数学建模运输问题
数学建模之运输问题
数学建模之运输问题1. 引言运输问题是指在给定产地到销售地之间有若干个供应点和需求点的情况下,如何安排运输使得总运输成本最低。
这是一个经济管理中的经典问题,也是数学建模中常见的一个研究方向。
2. 问题描述假设有n个供应点和m个需求点,其中每个供应点的供应量和每个需求点的需求量已知,并且每个供应点到每个需求点的运输成本也已知。
我们的目标是确定供应点到需求点的运输量,使得总运输成本最小。
3. 模型建立为了建立数学模型,我们可以引入一个矩阵来表示供应点和需求点之间的运输成本。
设C为一个n行m列的矩阵,其中Cij表示供应点i到需求点j的运输成本。
我们需要引入决策变量X,其中Xij表示从供应点i到需求点j的运输量。
那么,目标函数可以定义为最小化总运输成本,即$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} C_{ij} X_{ij}$$同时,我们需要保证供应点和需求点的供需平衡,即满足每个供应点的供应量和每个需求点的需求量。
这可以表示为以下约束条件:1. 对于每个供应点i,有 $\sum_{j=1}^{m} X_{ij} = s_i$,其中$s_i$ 表示供应点i的供应量。
2. 对于每个需求点j,有 $\sum_{i=1}^{n} X_{ij} = d_j$,其中$d_j$ 表示需求点j的需求量。
进一步地,我们需要确保运输量的非负性,即$X_{ij} \geq 0$。
4. 求解方法对于较小规模的问题,我们可以使用线性规划方法求解运输问题。
线性规划是一种数学优化方法,可以在满足一定约束条件的前提下,使得目标函数达到最小值。
对于大规模的问题,我们可以使用近似算法或启发式算法进行求解。
这些算法可以快速找到较好的解,但不能保证找到最优解。
常用的算法包括模拟退火算法、遗传算法等。
5. 应用领域运输问题在许多实际应用中都有广泛的应用。
例如,在物流管理中,优化运输方案可以减少运输成本、提高运输效率;在生产计划中,合理安排运输可以确保供应链的稳定性和高效性。
运输问题
《数学建模与计算》问题运输问题1. 具体问题有某种物资3个产地,8个销地,第i个产地产量为ai(i=1,2,…,m)第j个销地的需要量为bj(j=1,2,…,n)其中。
由产地i到销地j的距离已知为dij,问应如何分配该种物资,使既能满足各地的需求又能在花费的运输总吨公里数最少(具体距离数据见下表格)①②③④⑤⑥⑦⑧供应量A 4 8 8 19 11 6 22 20 200B 14 7 7 16 12 16 23 17 170C 20 19 11 14 6 15 5 10 160销售量75 60 80 70 100 55 90 80 75由上表可知:该问题中出现了销售量大于产量的情况,因此可以可以增加一个虚产地,其中该虚产地到销售地的距离为0,则上表可以修改如下:①②③④⑤⑥⑦⑧供应量A 4 8 8 19 11 6 22 20 200B 14 7 7 16 12 16 23 17 170C 20 19 11 14 6 15 5 10 160虚产地0 0 0 0 0 0 0 0 075 60 80 70 100 55 90 80 752. 解决方法建立数据模型如下:Minz=4*x11+8*x12+8*x13+19*x14+11*x15+6*x16+22*x17+20*x18+14*x21+7*x22+7*x23+16*x24+12*x25+16*x26+23*x27+17*x28+20*x31+19*x32+11*x33+14*x34+6*x35+15*x36+5*x 37+10*x38+10*x41+8*x42+5*x43+10*x44+10*x45+8*x46+5*x47+8*x48 ;x11+x12+x13+x14+x15+x16+x17+x18=200 ;x21+x22+x23+x24+x25+x26+x27+x28=170 ;x31+x32+x33+x34+x35+x36+x37+x38=160 ;x41+x42+x43+x44+x45+x46+x47+x48=80 ;x11+x21+x31+x41=75 ;x12+x22+x32+x42=60;x13+x23+x33+x43=80 ;x14+x24+x34+x44=70 ;x15+x25+x35+x45=100 ;x16+x26+x36+x46=55 ;x17+x27+x37+x47=90 ;x18+x28+x38+x48=80 ;x>=0(i=1:4, ,j=1:8)ij3. 程序代码于是便可利用lingo软件编写程序求解如下:Min=4*x11+8*x12+8*x13+19*x14+11*x15+6*x16+22*x17+20*x18+14*x21+7*x22+7*x 23+16*x24+12*x25+16*x26+23*x27+17*x28+20*x31+19*x32+11*x33+14*x34+6*x35+1 5*x36+5*x37+10*x38+10*x41+8*x42+5*x43+10*x44+10*x45+8*x46+5*x47+8*x48 ;x11+x12+x13+x14+x15+x16+x17+x18=200 ;x21+x22+x23+x24+x25+x26+x27+x28=170 ;x31+x32+x33+x34+x35+x36+x37+x38=160 ;x41+x42+x43+x44+x45+x46+x47+x48=80 ;x11+x21+x31+x41=75 ;x12+x22+x32+x42=60;x13+x23+x33+x43=80 ;x14+x24+x34+x44=70 ;x15+x25+x35+x45=100 ;x16+x26+x36+x46=55 ;x17+x27+x37+x47=90 ;x18+x28+x38+x48=80 ;end4. 结果分析Global optimal solution found.Objective value: 3890.000Total solver iterations: 11Variable Value Reduced CostX11 75.00000 0.000000X12 0.000000 2.000000X13 0.000000 2.000000X14 0.000000 4.000000X15 70.00000 0.000000X16 55.00000 0.000000 X17 0.000000 12.00000 X18 0.000000 5.000000 X21 0.000000 9.000000 X22 60.00000 0.000000 X23 80.00000 0.000000 X24 0.000000 0.000000 X25 30.00000 0.000000 X26 0.000000 9.000000 X27 0.000000 12.00000 X28 0.000000 1.000000 X31 0.000000 21.00000 X32 0.000000 18.00000 X33 0.000000 10.00000 X34 0.000000 4.000000 X35 0.000000 0.000000 X36 0.000000 14.00000 X37 90.00000 0.000000 X38 70.00000 0.000000 X41 0.000000 11.00000 X42 0.000000 9.000000 X43 0.000000 9.000000 X44 70.00000 0.000000 X45 0.000000 4.000000 X46 0.000000 9.000000 X47 0.000000 5.000000 X48 10.00000 0.000000 Row Slack or Surplus Dual Price1 3890.000 -1.0000002 0.000000 -15.000003 0.000000 -16.000004 0.000000 -10.000005 0.000000 0.0000006 0.000000 11.000007 0.000000 9.0000008 0.000000 9.0000009 0.000000 0.00000010 0.000000 4.00000011 0.000000 9.00000012 0.000000 5.00000013 0.000000 0.000000 由结果可知:当X11=75.00000X15=70.00000X16=55.00000X22=60.00000X23=80.00000X25=30.00000X37=90.00000X38=70.00000X44=70.00000X48=10.00000其余为0时,该方案为最优方案.Min z= 3890.000而对于其他平衡运输问题以及产大于销问题,由上论述可知均可转化为平衡问题求解,这里就不再一一赘述。
数学建模 飞机运输问题
设4个月飞行员中教练为u1, u2, u3, u4人,新 飞行员数量分别为w1, w2, w3, w4人。其它 符号不变。飞行员的数量限制约束为 第1个月:300+u1+v1=330 第2个月:450+u2+v2= u1+v1+w1, w1<=20u1 第3个月:450+u3+v3= u2+v2+240+w2, w2<=20u2 第4个月:600+u4+v4= u3+v3+360+w3, w3<=20u3
优化目标是:
Min
200x1+195x2+190x3+185x4+10u1+9.9 u2+9.8u3+9.7u4+7v1+6.9v2+6.8v3+6.7 v4
新购买的飞机数量:x1, x2, x3, x4 飞行员中教练和新飞行员数量:u1, u2, u3, u4 闲置的的熟练飞行员数量:v1, v2, v3, v4
约束条件
1)飞机数量限制:4个月中执行飞行任务的飞 机分别为100, 150, 150, 200架,但只有80, 120, 120, 160架能够返回供下个月使用。 第1个月:100+ y1=110 第2个月:150+ y2=80+ y1+ x1 第3个月:150+ y3=120+ y2+ x2 第4个月:200+ y4=120+ y3+ x3 闲置的飞机数量:y1, y2, y3, y4 新购买的飞机数量:x1, x2, x3, x4
用LINDO求解得到: VARIABLE VALUE X1 60.000000 X2 30.000000 X3 80.000000 X4 0.000000 U1 460.000000 U2 220.000000 U3 240.000000 U4 0.000000 V1 7.000000 V2 6.000000 V3 4.000000 V4 4.000000 Y1 10.000000 Y2 0.000000 Y3 0.000000 Y4 0.000000
数学建模运输问题
有时候把两个表写在一起:
销地 产地 1 2 . . . m 销量
销地 产地 1 2 . . . m
1
2
…
n
产 量 a1 a2 . . . am 销地 产地 1 1 2 … n 产 量 a1 a2 . . . am
b1
1
b2
2
…
…
bn
n
2 . . . m
销量
c11 c12 … c1n c21 c22 … c2n . . . . . . . . . cm1 cm2 … cmn b1 b2 … bn
B2 10 4 5 6 14 6 5 3 4 3+4 B3 B4’ B4’’ 产量 (万台) 10 12 10 10
4
4 2
6
4
Global optimal solution found at iteration: 8 Objective value: 172.0000
销地 厂家 1 2
1
2
3
4
销地 厂家 A1 A2 A3 最高需求(万台)
31
x
32
x x x x x
33
x 2 3 4 6
34
7
x 11 x x 12 x x 13 x x 14 x x
ij
21
31
22
32
23
33
LINGO求解
24
34
0
设有三个电视机厂供应四个地区某种型号的电视机。 各厂家的年产量、 销地 各地区的年销售量以及 B1 B2 B3 厂家 各地区的单位运价 A1 6 3 12 如右表, A2 4 3 9 试求出总的运费最省的 A3 9 10 13 6 14 0 最低需求(万台) 电视机调拨方案。
数学建模 运输问题与Lingo求解
运输问题与Lingo求解
Min=12*x11+13*x12+10x13+11x14+10x21+12x22 +14x23+10x24+14x31+11x32+15x33+12x34; x11+x12+x13+x14<=7; x21+x22+x23+x24<=9; x31+x32+x33+x34<=7; x11+x21+x31>=3; x12+x22+x32>=5; x13+x23+x33>=7; x14+x24+x34>=8; END
数学 模型 部分
集合 定义 部分
运输问题与Lingo求解
sets: Supplier/@ole(‘D:\运输问题.xls','Supplier')/:Supply; Demander/@ole(‘D:\运输问题.xls','Demander')/:Demand; Matrix(Supplier,Demander):PriceMatrix,TransportationMatrix; endsets data: PriceMatrix=@ole(‘D:\运输问题.xls'); Supply=@ole(‘D:\运输问题.xls'); Demand=@ole(‘D:\运输问题.xls'); @OLE('D:\运输问题.xls','TransportationMatrix')=TransportationMatrix; enddata min=@sum(Matrix:PriceMatrix*TransportationMatrix); @for(Supplier(i): @sum(Demander(j):TransportationMatrix(i,j))=Supply(i) ); @for(Demander(j): @sum(Supplier(i):TransportationMatrix(i,j))=Demand(j) );
数学建模,线性规划,运输为问题
X31 30.00000 0.000000
X32 20.00000 0.000000
X33 0.000000 3.000000
X34 0.000000 11.00000
X35 0.000000 23.00000
X36 0.000000 8.000000
X41 0.000000 7.000000
Objective value: 1620.000
Infeasibilities: 0.000000
Total solver iterations: 9
Variable Value Reduced Cost
X11 0.000000 14.00000
X12 0.000000 6.000000
X13 0.000000 4.000000
X55 0.000000 8.000000
X56 0.000000 32.00000
X64 30.00000 0.000000
X65 0.000000 3.000000
X66 0.000000 7.000000
Row Slack or Surplus Dual Price
1 1620.000 -1.000000
X42 0.000000 0.000000
X43 40.00000 0.000000
X44 0.000000 26.00000
X45 0.000000 16.00000
X46 0.000000 13.00000
X52 30.00000 0.000000
X53 0.000000 0.000000
X54 0.000000 21.00000
供应限制:x11+x12+x13+x14+x15+x16=20
数学建模中优化模型之运输问题讲解
6
5 3
9
10
6
v1=10
v2=6
v3=4
单位费用变化:5-(4+(-4)=5
4 3
u1=-4
7 u2=-2
6
13 u3=6
v4=0
对偶变量法(10)
1
2
3
6
7
5
1
14
5
5
8
4
2
2
8
13
6
5 3
9
10
6
v1=10
v2=6
v3=4
单位费用变化:3-(0+(-4)=7
4
3 u1=-4
7
7 u2=-2
6
6
13 u3=6
v4=0
对偶变量法(6)
1
2
3
6
7
5
1
14
8
4
2
2
8
13
6
5 3
9
10
6
v1=10
v2=6
u2+v1=c21 v1=10
v3=4
4 3
u1
7 u2=-2
6
13 u3=6
v4=0
对偶变量法(7)
1
2
3
6
7
5
1
14
8
4
2
2
8
13
6
5 3
9
10
6
v1=10
v2=6
u1+v1=c11 u1=-4
运输问题
运输问题的表示 网络图、线性规划模型、运输表 初始基础可行解 西北角法、最小元素法 求解方法 闭回路法、对偶变量法 特殊形式运输问题 不平衡问题、转运问题
2023高教杯数学建模d题
2023高教杯数学建模d题
2023年高教社杯全国大学生数学建模竞赛D题:
题目:国际快递服务中的包裹配送决策
问题描述:
国际快递服务中,一个重要的决策是如何选择最优的配送路径。
在配送过程中,存在许多因素需要考虑,如运输成本、运输时间、交通状况、天气等。
因此,制定一个有效的配送策略是至关重要的。
任务要求:
1. 根据所给数据,分析影响配送成本的主要因素。
2. 基于所给数据,构建数学模型,预测未来一周内的每日最优配送路线。
3. 基于所建模型,给出一种有效的配送策略,以优化总成本并减少总运输时间。
4. 根据所建模型和策略,预测未来一个月的快递需求量,并给出相应的配送方案。
5. 针对所给策略和方案,分析其可能存在的风险,并提出相应的应对措施。
题目给出的数据:
1. 不同路线上的配送成本(单位:元/公里)。
2. 不同路线的长度(单位:公里)。
3. 不同路线的交通状况(用数值表示,数值越大交通状况越差)。
4. 不同路线的天气状况(用数值表示,数值越大天气状况越差)。
5. 每日的快递需求量。
注:数据量较大,具体数据可从配套的Excel文件中获取。
数学建模--运输问题
运输问题摘要本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。
关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。
考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。
关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。
首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。
即最短路线为:1-5-7-6-3-4-8-9-10-2-1。
但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。
关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。
这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。
因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。
得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。
关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。
数学建模中优化模型之运输问题详解
2
3
6
7
5
1 14
5
5
8
4
2
2 8
13
6
5 3
9
10
6
22
13
12
单位费用变化:5+8-6-2=5
4 3
14
7 27
6 19
13
13
闭回路法(3)
1
2
3
4
6
7
5
3
1 14
5
5
7 14
8
4
2
7
2 8
13
6
27
5 3
9
10
6
19
6
13
22
13
12
13
单位费用变化:3+10+8-6-2-6=7
闭回路法(4)
1
2
3
6
7
5
1
14
5
5
8
4
2
2
8
13
6
5 3
9
10
6
22
13
12
单位费用变化:7+10-6-2=9
4
3
7 14
7
9 27
6
19 13
13
闭回路法(5)
1
2
3
4
6
7
5
3
1
14
5
5
7 14
8
4
2
7
2 8
13
6
9 27
5
9
3
-11
10
6
6 19
13
22
13
运筹学 运输问题例题数学建模
运筹学运输问题例题数学建模运筹学是一门研究如何在有限的资源和多种约束条件下,寻求最优或近似最优解的科学。
运输问题是运筹学中的一个重要分支,它主要研究如何把某种商品从若干个产地运至若干个销地,使总的运费或总的运输时间最小。
本文将介绍运输问题的数学建模方法,以及用表上作业法求解运输问题的步骤和技巧。
同时,本文还将给出几个典型的运输问题的例题,帮助读者理解和掌握运输问题的求解过程。
运输问题的数学建模运输问题可以用以下的数学模型来描述:设有m 个产地(或供应地),分别记为A 1,A 2,…,A m ,每个产地i 的产量(或供应量)为a i ;有n 个销地(或需求地),分别记为B 1,B 2,…,B n ,每个销地j 的需求量为b j ;从产地i 到销地j 的单位运费(或单位运输时间)为c ij ;用x ij 表示从产地i 到销地j 的运量,则运输问题可以归结为以下的线性规划问题:其中,目标函数表示总的运费或总的运输时间,约束条件表示每个产地的供应量必须等于其产量,每个销地的需求量必须等于其销量,以及每条运输路线的运量不能为负数。
在实际问题中,可能出现以下几种情况:产销平衡:即∑m i =1a i =∑n j =1b j ,也就是说总的供应量等于总的需求量。
这种情况下,上述数学模型可以直接应用。
产大于销:即∑m i =1a i >∑n j =1b j ,也就是说总的供应量大于总的需求量。
这种情况下,可以增加一个虚拟的销地,其需求量等于供需差额,且其与各个产地的单位运费为零。
这样就可以把问题转化为一个产销平衡的问题。
产小于销:即∑m i =1a i <∑n j =1b j ,也就是说总的供应量小于总的需求量。
这种情况下,可以增加一个虚拟的产地,其产量等于供需差额,且其与各个销地的单位运费为零。
这样也可以把问题转化为一个产销平衡的问题。
弹性需求:即某些销地对商品的需求量不是固定不变的,而是随着商品价格或其他因素而变化。
数学建模大赛-货物运输问题
货物配送问题【摘要】本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题提出的方案。
我们首先考虑在满足各个公司的需求的情况下,所需要的运输的最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了较为合理的优化模型,求出较为优化的调配方案。
针对问题一,我们在两个大的方面进行分析与优化。
第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。
第二方面我们根据车载重相对最大化思想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。
最后得出耗时最少、费用最少的方案。
耗时为40.5007小时,费用为4685.6元。
针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。
我们采取与问题一相同的算法,得出耗时最少,费用最少的方案。
耗时为26.063小时,费用为4374.4元。
针对问题三的第一小问,我们知道货车有4吨、6吨和8吨三种型号。
我们经过简单的论证,排除了4吨货车的使用。
题目没有规定车子不能变向,所以认为车辆可以掉头。
然后我们仍旧采取①~④公司顺时针送货,⑤~⑧公司逆时针送货的方案。
最后在满足公司需求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨,则用6吨货车运输,若在7~8吨用8吨货车运输。
最后得出耗时最少、费用最省的方案。
耗时为19.6844小时,费用为4403.2。
一、问题重述某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。
路线是唯一的双向道路(如图1)。
货运公司现有一种载重 6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。
数学建模运输问题
数学建模运输问题1. 引言运输问题是数学建模中的经典问题之一,其目的是优化物流调度和资源利用,以降低运输成本和提高运输效率。
在这篇文档中,我们将介绍运输问题的定义、常见的建模方法以及求解运输问题的优化算法。
2. 运输问题的定义运输问题的一般形式是在给定的供应地和需求地之间,通过运输网络将一种货物从供应地运送到需求地,以满足一定的需求量。
运输问题的主要目标是确定如何分配供应地的货物到需求地,并最小化总的运输成本。
运输问题通常基于以下几个假设进行建模:•每个供应地和需求地之间的运输成本是已知的。
•每个供应地和需求地的供应量和需求量是已知的。
•货物在运输过程中没有损耗或浪费。
•每个供应地的供应量等于通过该供应地输出的货物总量。
•每个需求地的需求量等于通过该需求地输入的货物总量。
基于以上假设,我们可以将运输问题抽象为一个线性规划问题,通过求解线性规划问题的最优解,得到最佳的货物分配方案。
3. 运输问题的建模方法运输问题的建模方法可以分为两种:3.1 列生成法列生成法是一种迭代求解运输问题的方法,它从一个初始解开始,逐步地添加新的变量(列)来改善当前解,并最终得到最优解。
具体步骤如下:1.初始化一个基本可行解,即满足供应量和需求量约束的初始解。
2.利用这个基本可行解计算每个可能的新变量的代价,即将某个供应地与某个需求地之间的货物分配量作为新的变量。
3.找到一个具有最小代价的新变量,并将它添加到当前解中。
如果不存在新的变量可以添加,那么当前解就是最优解,算法终止。
4.更新当前解,重新计算供应量和需求量,并返回第2步。
列生成法通过逐步添加新的变量来改善当前解,从而降低运输成本,并且由于每次只添加一个变量,可以减少计算的时间复杂度。
3.2 转运算法转运算法是一种常用的直接求解运输问题的方法,它将运输问题转化为一个线性规划问题,并通过求解线性规划问题的最优解得到最佳的货物分配方案。
具体步骤如下:1.定义决策变量,即每个供应地与需求地之间的货物分配量。
数学建模货运列车编组运输问题
数学建模货运列车编组运输问题数学建模是一门将实际问题抽象化并运用数学方法解决的学科。
货运列车编组运输问题是在实际生产与运输中常遇到的一个问题,即如何合理编组货运列车,以达到效率最大化、成本最小化的目标。
本文将针对这个问题进行深入探讨,并给出一种解决方案。
首先,我们来分析货运列车编组运输问题的背景和影响因素。
货运列车作为运输货物的一种重要方式,具有运载量大、运输成本低的优势。
然而,由于货物种类和数量的不同,以及货物间的相互关系,如何合理编组列车、安排运输路线,成为一个关键问题。
合理的编组方案可以提高运输效率,减少运输成本,提高生产力。
其次,我们来了解一下数学建模在解决货运列车编组运输问题中的应用。
数学建模是通过建立合理的数学模型,运用数学方法来解决实际问题的过程。
在货运列车编组运输问题中,数学建模可以帮助我们确定合适的编组方案。
具体来说,我们可以将问题抽象为一个数学模型,考虑列车的运载限制、货物的属性、运输距离、运输成本等因素,并通过数学方法求解最优解。
接下来,我们来介绍一种常用的数学建模方法——线性规划。
线性规划是一种数学优化方法,用于求解一类特殊的最优化问题。
在货运列车编组运输问题中,我们可以将其建模为一个线性规划问题。
具体来说,我们可以定义目标函数和约束条件,通过线性规划求解器求解最优解。
目标函数可以是最小化运输成本或最大化运输效率,约束条件包括列车的运载限制、货物的属性等。
通过求解线性规划问题,我们可以得到一个最优的编组方案。
除了线性规划,还有其他一些数学建模方法可以用于解决货运列车编组运输问题,如整数规划、动态规划、遗传算法等。
这些方法各有特点,可以根据具体问题的性质选择适合的方法。
然后,我们来讨论一些与货运列车编组运输问题相关的实际案例。
以某货运公司为例,他们需要编组一列货运列车,按照一定的编组规则将货物装载到不同的车厢中,以便快速、高效地运输货物。
该公司采用了数学建模的方法,通过线性规划求解器得到了一个最优的编组方案。
数学建模飞机运输问题
数学建模飞机运输问题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】多变量有约束最优化问题摘要本文以一家运输航空公司的一架飞机运载能力100吨和运载货物的容量50000立方英尺有限的情况下,有三种货物(即x1、x2、x3)需要运输,公司规定每吨货物收取一定的费用,而要运输的每种货物的吨数都有规定的上限(最多不超过30吨、40吨、50吨),并且公司规定由于飞机需要保养与维护,飞机须停飞115天,因此每年只有250天的工作时间。
在此情况下每天怎样安排运输三种货物使公司每年获得最大利润w。
对于此问题只用线性规划的一般方法建立相应的数学模型,在用数学软件求出在给定限行区域内的最优解(w、x1、x2、x3),在对这些最优解进行分析与讨论,确定其为有效最优解。
并以此作为公司对三种货物运输安排方式。
对于问题一,求使得运输航空公司获得最大利润w的x1、x2、x3三种货物的吨数,建立相应的数学模型。
再根据运输能力最多100吨和运载货物容积的最大50000立方英尺,还有每天公司规定的每种货物的运输上限即x1种货物最多运输30吨,x2种货物最多运输40吨,x3种货物最多50吨,建立约束条件。
并用数学软件mathematica进行求解,即为所求的最优解(也就是w=21875,x1=30,x2=,x3=50)。
对于问题二中,要求计算每个约束的影子价格。
我们将利用问题一中建立的目标函数和约束条件,将其编写成源程序输入到Lindo软件中进行求解。
再将得到的界进行讨论与和模型的稳健性分析并且通过其在题意的理解,解释其含义。
问题三中,对于公司将耗资改装飞机以扩大运货区来增加运输能力,且旧飞机使用寿命为5年,每架飞机的改造要花费200000美元,可以增加2000立方英尺的容积。
重量限制仍保持不变。
假设飞机每年飞行250天,这些旧飞机剩余的使用寿命约为5年。
根据此问题我们将建立数学规划模型,利用Lindo软件计算其影子价格和利润并且与前面进行比较,进行分析。
数学建模大赛-货物运输问题
数学建模大赛-货物运输问题问题重述:某港口需要将三种原材料A、B、C分别运往8个公司,运输车有三种型号:4吨、6吨、8吨。
每辆车有固定成本,每次出车也有固定成本。
运输车平均速度为60公里/小时,每日工作不超过8小时。
设计一个方案,使得耗时最少、费用最省。
方案设计:针对问题一,我们首先考虑最小化运输次数,然后根据卸载顺序和载重费用尽量小的原则,提出了较为合理的优化模型。
我们采用顺时针送货(①~④公司)和逆时针送货(⑤~⑧公司)的方案,并将方案分为两步:第一步是使每个车次满载并运往同一个公司;第二步是采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。
最后得出耗时为40.5007小时,费用为4685.6元的方案。
针对问题二,我们加上两个定理及其推论,设计的数学模型与问题一几乎相同,只是空载路径不同。
我们采用与问题一相同的算法,得出耗时为26.063小时,费用为4374.4元的方案。
针对问题三的第一小问,我们排除了4吨货车的使用,并仍旧采用顺时针送货(①~④公司)和逆时针送货(⑤~⑧公司)的方案。
最后在满足公司需求量的条件下,采用不同吨位满载运输方案,分为三步:第一,使8吨车次满载并运往同一公司;第二,6吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6吨货车运输,若在7~8吨内用8吨货车运输。
最后得出耗时为19.6844小时,费用为4403.2元的方案。
建立模型时,需要注意以下几个问题:目标层:在建立模型时,如果将调度车数、车次以及每车次的载重和卸货点都设为变量,会导致模型中变量过多,不易求解。
因此,可以将目标转化为两个阶段的求解过程。
第一阶段是规划车次阶段,求解车次总数和每车次的装卸方案;第二阶段是车辆调度阶段,安排尽量少的车辆数,每车次尽量满载,使总的运费最小。
约束层:1)运输车可以从顺时针或者逆时针方向送货,需要考虑不同方向时的载重用;(2)大小件的卸车顺序要求不同原料搭配运输时,沿途必须有序卸货;(3)每车次的送货量不能超过运输车的最大载重量;(4)满足各公司当日需求。
数学建模飞机运输问题要点
多变量有约束最优化问题摘要本文以一家运输航空公司的一架飞机运载能力100吨和运载货物的容量50000立方英尺有限的情况下,有三种货物(即x1、x2、x3)需要运输,公司规定每吨货物收取一定的费用,而要运输的每种货物的吨数都有规定的上限(最多不超过30吨、40吨、50吨),并且公司规定由于飞机需要保养与维护,飞机须停飞115天,因此每年只有250天的工作时间。
在此情况下每天怎样安排运输三种货物使公司每年获得最大利润w。
对于此问题只用线性规划的一般方法建立相应的数学模型,在用数学软件求出在给定限行区域内的最优解(w、x1、x2、x3),在对这些最优解进行分析与讨论,确定其为有效最优解。
并以此作为公司对三种货物运输安排方式。
对于问题一,求使得运输航空公司获得最大利润w的x1、x2、x3三种货物的吨数,建立相应的数学模型。
再根据运输能力最多100吨和运载货物容积的最大50000立方英尺,还有每天公司规定的每种货物的运输上限即x1种货物最多运输30吨,x2种货物最多运输40吨,x3种货物最多50吨,建立约束条件。
并用数学软件mathematica进行求解,即为所求的最优解(也就是w=21875,x1=30,x2=7.5,x3=50)。
对于问题二中,要求计算每个约束的影子价格。
我们将利用问题一中建立的目标函数和约束条件,将其编写成源程序输入到Lindo软件中进行求解。
再将得到的界进行讨论与和模型的稳健性分析并且通过其在题意的理解,解释其含义。
问题三中,对于公司将耗资改装飞机以扩大运货区来增加运输能力,且旧飞机使用寿命为5年,每架飞机的改造要花费200000美元,可以增加2000立方英尺的容积。
重量限制仍保持不变。
假设飞机每年飞行250天,这些旧飞机剩余的使用寿命约为5年。
根据此问题我们将建立数学规划模型,利用Lindo软件计算其影子价格和利润并且与前面进行比较,进行分析。
关键词:线性规划、mathematica软件的应用、Lindo的软件应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
产销平衡表
单位运价表
销地
产地 1 2 … n
产量
1
a1
2 ...
a. 2 . .
m
am
销量 b1 b2 … bn
有时候把两个表写在一起:
销地 产地
1 2 ... m
1 2 …n
c11 c12 … c1n
c.21 c2.2 … c2.n
..
.
..
.
cm1 cm2 … cmn
c.21 c2.2 … c2.n
..
.
..
.
a...2
则有如下的运输问题数学模型:
m
cm1 cm2 … cmn am
mn
销量 b1 b2 … bn
min z m min z i1
n j 1
cciijj xxijij
i 1 j 1
jnjn11xixj ij ai (ai i(1i, 1, m , ) , m)
B1—3吨,B2—6吨,B3—5吨,B4—6吨。 已知从每个加工厂到各销售门市部每吨糖果的运价如上表所示,
该食品公司应如何调运,在满足各门市部销售需要的情况下, 使总的运费支出为最少。
二.问题的概述
在线性规划中研究这样一类问题: 有某种物资需要调运,这种物资的计量单位可以是重量,
包装单位或其他。 已知: 有m 个地点可以供应该种物资(统称产地,用 i =1,…,m 表示); 有 n 个地点需要该种物资(统称销地,用 j =1,…,n 表示)。 又知 m 个产地的可供量(统称产量)为a1 , a2, …, am(统写为a i ); n 个销地的需要量(统称销量)为b1 , b2, …, bn(统写为 b j )。 从第 i 个产地到第 j 个销地的单位物资运价为c i j 。
m
n
ai bj
1 2
i1
j1
...
1)数学模型
m
mn
销量
min z
cij xij
i 1 j 1
x11 x12 … x1n a1
x.21 x2.2 … x2.n
..
.
..
.
a...2
xm1 xm2 … xmn am
b1 b2 … bn
n
xij ai (i 1,, m )
销地 产地 1
2…n
产 量
1
a1
销地
产
2 ...
a...2 产地
1 2 …n 量
m
am
1
c11 c12 … c1n a1
销量 b1 b2 … bn
销地 产地
1 2 …n
2 ...
c.21 c2.2 … c2.n
..
.
..
.
a...2
m
cm1 cm2 … cmn am
1
c11 c12 … c1n
2 ...
xij
0
先要在每个约束条件左端加上一个人工变量,
因此即使象食品公司调运糖果这样简单的数学问题,
变量数就有 3×4+3+4=19个之多,计算起来非常繁杂。
运输问题的数学模型结构比较特殊, 它的约束条件变量的系数矩阵具有如下的形式:
产销不平衡的运输问题
销地 产地
1 2 …n
产 量
m
n
1.产大于销 ai b j
就转化为一个产销平衡的运输问题。 具体做法如下:
销地 产地
1 2 ... m
销量
1 2 … n n+1 产量
c11 c12 … c1n
0
a1
c.21 c2.2 … c2.n
..
.
..
.
0
...
a...2
cm1 cm2 … cmn 0
am
b1 b2 … bn 库存
销地 产地
1 2 …n
产 量
2.销大于产
销地
cm1, j 0
产地 1
就转化为产销平衡的运输问题。
2 ...
具体做法如下:
s.t.
j 1
m
xij
b j ( j 1,, n)
i 1
xij 0
2)求解方法: 转化为产销平衡问题
产大于销时,增加一个假想的销地 j = n+1(库存),
m
n
该销地的总需求量为 i1 ai j 1 b j
而在单位运价表中从各产地到假想销地的单位运价为 ci,n1 0
i1
j1
1)数学模型
1
x11 x12 … x1n a1
2 ...
x.21 x2.2 … x2.n
..
.
..
.
a...2
m
n
m xm1 xm2 … xmn am
min z
c销ij 量xij b1 b2 … bn
i 1 j 1
n
xij ai (i 1,, m)
b1 b2 … bn
说明:
mn
min z
cij xij
i 1 j 1
运输问题的数学模型包含 m×n个变量, (m+n)个约束条件。
如果用单纯形法求解,
n
xij ai (i 1,, m)
j 1
m
xij b j ( j 1,, n)
i 1
运输问题模型 Transportation
一.问题的提出
某食品公司主要经营糖果。 它下面设有三个加工厂, 每天的糖果生产量分别为:
A1—7 吨,A2—4吨,A3—9吨。
门市部
加工厂
B1 B2 B3 B4
A1
3 11 3 10
A2
1928
A3
7 4 10 5
公司把这些糖果分别运往四个地区的门市部销售, 各地区每天的销售量分别为:
j1
s.t . m xij b j ( j 1,, n)
i 1
x
ij
0
2)求解方法: 转化为产销平衡问题
销大于产时,在产销平衡表中增加一个假想的产地 i = m+1,
该地产量为 在单位运价表中,
n
bj
j 1
m i 1
ai
从假想产地到各销地的单位运价为
c.21 c2.2 … c2.n
..
.
..
.
m
cm1 cm2 … cmn
销量
b1 b2 … bn
三.运输问题模型
设 xij 代表从第 i 个产地调运给 第 j 个销地的物资数量。
销地 产地
1
1 2 …n c11 c12 … c1n
产 量
a1
在产销平衡的条件下,要求解 运输问题使总的运费支出最小,
2 ...
销地 产地
1
1 2 …n x11 x12 … x1n
产 量
a1
imim 11xixj ij bj (bj j(1j, ,1n,), n)
xxiijj 00
2 ... m 销量
x.21 x2.2 … x2.n
..
.
..
.
a...2
xm1 xm2 … xmn am