
引 言 误差的种类及其来源 绝对误差和相对误差 有效数字及其与误差的关系 误差的传播与估计 算法的数值稳定性
1
§1 引 言
计算方法也称数值分析。数值分析是研究各 种数学问题求解的计算方法,即数值计算。利用 计算尺、电子计算机等计算工具来求出数学问题 得到数值解的全过程,称为数值计算。 在电子计算机成为数值计算的主要工具的今 天,需要研究适合计算机使用的数值计算方法。
1 12 0.005076 0.005046 197 2378
11
衡量一个算法的好坏时,计算时间的多少是非常重 要的一个标志。由于实际的执行时间依赖于计算机 的性能,因此所谓算法所花时间是用它执行的所有 基本运算,如算术运算、比较运算等的总次数来衡 量的。这样时间与运算的次数直接联系起来了。当 然,即使用一个算法计算同一类型的问题时,由于
10
表1-1
序 号 算 式 计 算 结 果
2 7/5
2 17 / 12
5 0.005233 12
6
1 2 3 4
1 0.166667 1 6 6 6 12 0.005020 5 0.005233 29 12
误差,模型误差、观测误差、截断误差和舍入误
差等。对于“非过失误差” ,应该设法尽量降 低其数值,尤其要控制住经多次运算后误差的积
累,以确保计算结果的精度。
下面是一个简单的例算,可以看出近似值带 来的误差和算法的选择对计算结果的精度所产生 的巨大影响。例如,要计算
8
2 1 x 2 1
3l , l! 等 情况,则是坏的。这个
看法的依据是很明白的,因为当l增大时,指数函数 比多项式函数增长快。
用数值计算的方法来解决工程实际和科学技
术中的具体技术问题时,首先必须具体问题抽象 为数学问题,即建立起能描述并等价代替该实际 问题的数学模型,例如各种微分方程、积分方程 、代数方程……等等,然后选择合适的计算方法 ( 算法),编制出计算机程序,最后上机调试并 进行计算,以得到所欲求解的结果。
4
所谓数值计算方法,是指将所欲求解的数学 模型(数学问题)简化成一系列算术运算和逻辑
可用四种算式算出:
3
x

2 1
6
x 99 70
2
6
x
1 2 1
1 x 99 70
2
9
2 7 5 1.4 和 2 17 12 1.4166 按上列四种算法计
如果分别用近似值
算 x 值,其结果如下表1-1所示。
由表1-1可见,按不同算式和近似值计算出 的结果各不相同,有的甚至出现了负值,这真是 差之毫厘,谬以千里。可见近似值和算法的选定 对计算结果的精确度影响很大。因此,在研究算 法的同时,还必须正确掌握误差的基本概念,误 差在近似值运算中的传播规律,误差分析、估计 的基本方法和算法的数值稳定性概念,否则,一 个合理的算法也可能会得出一个错误的结果。
P( x) ((((a n x a n1) x a n2) x a 2) x a1) x a0
6
来计算时,只要做n次乘法和n次加法即可。 对于小型问题,计算的速度和占用计算机内
存的多寡似乎意义不大。但对于复杂的大型问题
而言,却是起着决定性作用。算法取得不恰当, 不仅影响到计算的速度和效率,还会由于计算机 计算的近似性和误差的传播、积累直接影响到计 算结果的精度甚至直接影响到计算的成败。不合 适的算法会导致计算误差达到不能容许的地步, 而使计算最终失败,这就是算法的数值稳定性问
运算,以便在计算机上求出问题的数值解,并对
算法的收敛性和误差进行分析、计算。这里所说 的“算法”,不只是单纯得数学公式,而且是指
由基本的运算和运算顺序的规定所组成的整个解
题方案和步骤。一般可以通过框图(流程图)来 较直观地描述算法的全貌。 选定适合的算法是整个数值计算中非常重要 的一环。例如,当计算多项式
相关文档
最新文档