2017年辽宁省沈阳市高考数学二模试卷(理科)含答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年辽宁省沈阳市高考数学二模试卷(理科)

一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.

1.已知复数z=1+2i,则=()

A.5 B.5+4i C.﹣3 D.3﹣4i

2.已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2}则A∩B=()

A.{x|﹣2<x<2}B.{x|﹣2<x<3}C.{x|﹣1<x<3}D.{x|﹣1<x<2} 3.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A、B为两个同高的几何体,p:A、B的体积不相等,q:A、B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

4.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()

A.2 B.C.D.

5.已知数列{a n}满足a n

﹣a n=2,a1=﹣5,则|a1|+|a2|+…+|a6|=()

+1

A.9 B.15 C.18 D.30

6.平面内的动点(x,y)满足约束条件,则z=2x+y的取值范围是()A.(﹣∞,+∞)B.(﹣∞,4] C.[4,+∞)D.[﹣2,2]

7.某几何体的三视图如图所示,则其体积为()

A.4 B.8 C.D.

8.将一枚质地均匀的硬币连续抛掷n次,若使得至少有一次正面向上的概率大

于或等于,则n的最小值为()

A.4 B.5 C.6 D.7

9.若方程在上有两个不相等的实数解x1,x2,则x1+x2=()

A.B.C.D.

10.运行如图所示的程序框图,则输出结果为()

A.B.C.D.

11.已知向量,,(m>0,n>0),若m+n

∈[1,2],则的取值范围是()

A.B.C.D.

12.对函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数m的取值范围是()

A.(,6)B.(,6)C.(,5)D.(,5)

二、填空题:本题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上.

13.现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有种不同的分法(用数字作答).

14.函数f(x)=e x•sinx在点(0,f(0))处的切线方程是.

15.等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=.

16

.过双曲线

﹣=1(a>b>0)的左焦点F作某一渐近线的垂线,分别与

两渐近线相交于A,B

两点,若,则双曲线的离心率为.

三、解答题:解答应写出文字说明、证明过程或演算步骤

17.(12分)已知点P

(,1),Q(cosx,sinx),O为坐标原点,函数f(x)

=

•.

(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;

(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.18.(12分)某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:

(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);

(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分

小于90分的人数的分布列和期望.

19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.

(1)求证:PD⊥平面ABE;

(2)若F为AB中点,,试确定λ的值,使二面角P﹣FM

﹣B的余弦值为.

20.(12分)已知F1,F2分别是长轴长为2的椭圆C: +=1(a>b>0)的左右焦点,A1,A2是椭圆C的左右顶点,P为椭圆上异于A1,A2的一个动点,

O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为﹣.(Ⅰ)求椭圆C的方程;

(Ⅱ)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂

直平分线与x轴交于点N,点N横坐标的取值范围是(﹣,0),求线段AB 长的取值范围.

21.(12分)已知函数.

(1)求f(x)的极值;

(2)当0<x<e时,求证:f(e+x)>f(e﹣x);

(3)设函数f(x)图象与直线y=m的两交点分别为A(x1,f(x1)、B(x2,f (x2)),中点横坐标为x0,证明:f'(x0)<0.

请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程选讲]

22.(10分)已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正

半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方

程为(t为参数).

(1)求曲线C1的直角坐标方程及直线l的普通方程;

(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为

,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.

[选修4-5:不等式选讲]

23.已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.

(1)求证:2a+b=2;

(2)若a+2b≥tab恒成立,求实数t的最大值.

相关文档
最新文档