交通流理论-排队论模型、跟弛模型与交通波模型
第四章 交通流
[
]
从S与m的比值看,用泊松分布或负二项分布拟合可能是合适的. 若用泊松分布拟合,起分布参数m=5.254 若用负二项分布拟合,它的两个分布参数计算如下: p=m/ S=5.254/6.753=0.78 β= m/( S-m)=5.254 /(6.753-5.254)=18.4
P (0) = e m m P (k ) P ( k + 1) = k +1
1 N 1 g 2 S = (ki m ) = (k j m )2 f j ∑ ∑ N 1 i =1 N 1 j =1
2
应用举例
例题1 : 设60辆汽车随机分布在4km长的道路上,服从泊松分 60辆汽车随机分布在 辆汽车随机分布在4km长的道路上 长的道路上,
布,求任意400m路段上有4辆及4辆以上汽车的概率. 求任意400m路段上有 辆及4辆以上汽车的概率. 路段上有4
∑k
m=
j =1
g
j
fj =
N
1 × (0 × 2 + 1 × 15 + 2 × 20 + ......12 × 2) = 5.254 232
1 g 1 2 2 2 2 S = ( k j m )2 f j = × 2 × (0 5.254) + 15 × (1 5.254) + 20 × (2 5.254) + ... + 2 × (12 5.254) = 6.753 ∑ N 1 j =1 232 1
车辆到达数kj 包含kj的间隔出现次数 <3 3 4 5 6 7 8 9 10 11 12 >12 1 1 0
0 3 0 8 10 11 10 11 9
表4-1
上午高峰期间以15s间隔观测车辆到达的数据 上午高峰期间以 间隔观测车辆到达的数据
5第五章 交通流理论
损失制:顾客到达时,若所有服务台均被占,该
顾客就自动消失,永不再来。
等待制:顾客到达时,若所有服务台均被占,他
们就排成队伍,等待服务。服务次序有先到先服务
(FIFO)、先到后服务(LIFO)和优先权服务(SIRO)等多
种规则。
混合制:顾客到达时,若队伍长小于L,就排入
队伍;若队伍长等于L,顾客就离去,永不再来。
解:这里t 理解为车辆数的空间间隔,λ为车 辆平均分布率,m 为计数空间间隔内的平均 车辆数。 由λ=60/10 t=1 ,因此m =λt=6(辆) 这里m即为计数空间间隔内的平均车辆数。
P( 0 ) P( 2 ) P( 4 ) P( 6 ) m e e 0.0025 P(1) P( 0 ) 0.0149 1 m m P(1) 0.0446 P( 3 ) P( 2 ) 0.0892 2 3 m m P( 3 ) 0.1338 P( 5 ) P( 4 ) 0.1606 4 5 m P( 6 ) 0.1606 6
(1)一个周期内到达车辆不超过10辆的概率;
(2)求到达车辆不致两次排队的周期最大百分率。
2、二项分布
车辆比较拥挤、自由行驶机会不多的车流
基本公式
P k C p 1 p
n k k
n k
k 0,1,2,
式中: Pk—在计数间隔t内到达k辆车的概率; n—每个计数间隔持续的时间,正整数;
距分布来表述,这种分布属于连续型分布。
1、负指数分布
交通流到达服从泊松分布,则交通流到达的
车头时距服从负指数分布,概率分布密度函数为
dP t F t e dt
适用条件:车流密度不大,车辆随机到达,且 车流为连续,当流量小于500veh/h/车道时,用负指 数分布描述车头时距,通常是符合实际情况的。
交通工程学 第八章 道路交通流理论
综上所述,按格林希尔茨的速度—密度模型、流量— 密度模型、速度—流量模型可以看出:Qm、Vm和Km是划 分交通是否拥挤的重要特征值。
当Q≤Qm、K>Km、V<Vm时,则交通属于拥挤;
当Q≤Qm、K≤Km、V≥Vm时,则交通属于不拥挤。
8.1.2 连续流特征
例题
1、已知某公路的畅行车速Vf为80km/h,阻塞密度Kj为100辆 /km,速度—密度关系为线性关系,试求: (1)此路段上期望得到的最大流量为多少? (2)此时对应的车速为多少? 解:(1)因为速度—密度关系为线性关系,所以: Kj Vf Km Vm 2 2
概述
交通模型
微观方法处理车辆相互作用下的个体行为,包括跟驰模 型和元胞自动机模型(Cellular Automata, CA)等 宏观方法视交通流为大量车辆构成的可压缩连续流体介 质,研究许多车辆的集体平均行为,比如LWR模型 (Lighthill-Whitham-Richards ) 介于中间的基于概率描述的气动理论模型(gas-kineticbased model)
P( 4) Pi 0.1512
i 0 4 1
不足4辆车的概率: 4辆及4辆以上的概率:
P( 4) 1 P( 4) 0.8488
8.2.2 离散型分布
练习
例题:设80辆汽车随机分布在8km长的道路上,服从 泊松分布,求任意1km路段上有5辆及5辆以上汽车的概 率。
8.1.2 连续流特征
数学描述
(1)速度与密度关系 格林希尔茨(Greenshields)提出了速度-密度线性关系 模型: K
V V f (1
Kj
)
当交通密度很大时,可以采用格林柏(Grenberg)提 出的对数模型: K
[工学]交通流理论
且有:∑fi =N,∑Fi =N
3、确定统计量的临界值χ2a
χ2a值与置信水平α和自由度DF有关,α通常取0.05 。
DF=g-q-1,式中,q为约束数,指原假设中需确定的未知数的个 数,对泊松分布q=1(只有m需确定),对二项分布和负二项分布 q=2(需确定P、n两个参数)。
N1=λ·P(h≥a1)= λe-λa1 主要道路车流中车头时距大于a2的数目:N2= λe-λa2
…… 则,主要道路车流中允许一辆车穿过的车头间隔数目为:N1-N2
主要道路车流中允许二辆车穿过的车头间隔数目为:N2-N3 主要道路车流中允许三辆车穿过的车头间隔数目为:N3N4
……
15
∴到达率为λ的车流允许穿越的车辆数总和为: Q次=1(N1-N2)+2(N2-N3)+3(N3-N4)+… =N1+N2+N3+N4+…=λ[e-λa1 + e-λa2 + e-λa3 +…] =λ[e-λa + e-λ(a+a0) + e-λ(a+2a0) +…]
P(h≥t) =e-λ(t-τ) t≥τ 其概率密度函数为: λe-λ(t-τ) t≥τ
P(t) =
0
t<τ
1
1
移位负指数分布的均值M= +τ ,方差D= 2
用样本的均值(平均车头时距)m和方差S2代替M、D,即可求
得λ和τ。
17
2、适用条件 用于描述不能超车的单列车流和车流量低的车流的车头时距分布。 3、移位负指数分布的局限性
2
第一节 离散型概率统计模型
我们在观测交通量或车辆的车头时距时,会发现在固定的计 数时间间隔内,每个间隔内查到的车辆数是变化的,所观测到 的连续车头时距也是不同的,这说明车辆的到达是有一定随即 性的,为了描述这种随机性而采用的概率统计方法可分为两种: 离散型和连续型。
交通流理论-排队论模型、跟弛模型与交通波模型
交通流中的密度波
• 车流遭遇到瓶颈时,会产生一个相反方向的波, 类似于声波碰到障碍物时的反射,或者水受阻时的后涌
• 当容量降低,车辆会减速乃至排队,集结成高密度的队列 当容量增加,排队车辆陆续启动,疏散成适当密度的车队
• 在车辆集结疏散的过程中,车流中两种不同密度的分界面 通过一辆辆车传播的现象,可以用密度波来描述
8辆车的车队 在不同C值时的车头时距
20
5.4 跟驰理论
4.应用 概述
跟车特性
基本原理 应用
➢提供车头间距、相对速度等 信息,帮助驾驶员跟随车辆, 防止追尾事故的发生 ➢分析公共汽车单车道流量预 测小型汽车对市内交通的影响 ➢通过模拟车队的跟驰状态, 研究车辆跟驰运行中的安全性
21
统计分布特征
本
Reuschel, Pipes
跟驰车辆的加速度与 两车速度差成比例
Chandler, Herman, Kometani and Sasaki
Gazis, Herman (跟驰模型一般形式)
m, l 的不同取值对应着不同的密度-速度关系模型
m=0, l=2, Greenshield;
m=0, l=1, Grenberg
《交通工程学》
第五章 交通流理论
1
统计分布特征
本
排队论及其运用
章
主 要
跟驰理论
内
容
交通波理论
可插车间隙理论
2
5.3 排队论及其应用
1.概 述
概述 基本原理
排队论也称随机服务系统理论,是 运筹学的重要内容之一。主要研究 “服务”与“需求” 关系的一种 以概 率论为基础的数学理论。
应用
需求
服务
交通流理论(1)
得:V=Vf(1-K/Kj),同理 K=Kj(1-V/Vf)
4.1 交通流特性
Vf
Vm
0
Km
Kj
图中阴影矩形的面积代表的就是流量
4.1 交通流特性
2)对数关系模型 V=Vm×Ln(Kj/K) Ln( /K)
显然当K 显然当 K K
Kj 时 , V
0 , 与实际情况相符 ; 当 与实际情况相符;
0时,V趋向于无穷大,与实际不符。 趋向于无穷大,与实际不符。
K=0时,Q=0 K=Kj时,Q=0 Kj时 K=Km时,Q=Qm Km时
0
Km
Kj
当未达到Qm 当未达到Qm时,随着K的增大,Q也增加 Qm时 随着K的增大, 当达到Qm 当达到Qm后,K增大,Q减小,直到Q下降为0 Qm后 增大, 减小,直到Q下降为0
4.1 交通流特性
hs C Vf Q B
Vc=Vm
4.1 交通流特性
3. Q-K模型 1)抛物线形Q-K曲线 抛物线形Q 由速度和密度线性关系式及交通流基本关系式即可 得到: 得到:
K K2 Q = Vs K = V f (1 − )K = V f (K − ) Kj Kj
4.1 交通流特性
K K2 Q = Vs K = V f (1 − )K = V f (K − ) Qm Kj Kj
0
Km
Kj
0
课堂练习: 课堂练习:
在速度—密度模型为Greenshields线性模型的基础上 在速度 —密度模型为 Greenshields线性模型的基础上, 线性模型的基础上, 推算Vm,Km,Qm=? 其中V 推算Vm,Km,Qm=?(其中Vf和Kj都是已知的) 都是已知的)
V=Vf(1-K/Kj) Q=V×K Q=Vf×K(1-K/Kj) 为求极值,取导数即有: dQ/dK=0 即:Vf(1-2K/Kj)=0 当K= Kj/2时,此时流量取得最大值,Km= Kj/2 由前面的临界状态可知:K=Km时,V=Vm,Q=Qm 即:V=Vf(1-K/Kj)=Vf(1-0.5)=Vf/2 即Vm=Vf/2 Qm=Vm×Km=Vf/2×Kj/2=Vf×Kj/4
第五章 交通流理论
聊城大学汽车与交通工程学院
交通工程学
2、递推公式
P(0) e
m
m P(k 1) P (k ) k 1
聊城大学汽车与交通工程学院
交通工程学
例题1: 某信号交叉口的周期为c=97秒,有效绿灯时 间为g=44秒。在有效绿灯时间内排队的车流以 V=900辆/小时的流率通过交叉口,在绿灯时间外 到达的车辆需要排队。设车流的到达率为q=369 辆/小时且服从泊松分布,求到达车辆不致两次排 队的周期数占周期总数的最大百分比。
交通工程学聊城大学汽车与交通工程学院例如20世纪90年代纽约市政府原拟修建通往新泽西的新隧道交通科学家们利用交通流动力学知识经过合理的建模和分析调整了原有隧道的交通控制和管理系统使交通流始终处于高流量的亚稳态交通通行能力增加20从而取消了修建新隧道的计划这是交通流动力学成功应用的一个范例
第五章 交通流理论
聊城大学汽车与交通工程学院
2
交通工程学
例题3: 在具有左转车道的交叉口入口,设置了专供左 转弯的信号灯,每周期平均到达交叉口的车辆 为20辆,其中25%为左转,已知,来车服从二 项分布。 问:在某一周期将不使用左转信号灯的概率?
k k p(k ) Cn p (1 p)nk
解:
p(0) (1 0.25)20 0.7520
P(h≥t)=e-Qt/3600
式中Qt/3600是到达车辆数的概率分布的平均值。
若令M为负指数分布的均值,则应有: M=3600/Q=1/λ 负指数分布的方差为: 1
D
2
用样本的均值m代替M、样本的方差S2代替D,即 可算出负指数分布的参数λ 。
聊城大学汽车与交通工程学院
交通工程学
2交通流理论介绍解析
1950年赫尔曼(Herman)博士运用动力学方法 建立跟车模型,进而提出了跟驰理论
1955年,莱脱希尔(Lighthill)和惠特汉 (Whitham)提出了流体动力学模拟理论 汽车时代,交通波理论和车辆排队理论等相继问 世 1975年,丹尼尔(Daniel L.G.)和马休 (Matthow J.H.)合作出版了《交通流理论》一 书,1998年出版了修订版。该书全面系统地阐述 了交通流理论的研究内容和成果,成为交通流理 论的经典论著。
d1 un1 t T un1 t T T x n1 t T T
.
假设两车的制动距离相等,即 则有
d 2 d3
s t xn t xn1 t d1 L
两边对t求导,得到 也即
..
x n t x n1 t x n1 t T T
第二节 线性跟驰模型
一、线性跟驰模型的建立
跟驰模型实际上是关于反应—刺激的关系式,用 方程表示为:
反应= 灵敏度×刺激
驾驶员接受的刺激是指其前面引导车的加速或减 速行为以及随之产生的两车之间的速度差或车间 距离的变化; 驾驶员对刺激的反应是指根据前车所做的加速或 减速运动而对后车进行的相应操纵及其效果。
判断阶段:对本车将要采取的措施做出判断; 执行阶段:由大脑到手脚的操作动作。 这4个阶段所需要的时间称为反应时间。假设反应时间为T, 前车在t时刻的动作,后车要经过(t+T)时刻才能做出相 应的动作,这就是延迟性。
第4章 交通流理论
其他常用分布形式
爱尔兰分布:
kt e p(h t ) i! i 0 T
T:观测时间间隔的平均值 T:车头时距(s) H:车头时距的观测值 当k=1时,为负指数分布 当k>1时,为爱尔兰分布
k 1
i
kt T
K:确定分布曲线形状的参数
T2 k 2 s
a) 车头时距t > 5s的概率; b)在1小时内,车头时距t>5s所出现的次数;
在次要车流通行能力研究中的应用
e e c Q次 1 e 0 1 e c 0
e Q次 1 e 0
4.2.3 连续型分布
4.2.3.1 负指数分布
4.2.3.2 移位负指数分布
4.2.3.1 负指数分布
(1) 基本公式:
P(h t ) e t
P(h>t)——到达的车头时距h大于t秒的概率;
λ ——车流的平均到达率(辆/s)。 推导:由 P e t 可知,在计数间隔t内没 k 有车辆(k=0)到达的概率 P e t ,这表 0 明,在具体的时间间隔t内,无车辆到达,则上 次车到达和下次车到达之间,车头时距至少有t, t 即 P(h t ) e 。
– 参数模型:交通流参数之间的关系 – 宏观模型:描述车队的运动规律 – 微观模型:描述单个车辆的运动规律 – 静态模型:不随时间改变的稳恒交通 流随空间分布的规律 – 动态模型:时间改变的稳恒交通流随 空间分布的规律
4.2 交通流的统计分布特性
4.2.1 交通流统计分布的含义
4.2.2 离散型分布
4.2.2.3
基本公式:
负二项分布
• 适用条件:车流受到干扰。车辆到达起伏幅度比较
交通流理论
用样本的均值m代替M、样本的方差S2代替D,即可算出负指数分布
的参数λ。 此外,也可用概率密度函数来计算。负指数分布的概率密度函数为:
P(t )
d d P(h t ) [1 P(h t )] e t dt dt
P(h t ) p(t )dt et dt et
跟驰条件(车速条件、间距条件)
2. 延迟性 (也称滞后性)
3. 传递性
二. 线性跟驰模型
s(t ) d1 d2 L - d3
假定d2=d3,要使在时刻t两车的间距能 保证在突然剥车事件中不发生幢碰,则应 有:
对于跟驰车辆的反应,一般指加速、减速,因此,将 上式微分,得到 :
. . ( t T ) X ( t ) X ( t ) n n 1 X n1 ..
道路上一辆跟踪另一辆车的追随现象是很多的, 前一辆车行驶速度的变化,影响后一辆车行驶,后 一辆车为了与前车保持具有最小安全间隔距离。需 要调整车速,这种前后车辆运动过程可以应用动力 学跟踪理论,建立道路上行驶车辆流动线性微分方 程式来分析车辆行驶情况和变化规律。这种研究方 法称为交通跟驰理论。
(3)应用条件
1 N 1 g 2 2 S ( k m ) ( k m ) fj i j N 1 i 1 N 1 j 1
2
2. 二项分布
(1)基本公式
k P ( k ) Cn (
t
n
) k (1
t
n
) nk ,
k 0,1,2, , n
式中:P(k)——在计数间隔t内到达k辆车或k个人的概率; λ——平均到达率(辆/s或人/s); t——每个计数间隔持续的时间(s)或距离(m);
交通流理论
4.4 跟驰模型
x n 1 t T x n x n t 1 t x n T 1 t m lx n t x n 1 t
? m=0,l=0时,为线性模型 ? m=0,l=1时,为非线性模型 ? m=…,l=…时,为……模型
4.4 跟驰模型 二阶微分方程,积分一次,成为一阶微分方程
4.3.3 M/M/N系统
1. 简述
4.3 排队论模型
平均到达率λ 平均服务率为1/μ ρ= λ/μ,服务强度ρ/N
≥1不稳定 <1稳定
4.3 排队论模型
4.3.3 M/M/N系统
简述——两类多通道服务
1)单路排队多通道服务——排成一条队等待数 条通道服务
4.3 排队论模型
2)多路排队多通道服务——每个通道各排一队,每个通道只为 其相对应的一队顾客服务,顾客不能随意换队。
运用模型时的留意点:关于参数m=λt可理解为时间间隔 t 内的 平均到达车辆数。
4.2 概率统计模型
4.2.1 离散型分布
2. 二项分布:
适用条件:车辆比较拥挤、自由行驶机会不多的车流 基本模型:计数间隔t内到达k辆车的概率
P (k ) C n k n t k 1 n t n k,k 1 ,2 ,.n ..
4.4 跟驰模型
4.4.4 非线性跟驰模型
线性跟驰模型的局限性
后车的反应仅与两车的相对速度有关,而与车辆间距无关。
非线性跟驰模型
1959,Gazis
灵敏度系数λ与车头间距成反比
x n 1 t T x n t x n 1 tx n t x n 1 t
其中
Vm
Vf 2
4.4.5 跟驰模型的一般形式
计算公式由M/M/1系统的计算公式确定
交通工程学第4章道路交通流理论
➢ 在间断流中,速度、密度等指标不足以表征服务水平。而延误通常用于 表征间断流服务水平的一个指标。大体说来,有两类延误: ➢ ①停车延误:指车辆用于横穿公路所消耗的停车总时间; ➢ ②运行延误:指车辆理想运行时间与实际运行时间的差值,它包括 停车延误和由运行速度低于理想速度而造成的延误。 ➢ 相比之下,停车延误用得较多。
(1
K Kj
)
K=0 → V=Vf K=Kj → V=0 K=Km → V=Vm
Q → Qmax
图4–3的三个特殊点A、C、E,其中C点的速度为Vm,
密度为Km,即Qm=Vm·Km等于矩形面积。
10
4.1 交通流特性
二、连续流特征(续)
➢ (2)对数模型——格林柏(Greenberg)模型
➢ 1959年,格林柏(Greenberg)提出了用于密度很大时的对数 模型。
p—二项分布参数, pt/n 。
均值M和方差D分别为: M=np D=np(1-p)
参数p、n 的计算(n 取整数):
33
4.2 概论统计模型
2、二项分布
➢ ⑵ 递推公式
P(0) (1 P)n
P(k1)
nk k 1
p 1 p
P(k)
均值M和方差D分别为: M=np D=np(1-p)
➢ ⑶ 应用条件
2)流量与密度关系
➢ 根据格林希尔茨公式及三参数 的基本关系式可得:
Q
KV
f (1
K) Kj
V f(K
K2 )
Kj
上式对Q 求导,并令:
dQ dK
Vf
2V f Kj
K
0
可求出当:
K K j 时, Q 最大。 2
道路交通网络中的交通流模型
道路交通网络中的交通流模型随着城市化进程的加快,道路交通拥堵问题日益突出。
为了更好地解决道路交通问题,需要深入研究道路交通网络中的交通流模型。
一、交通流理论交通流理论是描述道路交通运算过程的一门学科,主要研究交通流的特征、交通拥堵的原因以及拥堵时的交通流规律等。
交通流的特征主要包括流量、密度、速度、加速度等,交通拥堵的原因主要是路网系统的瓶颈,以及车辆之间的相互影响。
拥堵时的交通流规律包括瓶颈效应、排队理论等。
二、交通模型交通模型是指用数学方法描述道路交通运输系统的一种技术手段。
通过建立交通模型,可以更加准确地预测交通状况,为交通规划和交通管理提供有效的决策依据。
目前,常见的交通模型主要包括微观模型和宏观模型两种。
1.微观模型微观模型是指运用微观经济学理论和方法来描述道路交通运输系统的模型。
微观模型主要研究各种交通网络和交通运输行为中的细节问题,如车辆的起点和终点、车辆的行驶路线、车辆的速度等。
2.宏观模型宏观模型是指运用宏观经济学理论和方法来描述道路交通运输系统的模型。
宏观模型主要研究交通流的总体特征,如交通流量、速度、密度等。
三、交通流模型交通流模型是指描述道路交通流动情况的一种数学模型。
交通流模型可以帮助我们更加深入地了解交通流的规律,以及不同交通状况下的交通流变化情况。
目前,常见的交通流模型包括线性模型、广义线性模型、非参数模型、卡尔曼滤波模型等。
1.线性模型线性模型是指将交通流的属性表示为线性的关系式,通常采用回归分析来进行建模。
线性模型适用于交通流量较小、交通状况相对稳定的情况。
2.广义线性模型广义线性模型是指将交通流的属性表示为非线性的关系式,通常采用广义回归分析来进行建模。
广义线性模型适用于交通流量较大、交通状况较为复杂的情况。
3.非参数模型非参数模型是指对于交通流的特征没有先验假设,采用一种无需先验假设的方法进行建模。
非参数模型适用于交通流特征非常复杂、交通状况无规律的情况。
4.卡尔曼滤波模型卡尔曼滤波模型是指采用卡尔曼滤波算法对交通流进行建模,以估算未知变量的值。
交通工程学 第八章 道路交通流理论
在具体的时间间隔t内,如无车辆到达,则上次车 到达和下次车到达之间,车头时距至少有t秒,换句 话说,P(0)也是车头时距等于或大于t秒的概率:
P(h≥t)=e-λt
8.2.3 连续型分布
解:(1)因为速度—密度关系为线性关系,所以:
Km
Kj 2
Vm
Vf 2
Qm
Km
Vm
Kj 2
Vf 2
80 100 22
2000 辆 / h
(3)此时对应的车速即为Vm:Vm
Vf 2
80 40km/ h 2
8.1.2 连续流特征
例题
2、设车流的速度—密度的关系为V=88-1.6K,如限制车流 的实际流量不大于最大流量的0.8倍,求速度的最低值和密 度的最高值。(假定车流的密度K<最佳车流密度Km)
当Q≤Qm、K>Km、V<Vm时,则交通属于拥挤; 当Q≤Qm、K≤Km、V≥Vm时,则交通属于不拥挤。
8.1.2 连续流特征
例题
1、已知某公路的畅行车速Vf为80km/h,阻塞密度Kj为100辆 /km,速度—密度关系为线性关系,试求:
(1)此路段上期望得到的最大流量为多少?
(2)此时对应的车速为多少?
P(k) Cnk pk (1 p)nk , k 0,1,2,, n
式中:0<p<1,n、p称为分布参数。
8.2.2 离散型分布
二项分布
计算内容 到达数小于k辆车(人)的概率:
k 1
P( k) Cni pi 1 p ni i0
到达数大于k的概率:
第八章 交通流理论
将影响、传递到车队中的最后一辆车。
N+1 S(t) Xn+1(t)
t时刻N+1车位置 正常情况下两车间距
N
N车停车位置
Xn(t)
t时刻N车的位置
N车开始减速位置
d3:N车的制动距离
N+1 N+1 N
d1
反应时间T内N+1 车的行驶距离
d2
N+1车的制动距离
L
安全距离
3.线性跟驰模型分析
S(t) d 1 d 2 L - d 3
n m / p m 2 /(m S 2 )(取整数)
(2)递推公式
P(0) (1 p) n n x 1 p P( X x) P( X x 1) x 1 p
(3)应用条件 车流比较拥挤、自由行驶机会不多的车流用二项分 布拟合较好。此时S2/m小于1.0。
t t
其概率密度函数为:
e (t ) , f (t ) 0,
t t
式中:
1 , t
t 为平均车头时距 。
(2)适用条件
移位负指数分布适用于描述不能超车的单列车流 的车头时距分布和车流量低的车流的车头时距分布。
3.M3分布 (1)基本公式:
m2 l 2 , S
概率密度函数:
p(t ) e
t
(t ) , l 1,2,3, (l 1)!
l 1
第二节 跟驰模型
1.引例
思考
前车紧急制动时,后车在 什么情况下才是安全的?
后车反应
?
前车刺激
2.线性跟驰模型介绍
跟驰理论——研究在限制超车的单车道上,行驶车
交通流理论ppt课件
1nti 100% T0
17
时间占有率与交通密度
时间占有率可以代替交通密度吗?
Ot
1 T
Q i1
ti
100(%)
ti li /vi
平均车长 l
l Q1
Ot
1 vi 10% 0lQ10(0%)
T
vs
时间占有率与交通密度成正比例
可编辑课件
18
连续流与间断流 Page 80
连续流
道路上行驶的车流不因外界因素干扰而停车 在没有停车或让路一类的交通标志的高速公路上 在没有信号交叉口之间的乡村路段上
计数间隔被分割成n个区间
t/n
λ
计数间隔 t
p
可编辑课件
38
负指数分布 1
基本公式
计数间隔t内没有车辆到达的概率为 P(0) = e-λt
在无车辆到达的时间间隔t内,上次车到达和下次车到达之间,
车头时距至少有t秒,换句话说,P(0)也是车头时距等于或大于t
秒的概率,于是
P( h ≥ t )=e-λt
• 密度-速度关形式的多样性
• 自由流是…
Vm
• 交通量是密度、速度的函数
• 在临界点处…
Qmax
是交通模拟模型的理论基础
可编辑课件
13
xs
1 N
N i1
xi
1 N
N 1
xi
ts
1 M
M
ti
i1
1 M
t M
1
i
可编辑课件
车头间距 space headway
车头时距 time headway
交通量(速度)
VVf aK Ka1Va1Vf
交通工程学电子课件第8章交通流理论
移位的负指数分布 负指数分布拟合单车道交通流车头时距分布时,理论上会得到车头时距在0~1.0秒的概率较大,与实际情况不符。为了克服负指数分布的这种局限性,引入了移位的负指数分布,即假设最小车头时距不应小于一个给定的值 .
8.1 交通流的概率统计分布
M3分布
假设车辆处于两种行驶状态:一部分是车队状态行驶,另一部分车辆按自由流状态行驶。
常用递推公式 当交通量不大且没有交通信号干扰时,基本上可用泊松分布拟合观测数据;当交通拥挤时,车辆之间的干扰较大,则应考虑用其他分布。
二项分布
——二项分布参数,0<p<1,n为正整数。
01
02
8.1 交通流的概率统计分布
二项分布
01.
——二项分布参数,0<p<1,n为正整数。
02.
8.1 交通流的概率统计分布
8.4 流体力学模拟理论
车流连续性方程的建立
根据质量守恒定律: 流入量-流出量=数量变化
车流量随距离而降低时,车流密度则随时间而增大
01
车流波动理论
02
瓶颈处的车流波
03
紊流
8.4 流体力学模拟理论
时间t内横穿S分界线的车数N:
01
两种密度的车流运行状况
02
8.4 流体力学模拟理论
安全车头间距
02
假定两车停下来所需的加速度和距离都相等
车辆的速度
03
t+T时刻,后车加速度
车辆的加速度
8.2 跟驰理论
模型的稳定性
C ——表示车间距摆动特性的数值。该值越大表示车间距 的摆动越大; ——反应强度系数 ,其值大,表示反应强烈; T ——反应时间,s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用
运用动力学方法,研究在无法 超车的单一车道上车辆列队行 驶时,后车跟随前车的行驶状 态,并用数学模式表达而加以 分析的一种理论主要用于了解 单车道交通流特性,可以检验 管理技术和通讯技术,以便在 稠密交通时使追 尾事故减到 最低程度
13
5.4 跟驰理论
2.车队跟车特性分析 概述
Reuschel, Pipes
跟驰车辆的加速度与 两车速度差成比例
Chandler, Herman, Kometani and Sasaki
Gazis, Herman (跟驰模型一般形式)
m, l 的不同取值对应着不同的密度-速度关系模型
m=0, l=2, Greenshield;
m=0, l=1, Grenberg
23
5.5 交通波理论
2.流体流与交通流的比较
物理意义 流体特性 交通流特性 物理意义 流体特性 交通流特性
离散元素 流体分子
运动方向
一向性
连续体 可压缩或不可
形态
压缩流体
车辆
单向
不可压缩 交通流
变量 动量
流速v 压力P
Mv
6
5.3 排队论及其应用
4.应用
收费站
单通道排队服务系统(M/M/1系统):由于排队等待接 受服务的通道只有单独一条,也叫单通道服务系统。
7
5.3 排队论及其应用
4.应用
收 费 站
多路排队多通道服务:每一个通道各排一队每个通
道只为其相对应的一队车辆服务
8
客 客客
客
到达
排队
服务 窗口
离去
排队论模型的应用
跟车特性
基本原理
应用
制约性
前延车迟车性速制约着后车 车速和两车间距 在传前递车性行驶状态改变 后,后车要有一定的延 迟由才制能约做性出而相使应车的队改第变 一辆车的运行状态可以 一直制约到第n辆车
14
5.4 跟驰理论
4.应用 概述
跟车特性
基本原理 应用
线性跟驰模型示意图
15
线性跟驰模型的建立
&
局部稳定 关注跟驰车对引导车运行波动的反应。如车头间距摆 动大则不稳定,摆动愈小则愈稳定
引导车向后面各车传播速度变化,如果速度振幅扩大,就是不稳 定,如果振幅衰减,就是渐近稳定
Herman公式:C值增大,车头间距增大则不稳定,
如延迟反应时间过长,反应太强烈
摆动特性=反应灵敏度×时间延迟
19
C值的大小 与车头间距的摆动衰减
解这是一个M/M/1排队系统
60辆 / h, 100辆 / h / 60 /100 0.6 1,系统稳定
因出入道存车辆为6辆,如果超过6辆的概率很小(通常 取小于5%),则认为合适,反之则不合适。
p(0) 1 1 0.6 0.4 p(1) (1 ) 0.60.4 0.24
4
5.3 排队论及其应用
3.主要数量指标
等待时间 d :从顾客到达时起到他开始接受
服务时止这段时间
忙期
1
:服务台连续繁忙的时期,这直接关
系到服务台的工作强度
队长 q :有排队等待服务的顾客数与 排队系
统中顾客数之分
5
5.3 排队论及其应用
4.应用
收 费 站
单路排队多通道服务:排成一个队等待数条通道服 务的情况,排队中头一辆车可视哪个 通道有空就 到哪里去接受服务。
17
线性跟驰模型的解释 驾驶员反应(T+t)=灵敏度(λ)×驾驶员接受的刺激(t)
灵敏度 驾驶员对刺激的反应系数,量纲是 1/s 刺激 引导车加、减速引起的两车速度差或车间距变化 反应 驾驶员根据引导车的状态对后车进行操纵及效果
18
跟驰模型稳定性
多数个车辆在做跟驰运动时,一辆车状态的改变会导致其后续车 辆运行状态接二连三的改变,称为运行状态的传播
&
d xn1(t)T xn1(t T )T
& xn (t) xn1(t) xn1(t T )T L
&&
&&
xn (t) xn1(t) xn1(t T )T
&& xn 1 (t
T
)
& xn
(t
)
& xn
1
(t
)
离开基准点(x = 0) 车辆的速度 车辆的加速度
跟驰模型示意图
16
跟驰模型种种
排队论及其运用
章
主 要
跟驰理论
内
容
交通波理论
可插车间隙理论
22
5.5 交通波理论
1.概 述
运用流体力学的基本原理,模 拟流体的连续性方程,建立车流 的连续性方程。把密度很大的交 通流看作流体,把车流密度的变 化抽象为车流波,通过分析车流 波的传播速度,寻求交通流流量 和速度、密度之间的关系,描述 车流的拥挤—消散过程
2.基本原理
输入
排队论
输出
输入过程
排队规则
服务机构
各种类型的顾客,按 怎样的规律到来,主 要有定长输入、泊松 输入、厄尔兰输入
到来的“顾客”按 怎样的规定次序接受 服务,主要有3种制 式损失制、等待制、 混合制
同一时刻有多少服务 设施可以接纳顾客,为 每一顾客服务了多少时 间,服务时间为定长分 布、负指数分布、厄尔 兰分布
《交通工程学》
第五章 交通流理论
1
统计分布特征
本
排队论及其运用
章
通波理论
可插车间隙理论
2
5.3 排队论及其应用
1.概 述
概述 基本原理
排队论也称随机服务系统理论,是 运筹学的重要内容之一。主要研究 “服务”与“需求” 关系的一种 以概 率论为基础的数学理论。
应用
需求
服务
3
5.3 排队论及其应用
8辆车的车队 在不同C值时的车头时距
20
5.4 跟驰理论
4.应用 概述
跟车特性
基本原理 应用
➢提供车头间距、相对速度等 信息,帮助驾驶员跟随车辆, 防止追尾事故的发生 ➢分析公共汽车单车道流量预 测小型汽车对市内交通的影响 ➢通过模拟车队的跟驰状态, 研究车辆跟驰运行中的安全性
21
统计分布特征
本
服务 窗口
客
服务
高速公路收费站 空港的起降跑道 船舶停靠码头 停车场 交叉口
机动车 飞机 船 机动车 机动车
收费 起飞、降落 货物装卸 驻车 通行
9
例题
例 有一停车场,到达车辆是60辆/h,服从泊松分布,停车 场的服务能力是100辆/h,服从负指数分布,其单一的 出入道可存6辆车,试问该数量是否合适?
……
10
例题
p(6) 0.66 0.4 0.03
6
p(x 6) 1 p(n) 0.33 0
计算结果表明,排队车辆超过6辆车的概率很小,故可认为 该出入道的存车量是合适的。
11
统计分布特征
本
排队论及其运用
章
主 要
跟驰理论
内
容
交通波理论
可插车间隙理论
12
5.4 跟驰理论
1.概 述 概述