求解一元一次方程(3)
一元一次方程的求解
一元一次方程的求解一元一次方程是数学中最基本的方程,它的解法也是我们数学学习的起点。
解一元一次方程的方法有很多种,下面将介绍三种常用的解法。
1. 直接代入法直接代入法是最直观也是最简单的一种解一元一次方程的方法。
它的基本思想是将方程中的未知数用已知数代入,将方程化简为仅含有已知数的等式,然后求解。
例如,我们有一个一元一次方程:2x + 3 = 7。
我们可以选择一个已知数,如x = 2,将x代入方程中,得到:2(2) + 3 = 74 + 3 = 77 = 7可以看到,等式两边相等,因此x = 2就是方程的解。
2. 移项法移项法是解一元一次方程的常用方法之一。
它的基本思想是通过移动方程中的项,使未知数的系数为1,将方程化为x = 常数的形式。
例如,我们有一个一元一次方程:3x - 4 = 5。
我们可以先将常数项移到方程的右侧,得到:3x = 5 + 43x = 9接下来,将未知数的系数变为1,得到:x = 9/3x = 3因此,方程的解为x = 3。
3. 消元法消元法是解一元一次方程的另一种常用方法。
它的基本思想是通过变换方程,将其中的未知数消去,得到只含有已知数的方程,然后求解。
例如,我们有一个一元一次方程组:2x + 3y = 7,3x - y = 5。
我们可以通过消元法解这个方程组。
首先,将第二个方程的未知数系数变为与第一个方程相等的倍数,得到:2x + 3y = 79x - 3y = 15然后,将两个方程相加,得到:11x = 22最后,将x = 22/11化简,得到:x = 2将x的值代入其中一个方程,如第一个方程,得到:2(2) + 3y = 74 + 3y = 73y = 3y = 1因此,方程组的解为x = 2,y = 1。
总结:解一元一次方程的方法有直接代入法、移项法和消元法。
选择合适的解法,根据具体的方程进行求解,可以得到方程的解。
掌握这些解法,对于数学学习的进一步发展非常重要。
北师大版数学七年级上册5.2《求解一元一次方程》说课稿3
北师大版数学七年级上册5.2《求解一元一次方程》说课稿3一. 教材分析北师大版数学七年级上册5.2《求解一元一次方程》是学生在掌握了方程的概念和性质的基础上进一步学习解一元一次方程的知识点。
这一节内容主要通过实例引入一元一次方程的解法,让学生掌握加减法、代入法、等价变换法等求解一元一次方程的方法,并能够灵活运用这些方法解决实际问题。
通过本节课的学习,培养学生解决实际问题的能力,提高学生的数学思维水平。
二. 学情分析面对刚从小学升入初中的学生,他们在数学知识、技能、思维方式上都有了一定的基础。
他们对方程的概念和性质有一定的了解,能够进行一些基本的运算。
但他们在解决实际问题方面的经验还不够丰富,需要通过实例来引导他们进一步理解和掌握解一元一次方程的方法。
三. 说教学目标1.知识与技能目标:使学生掌握一元一次方程的解法,能够灵活运用加减法、代入法、等价变换法等方法求解一元一次方程。
2.过程与方法目标:通过实例分析,引导学生自主探索和总结解一元一次方程的方法,培养学生的数学思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生解决实际问题的能力,使学生感受到数学在生活中的重要作用。
四. 说教学重难点1.教学重点:一元一次方程的解法。
2.教学难点:灵活运用各种方法解一元一次方程,以及将实际问题转化为方程进行求解。
五. 说教学方法与手段本节课采用启发式教学法、案例教学法和小组合作学习法。
通过实例引入,引导学生自主探索和总结解一元一次方程的方法。
利用多媒体课件辅助教学,生动展示解题过程,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入新课:通过一个实际问题引入一元一次方程,激发学生的学习兴趣。
2.自主探索:学生分组讨论,尝试解决实际问题,总结解一元一次方程的方法。
3.讲解演示:教师讲解解一元一次方程的常用方法,如加减法、代入法、等价变换法等。
4.练习巩固:学生独立完成课后练习题,教师辅导并解答学生遇到的疑问。
解一元一次方程的方法与步骤
解一元一次方程的方法与步骤一元一次方程是数学中最基本的代数方程,它的形式为ax + b = 0,其中a和b为已知数,x为未知数。
解一元一次方程的方法与步骤相对简单,本文将详细介绍解一元一次方程的常用方法。
一、整理方程式解一元一次方程的第一步是整理方程式,使得未知数x的系数为1,即将方程式化为x + c = 0的形式。
为了实现这一目标,我们需要通过两种操作来进行整理。
1. 去除方程中的常数项如果方程式中有常数项b(b≠0),我们需要通过减去b来消除常数项,使方程式变为ax = -b。
这样做可以将方程式的常数项转化为0,方便后续计算。
2. 化简方程中的系数如果方程中的未知数x的系数a(a≠0)不为1,我们需要通过除以a来化简方程,使得x的系数变为1。
这意味着我们需要将方程式变为x = -b/a,从而使得求解过程更为简洁。
二、求解未知数一旦方程式整理完毕,我们可以根据已知数的取值求解未知数x。
1. 唯一解如果方程式中的系数a(a≠0)不为0,则方程一定有唯一解。
此时,我们只需将方程式中的已知数代入等式中,求解未知数即可。
例如,对于方程2x + 3 = 0,我们可以通过求解得到x的值为x = -3/2。
2. 无解如果方程式中的系数a(a≠0)不为0,但常数项b为0,则方程无解。
这是因为在这种情况下,我们无法找到一个x的值,使得该值乘以非零系数a后能够得到0。
一个示例是方程2x = 0,它没有解。
3. 无限解如果方程式中的系数a和常数项b均为0,则方程有无限解。
因为这种情况下方程成为了0 = 0,它成立于任何实数x。
因此,我们无法通过求解来得到一个确定的x的值。
例如,方程0x = 0就是一个具有无限解的一元一次方程。
三、检验解的正确性在求解一元一次方程后,为了确保所得的解是正确的,我们需要对求解出的未知数进行检验。
1. 将解代入方程式将求得的未知数x代入原方程式,检验等式左右两边是否相等。
如果相等,那么所得的解是正确的;如果不相等,则说明解有误。
解一元一次方程经典题库及答案
解一元一次方程经典题库及答案一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).9.解方程:.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).11.计算:(1)计算:(2)解方程:12.解方程:13.解方程:(1)(2)14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x﹣)+]=5x﹣115.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣318.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).25.解方程:.26.解方程:(1)10x﹣12=5x+15;(2)27.解方程:(1)8y﹣3(3y+2)=7(2).28.当k为什么数时,式子比的值少3.29.解下列方程:(II).30.解方程:.6.2.4解一元一次方程(三)参考答案与试题解析一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=7考点:解一元一次方程.专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1合并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按(1)的步骤求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.考点:解一元一次方程.专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x﹣3=2x+33x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考点:解一元一次方程.专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得:x=5.点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,合并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.解答:解:(1)4x﹣3(4﹣x)=2去括号,得4x﹣12+3x=2移项,合并同类项7x=14系数化1,得x=2.(2)(x﹣1)=2﹣(x+2)去分母,得5(x﹣1)=20﹣2(x+2)去括号,得5x﹣5=20﹣2x﹣4移项、合并同类项,得7x=21系数化1,得x=3.点评:(1)此题主要是去括号,移项,合并同类项,系数化1.(2)方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.11.计算:(1)计算:(2)解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)根据有理数的混合运算法则计算:先算乘方、后算乘除、再算加减;(2)两边同时乘以最简公分母4,即可去掉分母.解答:解:(1)原式=,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要注意:(1)去分母时最好先去中括号、再去小括号,以减少去括号带来的符号变化次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:(1)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.解答:解:(1)去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、合并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项、合并同类项得:x=﹣1,系数化为1得:x=﹣.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.13.解方程:(1)(2)考点:解一元一次方程.专题:计算题.分析:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母、去括号、移项、合并同类项、化系数为1.解答:(1)解:去分母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,合并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣14,x=1.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:计算题.分析:(2)通过去括号、移项、合并同类项、系数化为1,解得x的值;(3)乘最小公倍数去分母即可;(4)主要是去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得:10x+5﹣4x+6=6移项、合并得:6x=﹣5,方程两边都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣6x+24,移项、合并得:9x=38,方程两边都除以9,得x=;(3)整理得:[3(x﹣)+]=5x﹣1,4x﹣2+1=5x﹣1,移项、合并得:x=0.点评:一元一次方程的解法:一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.解题时,要灵活运用这些步骤.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B类:(x﹣1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣化简:x=5即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:本题主要考查一元一次方程的解法,比较简单,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考点:解一元一次方程.专题:计算题.分析:(1)去括号以后,移项,合并同类项,系数化为1即可求解;(2)(3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;(4)首先根据分数的基本性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9﹣5+10x移项得:3x﹣10x=9﹣5﹣18合并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,合并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;(4)原方程可以变形为:﹣5x=﹣1去分母得:17+20x﹣15x=﹣3移项,合并同类项得:5x=﹣20系数化为1得:x=﹣4.点评:解方程的过程中要注意每步的依据,这几个题目都是基础的题目,需要熟练掌握.17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣3考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣15+3x=13,移项合并得:7x=28,系数化为1得:得x=4;(2)原式变形为x+3=,去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项合并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混合运算.分析:(1)利用平方和立方的定义进行计算.(2)按四则混合运算的顺序进行计算.(3)主要是去括号,移项合并.(4)两边同乘最小公倍数去分母,再求值.解答:解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2]====.(3)解方程:4x﹣3(5﹣x)=2去括号,得4x﹣15+3x)=2移项,得4x+3x=2+15合并同类项,得7x=17系数化为1,得.(4)解方程:去分母,得15x﹣3(x﹣2)=5(2x﹣5)﹣3×15去括号,得15x﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6合并同类项,得2x=﹣76系数化为1,得x=﹣38.点评:前两道题考查了学生有理数的混合运算,后两道考查了学生解一元一次方程的能力.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)和(2)要熟练掌握有理数的混合运算;(3)和(4)首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解答:解:(1)(1﹣2﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3合并同类项,得x=4;(4)解方程:去分母,得6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90合并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要注意符号的处理;(4)要特别注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20.解方程(1)﹣0.2(x﹣5)=1;(2).考点:解一元一次方程.分析:(1)通过去括号、移项、系数化为1等过程,求得x的值;(2)通过去分母以及去括号、移项、系数化为1等过程,求得x的值.解答:解:(1)﹣0.2(x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,∴x=﹣.点评:此题主要考查了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:计算题.分析:先去括号得x+3﹣2x+2=9﹣3x,然后移项、合并同类得到2x=4,然后把x的系数化为1即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得x﹣2x+3x=9﹣3﹣2,合并得2x=4,系数化为1得x=2.点评:本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...考点:解一元一次方程.专题:方程思想.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再通过移项、合并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,∴x=4.∴x=4是原方程的解;5x+2(3x﹣7)=9﹣4(2+x),解:5x+6x﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1.∴x=1是原方程的解..解:3(x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2,﹣x=17,∴x=﹣17.∴x=﹣17是原方程的解.,解:,5(10x﹣3)=4(10x+1)+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x=.∴x=是原方程的解.点评:此题考查的知识点是解一元一次方程,关键是注意解方程时的每一步都要认真仔细,如移项时要变符号.23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.考点:解一元一次方程.分析:(1)首先去括号,然后移项、合并同类项,系数化成1,即可求解;(2)首先去分母,然后去括号,移项、合并同类项,系数化成1,即可求解解答:解:(1)去括号,得:0.5x﹣0.7=5.2﹣1.3x+1.3移项,得:0.5x+1.3x=5.2+1.3+0.7合并同类项,得:1.8x=7.2,则x=4;(2)去分母得:7(1﹣2x)=3(3x+1)﹣42,去括号,得:7﹣14x=9x+3﹣42,移项,得:﹣14x﹣9x=3﹣42﹣7,合并同类项,得:﹣23x=﹣46,则x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).考点:解一元一次方程.分析:(1)移项,合并同类项,然后系数化成1即可求解;(2)移项,合并同类项,然后系数化成1即可求解;(3)去括号、移项,合并同类项,然后系数化成1即可求解;(4)首先去分母,然后去括号、移项,合并同类项,然后系数化成1即可求解.解答:解:(1)3x=10.5,x=3.5;(2)3x﹣2x=6﹣8,x=﹣2;(3)2x+3x+3=5﹣4x+4,2x+3x+4x=5+4﹣3,9x=6,x=;(4)2(x+1)+6=3(3x﹣2),2x+2+6=9x﹣6,2x﹣9x=﹣6﹣2﹣6,﹣7x=﹣14,x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.25.解方程:.考点:解一元一次方程.专题:计算题.分析:方程两边乘以10去分母后,去括号,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:5(3x﹣1)﹣2(5x﹣6)=2,去括号得:15x﹣5﹣10x+12=2,移项合并得:5x=﹣5,解得:x=﹣1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.解方程:(1)10x﹣12=5x+15;(2)考点:解一元一次方程.专题:计算题.分析:(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.解答:解:(1)移项,得10x﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=;(2)去括号,得=,方程的两边同时乘以6,得x+1=4x﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.点评:本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.27.解方程:(1)8y﹣3(3y+2)=7(2).考点:解一元一次方程.专题:计算题.分析:(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(1)去括号得,8y﹣9y﹣6=7,移项、合并得,﹣y=13,系数化为1得,y=﹣13;(2)去分母得,3(3x﹣1)﹣12=2(5x﹣7),去括号得,9x﹣3﹣12=10x﹣14,移项得,9x﹣10x=﹣14+3+12,合并同类项得,﹣x=1,系数化为1得,x=﹣1.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.28.当k为什么数时,式子比的值少3.考点:解一元一次方程.专题:计算题.分析:先根据题意列出方程,再根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.解答:解:依题意,得=+3,去分母得,5(2k+1)=3(17﹣k)+45,去括号得,10k+5=51﹣3k+45,移项得,10k+3k=51+45﹣5,合并同类项得,13k=91,系数化为1得,k=7,∴当k=7时,式子比的值少3.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II).考点:解一元一次方程.专题:计算题.分析:(Ⅰ)根据一元一次方程的解法,移项,合并同类项,系数化为1即可得解;(Ⅱ)是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(Ⅰ)移项得,12y﹣2.5y﹣7.5y=5,合并同类项得,2y=5,系数化为1得,y=2.5;(Ⅱ)去分母得,5(x+1)﹣10=(3x﹣2)﹣2(2x+3),去括号得,5x+5﹣10=3x﹣2﹣4x﹣6,移项得,5x﹣3x+4x=﹣2﹣6﹣5+10,合并同类项得,6x=﹣3,系数化为1得,x=﹣.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.30.解方程:.考点:解一元一次方程.专题:计算题.分析:由于方程的分子、分母均有小数,利用分数的基本性质,分子、分母同时扩大相同的倍数,可将小数化成整数.解答:解:原方程变形为,(3分)去分母,得3×(30x﹣11)﹣4×(40x﹣2)=2×(16﹣70x),(4分)去括号,得90x﹣33﹣160x+8=32﹣140x,(5分)移项,得90x﹣160x+140x=32+33﹣8,(6分)合并同类项,得70x=57,(7分)系数化为1,得.(8分)点评:本题考查一元一次方程的解法.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.本题的难点在于方程的分子、分母均有小数,将小数化成整数不同于去分母,不是方程两边同乘一个数,而是将分子、分母同乘一个数.。
北师大版七年级数学上册第五章 一元一次方程 求解一元一次方程(第3课时)
课堂检测
基础巩固题
1. 方程3-5x2+7=-x+417去分母正确的是 ( C )
A. 3-2(5x+7) = -(x+17)
B. 12-2(5x+7) = -x+17
C. 12-2(5x+7) = -(x+17)
4x - 7x = 140– 56 -3x = 84 x = -28
巩固练习
解方程:
(1) 3−2 x=x+34;
(2)
1 3
(x+1)=
1 7
(2x-3);
(3)x+52=x4;
(4) 14(x+1)= 13(x-1).
巩固练习
(1)3−2 x=x+34; 解: (1)去分母(方程两边同乘6),得
拓广探索题
方程(3m-4)x2+3mx-4m=5x-2m是关于x的一元
一次方程,求m和x的值.
解: 因为原方程是关于x的一元一次方程, (3m-4)x2+3mx-4m-5x+2m=0 (3m-4)x2+(3m-5)x2m所=以0 3m-4=0,3m-5≠0,解得 m将=m43=43代入原方程,得 4x-136=5x-83 解得 x=-83.
D. 12-10x+14 = -(x+17)
2. 若代数式x−2 1与65的值互为倒数,则x=
8 3
.
课堂检测
基础巩固题
3.解方程:(1) x−4 1-2x3+5=-3
解:去分母(方程两边同乘12),得 3(x-1)-4(2x+5) =-3×12. 去括号,得3x-3-8x-20=-36. 移项,得3x-8x=-36+3+20. 合并同类项,得-5x=-13. 系数化为1,得x=153 .
3.3解一元一次方程(3)——去分母 讲练课件 2023-2024学年人教版数学
2×(2×2-1)=3×(2+a)-1.
解得a= .
+
−
把a= 代入原方程,得
=
去分母,得2(2x-1)=3 +
去括号,得4x-2=3x+1-6.
移项,得4x-3x=1-6+2.
合并同类项,得x=-3.
-1.
-6.
因为37.5<40,
所以他们能在要求的时间内完成任务.
5.整体思想在解方程3(x+1)- (x-1)=2(x-1)- (x+1)时,可先将
(x+1),(x-1)分别看成两个整体再进行移项、合并同类项,得方程 (x+
1)= (x-1),再继续分解,这种方法叫做整体求解法,请用这种方法解方
移项,得5x+2x=20-4+5.
合并同类项,得7x=21.
系数化为1,得x=3.
− − −
(4) = .
解:去分母,得3(x-1)-(2x-3)=2(6-x).
去括号,得3x-3-2x+3=12-2x.
移项、合并同类项,得3x=12.
系数化为1,得x=4.
.−.
去括号,得2-2x-x+2=6.
移项,得-2x-x=6-2-2.
合并同类项,得-3x=2.
系数化为1,得x=- .
+
−
2.解方程:
-1= .
解:去分母,得3(2x+1)-15=5(x-2).
去括号,得6x+3-15=5x-10.
移项,得6x-5x=-10-3+15.
一元一次方程大全
一元一次方程大全一元一次方程是数学中的一种最基本的方程,也是学习数学的第一步。
它应用广泛,可用于分析简单的数学问题,也可以解决复杂的实际应用问题。
本文旨在介绍一元一次方程,阐述它的基本概念、解法、应用以及习题等内容。
一、一元一次方程的定义一元一次方程是一种最基本的数学方程,它的定义如下:一元一次方程是指由一元一次未知数和常数构成的数学方程,通常表示为:ax + b = 0,其中a和b分别为常数和未知数,a≠0。
二、一元一次方程的解法一元一次方程的解法大多有三种:因式分解法、移项法和简单求根法。
(1)因式分解法如果一元一次方程是 ax + b = 0,则可以分解为a(x + b/a)= 0,x = -b/a。
也就是说,一元一次方程的解为x = -b/a。
(2)移项法移项法是指将一元一次方程的右端的常数项移到左端,即将ax + b = 0写成ax=-b的形式,然后除以a,即x=-b/a。
(3)简单求根法简单求根法是指将一元一次方程的右端的常数项对左端的未知数求根,即 ax+b=0变成x=-b/a的形式,然后计算x的值。
三、一元一次方程的应用一元一次方程不仅在学校教育中应用广泛,而且在现实生活中也有重要的应用。
比如,平面几何中的几何计算,可以使用一元一次方程求解平行直线和垂直直线的交点;统计学中的数据拟合,也可以通过一元一次方程拟合数据,以获得更准确的数据分析结果;复杂的工程问题,如两垂直的射线的仿射变换,也可以用一元一次方程来求解。
四、一元一次方程的习题以下为常见的一元一次方程习题:(1)2x + 3 = 0解:x = -3/2。
(2)3x - 5 = 0解:x = 5/3。
(3)-4x + 8 = 0解:x = -8/4。
(4)4x - 7 = -9解:x = 2。
总结从上面的内容可以看出,一元一次方程是学习数学的一个基本概念,不仅在学校数学教育中应用广泛,而且在实际生活中也有广泛的应用。
它的解法有三种,分别是因式分解法、移项法、简单求根法。
一元一次方程的解法(去括号)
ax = -b x = -b / a
如何检查答案
为了检查方程的解是否正确,将求得解代入原方程,并验证等式是否成立。 整数解与最简分数解的区别: 整数解是指方程的解为整数,而最简分数解是指方程的解为最简分数。
如何变形方程
为了解决特定问题,我们可能需要变形方程来使其更适合求解或者更易于理解。 如何同时去掉分母: 为了同时去掉方程中的分母,可以将方程两边乘以分母的最小公倍数。 如何解决含有绝对值符号的方程: 当方程含有绝对值符号时,需要考虑绝对值的取正负两种情况,分别列出两个方程并求解。
如何根据题目判断方程的变形 方式
在变形方程时,需要根据题目的具体要求和条件来确定选择的变形方式。 常用的变形方式包括去括号、消项、合并同类项等。
如应用方程组解决实际问题
当问题涉及多个未知数和多个方程时,我们可以使用方程组的方法来求解问题。 应用实例1:两个人赛跑问题 应用实例2:两条船追及问题 应用实例3:游泳池注水和排水问题 应用实例4:订货和运输问题
数字的代数意义
在代数中,数字可以表示一元一次方程中的系数、常数项以及解的值。 在线求解方程工具的使用 为了方便求解一元一次方程,我们可以使用在线求解方程工具。
用图像解释一元一次方程的含义
通过图像可以更直观地理解一元一次方程的含义。图像表示了方程的解的几何意义。 如何应用一元一次方程求解实际问题: 通过将实际问题转化为一元一次方程,我们可以使用数学方法求解并得到问题的答案。
如何将题目转换成一元一次方程的形式
为了将题目转换成一元一次方程的形式,我们需要先理解问题中的关键信息,并确定未知数。 根据问题的描述和条件,我们可以将其转换成一个等式,然后进行求解。
3.3解一元一次方程-去分母解一元一次方程(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“去分母解一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调最小公倍数的计算和方程去分母的步骤这两个重点。对于难点部分,我会通过具体例题和逐步解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与去分母解方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过实际操作去除方程分母的基本原理。
1.通过分析一元一次方程的分母特点,让学生掌握数学抽象思维,提高对数学概念的理解。
2.运用等式性质和最小公倍数去分母解方程,培养学生逻辑推理能力和严谨的数学态度。
3.结合实际问题,引导学生发现、提出、解决问题,提高问题解决能力和创新意识。
4.通过小组讨论和互动,培养学生的合作意识和交流表达能力,增强团队协作能力。
(2)在实际问题中,如何将问题转化为含有分母的一元一次方程,并成功去除分母。
(3)对于部分学生,如何克服对分数的恐惧心理,增强解题信心。
举例:
(1)最小公倍数的识别与计算:对于上述方程,需要找到分母3、4、6的最小公倍数,即12。学生在这一步可能难以理解如何快速找到最小公倍数,需要教师指导。
(2)问题转化:在实际问题中,学生可能难以将问题抽象成含有分母的一元一次方程,如行程问题、浓度问题等。教师需引导学生逐步分析问题,帮助他们完成方程的建立。
七年级上册第五章-第二讲 求解一元一次方程
第一讲 认识一元一次方程一、用合并同类项法解一元一次方程1.合并同类项:将一元一次方程中含未知数的项与常数项分别合并,使方程转化为ax =b (a ≠0)的形式. 要点精析:(1)要把不同的同类项分别进行合并;(2)解方程中的合并同类项和整式加减中的合并同类项一样,它们的根据都是乘法分配律,实质都是系数的合并. 例1 解下列方程:总结:(1)合并同类项的目的是将原方程转化成ax =b (a ≠0)的形式,依据是合并同类项的法则;(2)系数化为1的依据是等式的性质2:将方程ax =b (a ≠0)的两边同时除以a ,当a 为分数时,可将方程两边同时乘a 的倒数. 例2 下面解方程的结果正确的是( )A .方程4=3x -4x 的解为x =4B .方程 x = 的解为x =2C .方程32=8x 的解为x =D .方程1-4= x 的解为x =-9例3 有一列数,按一定规律排列成1,-3, 9, -27, 81,-243, …,其中某三个相邻数的和是-1701, 这三个数各是多少?例4 某中学的学生自己动手整修操场,如果让八年级学生单独工作,需要6小时完成;如果让九年级学生单独工作,需要4小时完成.现在由八、九年级学生一起工作,需多少小时才能完成任务?例5 如果x =m 是方程 x -m =1的解,那么m 的值是( )A .0B .2C .-2D .-6 二、列方程解“总量=各部分量的和”的问题1.系数化为1:方程两边同时除以未知数的系数,使一元一次方程ax =b (a ≠0)变形为x = (a ≠0)的形式,变形的依据是等式的性质2.()51268;2x x -=-()27 2.53 1.51546 3.x x x x -+-=-⨯-⨯32131413ba122.易错警示:系数化为1时,常出现以下几种错误: (1)颠倒除数与被除数的位置; (2)忽略未知数系数的符号;(3)当未知数的系数含有字母时,不考虑系数是不是等于0的情况.例6 某校三年共购买计算机140台,去年 购买数量是前年的2倍,今年购买数量又是去年的 2倍.前年这个学校购买了多少台计算机?例7 解下列一元一次方程:(1)-x =3; (2)2x =-4; (3) x =-3.例8 把方程- x =3的系数化为1的过程中,最恰当的叙述是( )A .给方程两边同时乘-3B .给方程两边同时除以-C .给方程两边同时乘-D .给方程两边同时除以3 三、移项比较这个方程与原方程,可以发现,这个变形相当于即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫移项 . 1.定义:将方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫移项.2.方法:把方程右边含有未知数的项改变符号后移到方程左边,把方程左边不含未知数的项改变符号后移到方程右边;即:“常数右边凑热闹,未知左边来报到.”用移项法解一元一次方程的一般步骤: 移项→合并同类项→系数化为1. 移项的原则: 未知项左边来报到,常数项右边凑热闹.移项的方法: 把方程中的某些项改变符号后,从方程的一边移到另一边,即移项要变号. 例9 将方程5x +1=2x -3移项后,可得( ) A .5x -2x =-3+1 B .5x -2x =-3-1 C .5x +2x =-3-1 D .5x +2x =1-3 例10解方程时,移项法则的依据是( )A .加法交换律B .加法结合律C .等式的性质1D .等式的性质212233232例2 解下列方程:(1)2x +6 = 1; (2) 3x +3 = 2x +7. (3)例3 已知关于x 的方程3a -x = +3的解为2,则式子a 2-2a +1的值是________. 四、去括号法 去括号法则:1.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;2.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 去括号的目的是能利用移项法解方程;其实质是乘法的分配律.3.去括号必须做到“两注意”:(1)如果括号外的因数是负数时,去括号后,原括号内各项都要改变符号. (2)乘数与括号内多项式相乘时,乘数应乘以括号内每一项,不要漏乘. 4.用去括号法解一元一次方程步骤:第一步:去括号(按照去括号法则去括号);第二步:用移项法解这个一元一次方程:移项→合并同类项→系数化为1. 例1 方程1-(2x +3)=6,去括号的结果是( )A .1+2x -3=6B .1-2x -3=6C .1-2x +3=6D .2x -1-3=6 例2 解方程:(1)-2(x -1) = 4. (2)4x +2(4x -3)=2-3(x +1).例5 解方程:2(x +1)- (x -1)=2(x -1)+ (x +1).例6 解下列方程:(1)5(x -1) = 1; (2)2-(1-x ) = -2; (3)11x +1 = 5(2x +1); (4)4x -3(20-x ) = 3; (5)5(x +8)-5 = 0; (6)2(3-x ) = 9; (7)-3(x +3) = 24; (8)-2 (x -2) = 12. 11 3.42x x -+2x1212五、去分母去分母的方法:方程两边同时乘所有分母的最小公倍数; 去分母的依据:等式的性质2;去分母的目的:将分数系数转化为整数系数;去分母的步骤:先找各个分母的最小公倍数,再依据等式的性质2,将方程两边同时乘这个最小公倍数. 例1 把方程3x +去分母,正确的是( )A .18x +2(2x -1)=18-3(x +1)B .3x +2(2x -1)=3-3(x +1)C .18x +(2x -1)=18-(x +1)D .18x +4x -1=18-3x +1例2 在解方程 时,去分母正确的是( )A .7(1-2x )=3(3x +1)-3B .1-2x =(3x +1)-3C .1-2x =(3x +1)-63D .7(1-2x )=3(3x +1)-63 例3 解方程:(1) (2)例4 解下列方程:课堂小结211332x x1231337x x -+=-111(15)(7).523x x 0.10.010.011.0.20.063x x x --=-34(1);23x x 11(2)1)(23);37x x (2(3);54x x11(4)(1)(1);43x x 212(5)1;34x x 11(6)(1)2(2).25x x一、合并同类项1.下列解方程的过程中,错误的是( )A .由-4x +5x =2,得x =-2B .由y +2y =2,得3y =2,故y =C .由-2x +x =4-2,得-x =2,故x =-2D .由0.25a -0.75a =0,得-0.5a =0,故a =0 2.解方程11=x +6x +4x 的正确结果是( )A .x =1B .x =-1C .x =2D .x =-2 3.若关于x 的方程a -3ax =14的解是x =-2,则a 的值为( )A .-14B .-2C .2D .144.对于任意四个有理数a ,b ,c ,d ,定义新运算: .已知 =18,则x 的值为( )A .-1B .2C .3D .45.关于x 的方程3-x =2a 与方程x +3x =28的解相同,则a 的值为( )A .2B .-2C .5D .-5 6.解方程: (1)2x -4x +3x =5; (2) a + a - a =-12.7.已知关于x 的方程 +x =3a -3的解为x =2,求(-a )2-2a +1的值.8.如果甲、乙、丙三村合修一条公路,计划出工84人,按3:4 : 7出工,求各村出工的人数. ①设甲、乙、丙三村分别出工3x 人、4x 人、7x 人,依题意,得3x +4x +7x =84;②设甲村出工x 人,依题意,得x +4x +7x =84; ③设乙村出工x 人,依题意,得x +x +x =84; ④设丙村出工x 人,依题意,得3x +4x +x =84. 上面所列方程中正确的有( )A .1个B .2个C .3个D .4个9.某中学的学生自己动手整修操场,如果让八年级学生单独工作,需要6 h 完成;如果让九年级学生单独工作,需要4 h 完成.现在由八、九年级学生一起工作,需多少小时才能完成任务?10.我国明代数学家程大位曾提出一个有趣的问题.有一个人赶着一群羊在前面走,另一个人牵着一只羊跟在后面,后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊的人回答:“我再得这么一群羊,再得这群羊的一半,再得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只羊.”问这群羊有多少只. 1213162x二、移项1.下列变形属于移项变形的是( )A .由 =3,得x -2=12B .由2x =3,得x =C .由4x =2x -1,得4x -2x =-1D .由3y -(y -2)=3,得3y -y +2=3 2.解方程3x +5=8x -10的一般步骤是:(1)移项,得________________; (2)合并同类项,得____________; (3)系数化为1,得____________.3.关于x 的方程3x +2=x -4b 的解是x =5,则b 等于( )A .-1B .-2C .2D .-34.某县由种玉米改为种优质杂粮后,今年农民人均收入比去年提高了20%,今年农民人均收入比去年的1.5倍少1 200元.问这个县去年农民人均收入多少元?若设这个县去年农民人均收入为x 元,则今年农民人均收入既可以表示为__________________,又可以表示为__________________,因此可列方程______________________________.5.(中考•荆州)为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?( )A .140元B .150元C .160元D .200元 6.(中考•聊城)在如图所示的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .72 7.解方程:(1)0.4x - =8- x ; (2) x -3=5x + .8.如果5m +4与m -2互为相反数,求m 的值.9.已知|3x -6|+(2y -8)2=0,求2x -y 的值. 24x 321415141210.若-2x 2m +1y 6与 x 3m -1y 10+4n是同类项,求m ,n 的值.11.(中考·安徽)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少? 请解答上述问题.12.有一群鸽子和一些鸽笼,若每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住,若每个鸽笼住7只鸽子,则有一个鸽笼少1只鸽子.有多少只鸽子和多少个鸽笼?三、去括号1.下列解方程过程中,变形正确的是( )A .由2x -1=3得2x =3-1B .由2x -3(x +4)=5得2x -3x -4=5C .由-75x =76得x =D .由2x -(x -1)=1得2x -x =0 2.解方程2(x -3)-3(x -5)=7(x -1)的步骤:(1)去括号,得____________________; (2)移项,得_______________________; (3)合并同类项,得____________; (4)系数化为1,得__________. 3.下列四组变形中,属于去括号的是( )A .5x +4=0,则5x =-4 B. =2,则x =6 C .3x -(2-4x )=5,则3x +4x -2=5 D .5x =2+1,则5x =3 4.(中考·包头)若2(a +3)的值与4互为相反数,则a 的值为( )A .1B .C .-5D. 5.若方程3(2x -2)=2-3x 的解与关于x 的方程6-2k =2(x +3)的解相同,则k 的值为( )A.B .C.D . 7576-3x72-125989-5353-(2) (3)7.解方程: 278(x -3)-463(6-2x )-888(7x -21)=0.8.(中考•福建)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程解应用题的方法求出问题的解.9.(中考·遵义)明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为有一群人分银子,如果每人分七两,则剩余四两:如果每人分九两,则还差八两.请问:所分的银子共有________两.(注:明代时1斤=16两,故有“半斤八两”这个成语).10.当m 取什么整数时,关于x 的方程 的解是正整数?四、去分母1.解方程 ,为了去分母应给方程两边同乘的最合适的数是( ) A .6 B .9 C .12 D .242.(中考·株洲)在解方程 时,方程两边同时乘6,去分母后,正确的是( )A .2x -1+6x =3(3x +1)B .2(x -1)+6x =3(3x +1)C .2(x -1)+x =3(3x +1)D .(x -1)+x =3(x +1)3.若 与 互为相反数,则x 的值为( ) A .1B .-1C .D .-24.如果方程 的解也是方程 的解,那么a 的值是( ) ()()11211.223x x x ⎡⎤--=-⎢⎥⎣⎦43126 1.345x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦15142323mx x ⎛⎫-=- ⎪⎝⎭3127146y y -+-=13132x x x -++=23516x -53-17236x x ++-=203a x--=5.解方程:(1) (2)(3) (4)6.在解方程3(x +1)- (x -1)=2(x -1)- (x +1)时,我们可以将x +1,x -1各看成一个整体进行移项、合并同类项,得到 (x +1)= (x -1),再去分母,得3(x +1)=2(x -1),进而求得x =-5,这种方法叫整体求解法.请用这种方法解方程:5(2x +3)- (x -2)=2(x -2)- (2x +3).7.小明在解方程 去分母时,方程右边的-1项没有乘3,因而求得的解是x =2,试求a 的值,并求出方程正确的解.8.已知(a +b )y 2- +5=0是关于y 的一元一次方程. (1)求a ,b 的值;(2)若x =a 是关于x 的方程 的解,求|a -b |-|b -m |的值.131.42x x x ---=-40.20.30.02.20.50.01x x x --+=()11115789.864x ⎧⎫⎡⎤-+++=⎨⎬⎢⎥⎣⎦⎩⎭1312727334121612121.156518x x x x ---+-=-+21133x x a-+=-123a y +2123626x x x mx +---+=-。
湘教版七年级上册数学第3章 一元一次方程 利用去分母解一元一次方程
10.解下列方程: (1)2x-3 1=x+4 2;
解:去分母,得 4(2x-1)=3(x+2).去括号,得 8x-4=3x+6. 移项,得 8x-3x=4+6.合并同类项,得 5x=10.系数化为 1,得 x=2.
(2)2x-2 1=x+4 2-1;
解:去分母,得 2(2x-1)=x+2-4.去括号,得 4x-2=x+2-4.移项,得 4x-x=2+2-4. 合并同类项,得 3x=0.系数化为 1,得 x=0.
17.先阅读,后解题: |-3|=3 表示-3 的绝对值为 3,|+3|=3 表示+3 的绝对值 为 3,如果|x|=3,那么 x=3 或 x=-3.若解方程|x+1|=3, 可将绝对值符号内的 x+1 看成一个整体,则可得 x+1=3 或 x+1=-3,分别解方程可得 x=2 或 x=-4. 利用上面的知识,解答下列问题:
12.当 x=___-__2___时,代数式 6+x2与x-2 8的值互为相反数.
【点拨】根据题意可列方程 6+x2+x-2 8=0,去分母, 得 12+x+x-8=0,移项、合并同类项,得 2x=-4, 两边都除以 2,得 x=-2,即当 x=-2 时, 代数式 6+x2与x-2 8的值互为相反数.
去括号,得 2|2x-3y| +4-5|2x-3y|+5=5-2|2x-3y|,
移项,得 2|2x-3y|-5|2x-3y|+ 2|2x-3y|=5-4-5,
合并同类项,得-|2x-3y|=-4, 两边都除以-1,得 |2x-3y|=4, 所以 2x-3y=4 或 2x-3y=-4, 当 2x-3y=4 时,6x-9y+3=3(2x-3y)+3=3×4+3=15; 当 2x-3y=-4 时, 6x-9y+3=3(2x-3y)+3=3×(-4)+3=-9. 所以代数式 6x-9y+3 的值为 15 或-9.
一元一次方程的解集求解方法
一元一次方程的解集求解方法一元一次方程是数学中最简单的方程之一,其形式为ax + b = 0,其中a和b为已知数,x为未知数。
要求解一元一次方程的解集,有以下几种方法。
一、等式法等式法是最常用的求解一元一次方程的方法。
通过对方程两边进行等式变换,使得方程的解集清晰可见。
1. 如果方程中没有括号、分数和根号等复杂运算符号,直接进行等式变换即可,如:2x + 3 = 7首先,将3移到等号的右边,变成:2x = 7 - 3然后,计算等号两边的简单数值运算:2x = 4最后,将2x化简为x,即得到方程的解:x = 22. 如果方程中有括号、分数和根号等复杂运算符号,需要进行逐步等式变换,如:3(x + 2) - 4x = 1首先,利用分配律展开括号:3x + 6 - 4x = 1然后,将x的项移到等号的左边,常数项移到等号的右边:3x - 4x = 1 - 6即:-x = -5最后,将-x化简为x,即得到方程的解:x = 5二、图像法图像法是通过绘制方程的图像来求解一元一次方程的解集。
对于形如ax + b = 0的方程,可以画出一条直线y = ax + b,并找出该直线与x 轴的交点来确定方程的解。
以方程2x + 3 = 7为例,首先将方程转化为y = 2x + 3的形式,然后绘制出该直线。
找到该直线与x轴的交点,即为方程的解。
在这个例子中,直线与x轴的交点为(-2, 0),即方程的解为x = -2。
三、代入法代入法是一种先解一个简单的方程,然后将解代入原方程中验证的方法。
以方程3x - 5 = 4x + 1为例,首先解出一个简单的方程3x - 5 = 3x + 1。
通过等式变换,得到:-5 = 1显然,该方程无解。
因此,原方程也无解。
四、消元法消元法是通过联立多个方程,逐步消去未知数的系数,最终得到一个简单的方程,从而求解一元一次方程的解集。
以方程2x + 3 = x - 2为例,我们可以通过将方程两边的x合并到一边,常数项合并到另一边,得到:2x - x = -2 - 3化简为:x = -5即方程的解为x = -5。
苏教版七年级数学:解一元一次方程40题(三)含答案
解一元一次方程40题(三)含答案一.解答题(共40小题) 1.已知12x =是方程21423x m x m ---=的解,求式子211(428)(1)42m m m -+-+-的值.2.已知关于x 的方程13(23)322x x +-=和3261x m x +=+的解相同,求:代数式202020193(2)()2m m ---的值.3.若代数式33x +比344x -的值大4,求x 的值.4.定义:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”,例如:24x =-的解为2x =-,且242-=-+,则该方程24x =-是和解方程. (1)判断934x -=是否是和解方程,说明理由;(2)若关于x 的一元一次方程52x m =-是和解方程,求m 的值.5.解方程:(1)37322x x +=-; (2)43(20)40x x --+=;(3)352123x x +-=; (4)5415323412y y y +--+=-;6.解方程 (1)23132x x --+= (2)2321{[1(1)]9}1320.32x x x +----=-7.解方程:(1)2557x x +=- (2)3(2)25(2)x x -=-+ (3)14223x x +-+= (4)12311463x x x -++-=+8.解下列方程:(1)5379x x +=-+ (2)43(20)40x x --+= (3)3157146y y ---= (4)1213323x x x --+=-9.解方程(1)0.50.7 6.5 1.3x x -=- (2)758143x x -+-=10.某同学在解方程21233x x a-+=-时,方程右边的2-没有乘以3,其它步骤正确,结果方程的解为1x =.求a 的值,并正确地解方程.11.(1)计算:225(210)4-⨯--÷ (2)计算:2313()(24)(3)12468-+⨯-+-÷(3)解方程:3221211245x x x +++-=-12.解方程: (1)0.10.2130.020.5x x -+-= (2)312143x x -+-=-13.解方程:(1)2343x x -=- (2)13(1)2x x --=(3)85(1)2x x +-= (4)4320.20.5x x +--=14.解方程:(1)34(25)4x x x -+=+; (2)12226x x x -+-=-.15.一元一次方程解答题:已知关于x 的方程23x m mx -=-与12(2)x x l -=-的解互为倒数,求m 的值.16.解方程:211236x x -+-=17.解下列方程或方程组(1)219x x -=+ (2)52(1)x x +=- (3)43135x x --=- (4)3717245x x -+-=-18.解方程:126125y y--=-.19.311(54)1535x-+=22531277714x+-=20.解方程:(1)132xx--=(2)0.6310.20.4x x--=21.解方程(1)2(4)3(1)x x x--=-(2)313142x x-+ -=22.解方程21911 36x x++-=23.已知52x+-与445x+互为相反数,求x的值.24.(1)计算:4321(2)4[5(3)]-+-÷⨯-- (2)解方程4372153x x ---=25.计算下列各题:(1)计算:315()7|0.75|4---+-- (2)计算:2312(3)4()(2)2⨯--÷-+-(3)解方程:211134x x +--=26.解方程(1)43(2)52(12)y y y -+=-- (2)11136x xx ---=-27.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数, (1)求m 的值.(2)若当y m =时,代数式31ay by ++的值为5,求当y m =-时,代数式31ay by ++的值.28.解方程:52(1)x x +=-29.解方程:221134x x +-=+.30.解下列方程:(1)22x -=-; (2)355(2)x x x -=-+; (3)2532168x x +--=; (4)312[2()]6223x x -+=.31.解方程:3252x x -=-32.小明解方程21152x x a+-+=时,由于粗心大意,在去分母时,方程左边的1没有乘10,求的方程的解为2x =-,试求a 的值.33.解方程(1)321x x -=-+ (2)18(1)32(21)x x x -+=-- (3)31571104y y ---=34.解方程:(1)2(100.5)(1.52)x x -=-+; (2)5415523412y y y +--+=-35.先阅读下列解题过程,然后解答后面两个问题. 解方程:|3|2x -=.解:当30x -…时,原方程可化为32x -=,解得5x =; 当30x -<时,原方程可化为32x -=-,解得1x =. 所以原方程的解是5x =或1x =. (1)解方程:|32|40x --=. (2)解关于x 的方程:|2|1x b -=+36.解下列方程:(1)2(2)3(41)9(1)x x x ---=-; (2)2152122362x x x-+--=-.37.(1)684(1)x x -=-+ (2)20.30.410.50.3x x -+-=38.解方程:123173x x -+-=.39.解方程:104(3)22x x --=-.40.已知关于x 的方程2(1)31x m -=-与324x +=-的解互为相反数,求m 的值.解一元一次方程40题(三)含答案参考答案与试题解析一.解答题(共40小题) 1.已知12x =是方程21423x m x m ---=的解,求式子211(428)(1)42m m m -+-+-的值. 【分析】把12x =代入方程,求出m 的值,再把代数式进行化简,最后代入求出即可. 【解答】解:把12x =代入方程21423x m x m---=得:1112423mm ---=, 解得:5m =,211(428)(1)42m m m -+-+- 21112222m m m =-+-+-2122m =--21522=--1272=-.【点评】本题考查了解一元一次方程,一元一次方程的解,整式的混合运算和求值等知识点,能求出m 的值是解此题的关键. 2.已知关于x 的方程13(23)322x x +-=和3261x m x +=+的解相同,求:代数式202020193(2)()2m m ---的值.【分析】分别求出两个方程的解,然后根据解相同,列出关于m 的方程,求出m 的值,再将m 的值代入200920103(2)()2m m ---,计算即可求解.【解答】解:解方程13(23)322x x +-=,得:2363x x +-=, 0x ∴=,方程13(23)322x x +-=和3261x m x +=+的解相同,21m ∴=解得:12m =, 所以202020193(2)()2m m --- 20202019113(2)()222=-⨯-- 1(1)=--2=.【点评】本题考查了同解方程的知识,解答本题的关键是能够求解关于x 的方程,要正确理解方程解的含义.3.若代数式33x +比344x -的值大4,求x 的值. 【分析】根据题意列出方程,求出方程的解即可得到x 的值.【解答】解:根据题意得:334434x x +--=, 去分母得:41291248x x +-+=,移项合并得:524x -=,解得: 4.8x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.4.定义:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”,例如:24x =-的解为2x =-,且242-=-+,则该方程24x =-是和解方程.(1)判断934x -=是否是和解方程,说明理由; (2)若关于x 的一元一次方程52x m =-是和解方程,求m 的值.【分析】(1)求出方程的解,再根据和解方程的意义得出即可;(2)根据和解方程得出关于m 的方程,求出方程的解即可.【解答】解:(1)934x -=, 34x ∴=-, 93344-=-, 934x ∴-=是和解方程;(2)关于x 的一元一次方程52x m =-是和解方程,2255m m -∴-+=, 解得:174m =-. 故m 的值为174-. 【点评】本题考查了一元一次方程的解的应用,能理解和解方程的意义是解此题的关键.5.解方程:(1)37322x x +=-;(2)43(20)40x x --+=;(3)352123x x +-=; (4)5415323412y y y +--+=-; 【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)37322x x +=-,32327x x +=-,525x =,5x =;(2)43(20)40x x --+=,460340x x -++=,43604x x +=-,756x =,8x =;(3)去分母得:3(35)2(21)x x +=-,91542x x +=-,94215x x -=--,517x =-,3.4x=-;(4)去分母得:4(54)3(1)24(53)y y y++-=--,2016332453y y y++-=-+,2035243163y y y++=+-+,2814y=,12y=.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.6.解方程(1)231 32x x--+=(2)2321{[1(1)]9}1 320.32x x x+----=-【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,去分母,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:42396x x-+-=,移项合并得:11x=;(2)去括号得:2010116132x xx+--+-=-,去分母得:66402063663x x x---+-=-,移项合并得:3162x-=,解得:2x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7.解方程:(1)2557x x+=-(2)3(2)25(2)x x-=-+(3)142 23x x+-+=(4)12311463 x x x-++-=+【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)2557x x +=-,2575x x -=--,312x -=-,4x =;(2)3(2)25(2)x x -=-+,362510x x -=--,352106x x +=-+,82x =-,0.25x =-;(3)14223x x +-+=, 3(1)2(4)12x x ++-=,332812x x ++-=,321238x x +=-+,517x =,5.4x =;(4)去分母得:3(1)122(23)4(1)x x x --=+++,33124644x x x --=+++,34464312x x x --=+++,525x -=,5x =-.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.8.解下列方程:(1)5379x x +=-+(2)43(20)40x x --+=(3)3157146y y ---=(4)121 3323x xx--+=-【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:126x=,解得:0.5x=;(2)去括号得:460340x x-++=,移项合并得:756x=,解得:8x=;(3)去分母得:93121014y y--=-,移项合并得:1y-=,解得:1y=-;(4)去分母得:18331842x x x+-=-+,移项合并得:2523x=,解得:2325x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.解方程(1)0.50.7 6.5 1.3x x-=-(2)7581 43x x-+-=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:1.87.2x=,解得:4x=-;(2)去分母得:321203212x x---=,移项合并得:1765x-=,解得:6517x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.10.某同学在解方程21233x x a -+=-时,方程右边的2-没有乘以3,其它步骤正确,结果方程的解为1x =.求a 的值,并正确地解方程.【分析】由题意可知2x =是方程212x x a -=+-的解,然后可求得a 的值,然后将a 的值代入方程求解即可.【解答】解:将1x =代入212x x a -=+-得:112a =+-.解得:2a =,将2a =代入216x x a -=+-得:2126x x -=+-.解得:3x =-.【点评】本题主要考查的是一元一次方程的解,明确2x =是方程2(21)3()2x x a -=+-的解是解题的关键.11.(1)计算:225(210)4-⨯--÷(2)计算:2313()(24)(3)12468-+⨯-+-÷ (3)解方程:3221211245x x x +++-=- 【分析】(1)根据有理数的混合计算解答即可;(2)根据有理数的混合计算解答即可;(3)根据去分母、去括号、移项、合并同类项、系数化为1解答.【解答】解:(1)225(210)4-⨯--÷45(8)4=-⨯--÷202=-+18=-;(2)2313()(24)(3)12468-+⨯-+-÷ 1849912=-+-+÷318494=-+-+ 1224=-; (3)10(32)205(21)4(21)x x x +-=+-+30202010584x x x +-=+--3010854x x x -+=-281x =128x=【点评】此题考查解一元一次方程,关键是根据去分母、去括号、移项、合并同类项、系数化为1解答.12.解方程:(1)0.10.213 0.020.5x x-+-=(2)3121 43x x-+-=-【分析】(1)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程整理得:510223x x---=,移项合并得:315x=,解得:5x=;(2)去分母得:934812x x---=-,移项合并得:51x=-,解得:15x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.13.解方程:(1)2343x x-=-(2)1 3(1)2xx--=(3)85(1)2x x+-=(4)432 0.20.5x x+--=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)原式去括号,移项合并,把x系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:2343x x+=+,合并得:57x=,解得:75x=;(2)去分母得:6(1)1x x -=-,去括号得:661x x -=-,移项合并得:55x =,解得:1x =;(3)去括号得:8552x x +-=,移项合并得:33x =-,解得:1x =-;(4)方程整理得:520262x x +-+=,移项合并得:324x =-,解得:8x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.解方程:(1)34(25)4x x x -+=+;(2)12226x x x -+-=-. 【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)去括号得:38204x x x --=+,移项合并得:624x -=,解得:4x =-;(2)去分母得:633122x x x -+=--,移项合并得:47x =, 解得:74x =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.15.一元一次方程解答题:已知关于x 的方程23x m m x -=-与12(2)x x l -=-的解互为倒数,求m 的值.【分析】求出第二个方程的解,确定出第一个方程的解,代入计算即可求出m 的值.【解答】解:方程12(21)x x -=-,去括号得:142x x -=-,解得:13x =, 将3x =代入方程23x m m x -=-得,3323m m -=-, 去分母得:93182m m -=-,解得:9m =-.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.解方程:211236x x -+-= 【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去分母得:42112x x ---=,移项合并得:315x =,解得:5x =.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.17.解下列方程或方程组(1)219x x -=+(2)52(1)x x +=-(3)43135x x --=- (4)3717245x x -+-=- 【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去括号,移项合并,把x 系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)移项合并得:10x =;(2)去括号得:522x x +=-,移项合并得:7x -=-,解得:7x =;(3)去分母得:2053915x x -=--,移项合并得:844x -=-,解得: 5.5x =;(4)去分母得:401535468x x -+=--,移项合并得:11143x-=-,解得:13x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.解方程:126125y y--=-.【分析】方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:去分母得:5510412y y-=-+,移项合并得:927y=,解得:3y=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.311(54)1 535 x-+=22531277714x+-=【分析】方程移项合并,把x系数化为1,即可求出解;方程去分母,移项合并,把x系数化为1,即可求出解.【解答】解:移项得:3158 515x=,解得:1589x=;去分母得:418383x+-=,移项合并得:423x=,解得:234x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.解方程:(1)132xx--=(2)0.6310.20.4 x x--=【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:216x x-+=,解得:5x=;(2)方程整理得:315512xx--=,去分母得:102315x x-=-,移项合并得:255x=,解得:0.2x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.解方程(1)2(4)3(1)x x x--=-(2)313142x x-+ -=【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2833x x x-+=-,移项合并得:25x=-,解得: 2.5x=-;(2)去分母得:43162x x-+=+,移项合并得:51x-=,解得:0.2x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.解方程21911 36x x++-=【分析】根据去分母、去括号、移项、合并同类项、系数化为1解答即可.【解答】解:21911 36x x++-=2(21)(91)6x x+-+=42916x x+--=49612x x-=+-55x-=1x=-【点评】此题考查解一元一次方程,关键是根据去分母、去括号、移项、合并同类项、系数化为1解答.23.已知52x+-与445x+互为相反数,求x的值.【分析】利用相反数的性质列出方程,求出方程的解即可得到结果.【解答】解:根据题意得:544025x x +-++=, 去分母得:5258400x x --++=,移项合并得:315x =-,解得:5x =-.【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.24.(1)计算:4321(2)4[5(3)]-+-÷⨯--(2)解方程4372153x x ---= 【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)原式184(4)187=--÷⨯-=-+=;(2)去分母得:129153510x x --=-,移项合并得:2314x =-, 解得:1423x =-. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.25.计算下列各题:(1)计算:315()7|0.75|4---+-- (2)计算:2312(3)4()(2)2⨯--÷-+- (3)解方程:211134x x +--= 【分析】(1)原式利用减法法则,以及绝对值的代数意义计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)原式150.7570.758=-++-=-;(2)原式188818=+-=;(3)去分母得:843312x x +-+=,移项合并得:55x =,解得:1x =.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.26.解方程(1)43(2)52(12)y y y -+=--(2)11136x x x ---=- 【分析】(1)根据一元一次方程的解法即可求出答案;(2)根据一元一次方程的解法即可求出答案.【解答】解:(1)43(2)52(12)y y y -+=--,463524y y y ∴--=-+,634y y ∴-=+,3y ∴=-;(2)11136x x x ---=-, 62(1)16x x x ∴--=--,6225x x x ∴-+=--,825x x ∴-=--,13x ∴=-; 【点评】本题考查一元一次方程,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.27.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数, (1)求m 的值.(2)若当y m =时,代数式31ay by ++的值为5,求当y m =-时,代数式31ay by ++的值.【分析】(1)先求出方程21622x x +=-的解,这个解的倒数也是方程123x m x -=+的解,根据方程的解的定义,把这个解的倒数代入就可以求出m 的值;(2)把y m =代入31ay by ++得到m 和n 的式子,然后把y m =-代入31ay by ++,利用前边的式子即可代入求解.【解答】解:解方程21622x x +=-得:12x =. 因为方程的解互为倒数,所以把12x =的倒数2代入方程123x m x -=+,得:21223m -=+, 解得:83m =-. 故所求m 的值为83-;(2)把y m =代入31ay by ++得315am bm ++=,则34am bm +=,当y m =-时,331()1413ay by am bm ++=-++=-+=-.【点评】本题考查了方程的解的定义,以及代数式的求值,正确理解方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,是关键.28.解方程:52(1)x x +=-【分析】方程去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去括号得:522x x +=-,移项合并得:7x -=-,解得:7x =.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.29.解方程:221134x x +-=+. 【分析】去分母、去括号、移项、合并同类项,系数化成1即可求解.【解答】解:去分母,得4(2)123(21)x x +=+-,去括号,得481263x x +=+-,移项,得461238x x -=--,合并同类项,得21x -=,系数化成1得12x =-. 【点评】本题考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x a =形式转化.30.解下列方程:(1)22x -=-;(2)355(2)x x x -=-+;(3)2532168x x +--=; (4)312[2()]6223x x -+=. 【分析】(1)依次移项、合并同类项即可得;(2)依次去括号、移项、合并同类项、系数化为1可得;(3)依次去分母、去括号、移项、合并同类项、系数化为1可得;(4)依次去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)22x =-+,0x =;(2)3552x x x -=--,3525x x x -+=-+,3x -=,3x =-;(3)4(25)3(32)24x x +--=,8209624x x +-+=,8924206x x -=--,2x -=-,2x =;(4)13()162x x -+= 33162x x -+=, 33612x x -=-, 132x -=, 16x =-. 【点评】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x a =形式转化.31.解方程:3252x x -=-【分析】方程移项合并,把x系数化为1,即可求出解.【解答】解:移项得:3522x x-=-+,合并得:20x-=,解得:0x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.32.小明解方程21152x x a+-+=时,由于粗心大意,在去分母时,方程左边的1没有乘10,求的方程的解为2x=-,试求a的值.【分析】根据一元一次方程的解法即可求出答案.【解答】解:由题意可知:2x=-是方程2110110 52x x a+-⨯+=⨯,(41)215(2)a∴-+⨯+=--,61105a∴-+=--,5105a∴-=--,5105a∴=-+,55a∴=-,1a∴=-;【点评】本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.33.解方程(1)321x x-=-+(2)18(1)32(21)x x x-+=--(3)31571104 y y---=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)方程移项合并得:34x=,解得:43x=;(2)去括号得:1818342x x x-+=-+,移项合并得:2520x=,解得:45x =; (3)去分母得:62202535y y --=-,移项合并得:1913y -=-, 解得:1319y =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.34.解方程:(1)2(100.5)(1.52)x x -=-+;(2)5415523412y y y +--+=- 【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y 系数化为1,即可求出解.【解答】解:(1)去括号得:20 1.52x x -=--,移项合并得:0.522x =-,解得:44x =-;(2)去分母得:2016332455y y y ++-=-+,移项合并得:2816y =, 解得:47y =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.35.先阅读下列解题过程,然后解答后面两个问题.解方程:|3|2x -=.解:当30x -…时,原方程可化为32x -=,解得5x =;当30x -<时,原方程可化为32x -=-,解得1x =.所以原方程的解是5x =或1x =.(1)解方程:|32|40x --=.(2)解关于x 的方程:|2|1x b -=+【分析】(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.【解答】解:(1)当320x -…时,原方程可化为3240x --=,解得2x =;当320x -<时,原方程可化为(32)40x ---=,解得23x =-. 所以原方程的解是2x =或23x =-. (2)①当10b +<,即1b <-时,原方程无解,②当10b +=,即1b =-时:原方程可化为:20x -=,解得2x =;③当10b +>,即1b >-时:当20x -…时,原方程可化为21x b -=+,解得3x b =+;当20x -<时,原方程可化为2(1)x b -=-+,解得1x b =-+.【点评】本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.36.解下列方程:(1)2(2)3(41)9(1)x x x ---=-;(2)2152122362x x x -+--=-. 【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:2412399x x x --+=-,移项得:2129943x x x -+=+-,合并同类项得:10x -=,系数化为1得:10x =-,(2)去分母得:2(21)(52)3(12)12x x x --+=--,去括号得:42523612x x x ---=--,移项得:45631222x x x -+=-++,合并同类项得:55x =-,系数化为1得:1x =-.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.37.(1)684(1)x x -=-+(2)20.30.410.50.3x x -+-= 【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)原方程可整理得:203104153x x -+-=,依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:6844x x -=--,移项得:4846x x +=-+,合并同类项得:510x =,系数化为1得:2x =,(2)原方程可整理得:203104153x x -+-=, 方程两边同时乘以15得:3(203)5(104)15x x --+=,去括号得:609502015x x ---=,移项得:605015209x x -=++,合并同类项得:1044x =,系数化为1得: 4.4x =.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.38.解方程:123173x x -+-=. 【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去分母,得3(12)217(3)x x --=+,去括号,得3621721x x --=+,移项,得6721321x x --=-+,合并,得1339x -=,系数化1,得3x =-,则原方程的解是3x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.39.解方程:104(3)22x x --=-.【分析】方程去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去括号得:1041222x x -+=-,移项合并得:624x -=-,解得:4x =.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.40.已知关于x的方程2(1)31x m-=-与324x+=-的解互为相反数,求m的值.【分析】求出第二个方程的解,根据两方程解互为相反数求出第一个方程的解,即可求出m 的值.【解答】解:方程324x+=-,解得:2x=-,把2x=-代入第一个方程得:631m-=-,解得:53m=-.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.。
天桥区十中七年级数学上册第3章一元一次方程3.3一元一次方程的解法第3课时解含有分母的一元一次方程教
第3课时解含有分母的一元一次方程【知识与技能】1.掌握解一元一次方程中“去分母”的方法,并能解此类型的方程.2.了解一元一次方程解法的一般步骤.【过程与方法】经历把实际问题抽象为方程的过程,发展用方程方法分析问题、解决问题的能力.【情感态度】通过具体情境引入新问题(如何去分母),激发学生的探究欲望.【教学重点】通过“去分母”的方法解一元一次方程.【教学难点】探究通过“去分母”的方法解一元一次方程.一、情景导入,初步认知1.判断.(1)若a=b,则ac=bc()(2)若a=b则a÷2=b÷2( )2.求下列几组数的最小公倍数.(1)2,3;(2)2,3,6解:(1)最小公倍数是6.(2)最小公倍数是6.3.解方程:2x=3(x-1)解:2x=3x-33=x即x=3【教学说明】通过复习以前学过的知识,为本节课做好铺垫.二、思考探究,获取新知1.刺绣一件作品,甲单独绣需要15天完成,乙单独绣需要12天完成,现在甲先单独绣1天,接着乙又绣4天,剩下的工作由甲、乙两人合绣,问再绣多少天可以完成这件作品?师生互动:学生审题后,教师提问:(1)题中涉及哪些相等关系?(2)应怎样设未知数?如何根据相等关系列出方程?教师展示问题,让学生思考,独立完成.分析并列方程解:设再绣x天可以完成.1 15(x+1)+112(x+4)=1【教学说明】由实际问题引出带有分数系数的一元一次方程,进而讨论用去分母解这类方程.同时利用方程思想解决实际问题,能再一次让学生感受方程的实用价值.2.这个方程与前面学过的一元一次方程有什么不同?怎么解这个方程呢?3.教师出示问题,学生思考、回答,学生代表将不同的解法在黑板上展示交流(用通分合并同类项,用去分母方法解).【教学说明】学生在已有经验基础上,努力尝试新的方法.4.不同的解法各有什么特点?通过比较你认为采用什么方法比较简便?【教学说明】通过对同一方程不同解法的探索过程,使学生感受去分母方法的简便,同时理解去分母的目的和依据,进而得出去分母的一般方法.5.学生讨论之后,教师通过以下问题明确去分母的方法和依据:(1)怎样去分母呢?(2)去分母的依据是什么?【归纳结论】去分母的方法:在方程两边同乘各分母的最小公倍数可以去分母.6.结合上两节课所学的内容,你能归纳解一元一次方程的步骤吗?【归纳结论】解一元一次方程的一般步骤为:去分母,去括号,移项,合并同类项,系数化为1.【教学说明】学生再次认识去分母解一元一次方程的方法,归纳解一元一次方程的一般步骤,进一步体会化归的数学思想.三、运用新知,深化理解1.教材P94例3.2.将方程x2-24x-=1去分母,得( A )A.2x-(x-2)=4B.2x-x-2=4C.2x-x+2=1D.2x-(x-2)=13.方程213x+-12x-=1去分母正确的是( D )A.2(2x+1)-3(x-1)=1B.6(2x+1)-6(x-1)=1C.2x+1-(x-1)=6D.2(2x+1)-3(x-1)=64.当3x-2与13互为倒数时,x 的值为( B ) A.13B.53 C.3 D.355.下面的方程变形中:①2x+6=-3变形为2x=-3+6; ②33x +-12x +=1变形为2x+6-3x+3=6; ③25x-23x=13变形为6x-10x=5; ④35x=2(x-1)+1变形为3x=10(x-1)+1. 正确的是 ③ (只填代号). 6.已知2是关于x 的方程32x-2a =0的一个解,则2a-1的值是 2 . 7.一队学生从学校出发去部队军训,以每小时5km 的速度行进4.5km 时,一名通讯员以每小时14km 的速度从学校出发追赶队伍,他在离部队6km 处追上了队伍,设学校到部队的距离是x km ,则可列方程6 4.55x --=614x -求x. 8.解方程:(1)3(m+3)=22.52m -10(m-7), (2)6x +30004x -=10×60. 解:(1)去分母,得6(m+3)=22.5m-20(m-7),去括号,得6m+18=22.5m-20m+140,移项,得6m-22.5m+20m =140-18,合并同类项,得3.5m =122,系数化1,得m=-2447. (2)去分母,得2x+3(3000-x)=10×60×12.去括号,得2x+9000-3x=7200,移项,得2x-3x=7200-9000,合并同类项,得-x=-1800,化系数为1,得x=1800.9.解方程:19112468753x ⎧⎫⎡+⎤⎛⎫+++⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭=1. 解:方程两边同乘以9,得112468753x ⎡+⎤⎛⎫+++ ⎪⎢⎥⎝⎭⎣⎦=9, 移项合并,得11246753x ⎡+⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦=1, 方程两边同乘以7,得12453x +⎛⎫+⎪⎝⎭+6=7, 移项合并,得12453x +⎛⎫+ ⎪⎝⎭=1, 方程两边同乘以5,得243x ++=5, 移项合并,得23x +=1, 去分母,得x+2=3,即x=1.10.小明沿公路前进,对面来了一辆汽车,他问司机:“后面有一辆自行车吗?”司机回答说:“10分钟前我超过一辆自行车”小明又问:“你的车速是多少?”司机回答:“75km/h ”小明又继续走了20分钟就遇到了这辆自行车,小明估计自己步行的速度是3km/h ,这样小明就算出了这辆自行车的速度.自行车的速度是多少?解:设自行车的速度是x千米/小时,由题意得12x+13×3=75×16,解之得x=23.答:自行车的速度是23千米/小时.【教学说明】及时巩固所学知识.让学生理解解方程的步骤不是固定不变的,而是可以根据一元一次方程的不同形式灵活改变解题顺序的.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题3.3”中第3、4、8题.通过本节课的教学我认识到一定要把更多的学习、探究机会给学生,学生能解决的老师绝不代办,充分体现学生的主体地位,还有课堂上必须给学生安排足够的练习巩固的时间,一方面:学生可以查漏补缺,另一方面:老师可以有效地把握学生的学习效果,以便进行因材施教.8.1二元一次方程组教材分析本节课是在学生对一元一次方程已有认识的基础上,学习二元一次方程与二元一次方程组的相关概念.由于求多个未知数的问题是普遍存在的,而方程组是解决这些问题的有力工具,因此有必要研究未知数多于一个的方程或方程组。
2022年数学精品初中教学设计《一元一次方程 (3)》特色教案
第三章一元一次方程从算式到方程一元一次方程一、新课导入1.课题导入:同学们, 我们在小学数学学习中见过像2x=50,3x+1=4,5x-7=8这样的简易方程, 那么它叫什么方程?方程有什么作用?怎样列方程和解方程呢?这是本章要研究的主要问题, 这节课我们通过具体问题感受方程这一重要数学工具的作用.(板书课题)2.三维目标:〔1〕知识与技能①理解一元一次方程、方程的解等概念.②掌握检验某个值是不是方程的解的方法.〔2〕过程与方法培养学生寻找相等关系、根据相等关系列出方程的能力.〔3〕情感态度体验用估算方法寻求方程的解的过程, 培养学生求实的态度.3.学习重、难点:重点:方程、一元一次方程的概念以及方程思想.难点:从列算式到列方程的思维习惯的转变.二、分层学习1.自学指导:〔1〕自学内容:教材第78页到第79页例1之前的内容.〔2〕自学时间:8分钟.〔3〕自学要求:认真阅读课本, 了解如何通过列含未知数的等式来表示问题中的等量关系.同时, 同学之间可以展开讨论, 从算式到方程对解决问题有什么作用或好处?〔4〕自学参考提纲:①课本“问题〞中涉及到路程、时间和速度三个关系量, 它们之间存在以下关系:路程=时间×速度, 或时间=路程÷速度或速度=路程÷时间.②请你用算术方法解决这个“问题〞.70×607060=420 km ③a.如果设A, B 两地相距x km, 客车的行驶速度是70 km/h, 卡车的行驶速度是60 km/h, 那么从A 地到B 地客车和卡车所用时间可用式子70x 和60x 来表示. b.因为客车比卡车早1 h 经过B 地, 所以卡车行驶的时间-客车行驶的时间=1, 于是可列等式:60x -70x =1, 只要通过这个等式解出未知数x 的值 , 就得到问题的答案.④③中的解法与②中的解法有什么不同?你更喜欢哪种解法? ②中为算术法, ③中为方程法, 一种直接计算, 另一种通过设未知数列等式关系进行计算.更喜欢方程法.⑤什么叫方程?等式一定是方程吗?方程和等式有什么关系? 含有未知数的等式叫做方程, 等式不一定是方程, 但方程一定是等式, 方程包含于等式.⑥如果设从A 地到B 地客车所用的时间为x h, 那么从A 地到B 地卡车所用的时间为7060x h,依据相等关系:7060x -x=1, 你还能列出别的方程吗?⑦你能归纳出列方程的步骤吗?先设出未知数, 分析题意得出其中的等量关系, 再列方程.2.自学:学生可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:教师巡视课堂了解学生在自学过程中存在的问题.②差异指导:对学习有困难的学生进行点拨和指导.〔2〕生助生:小组内同学们互相交流、研讨, 共同解决疑难问题.4.强化:〔1〕方程的定义及等式和方程的关系.〔2〕列方程的步骤:①用字母表示未知数.②找出问题中的相等关系.③写出含有未知数的等式, 即列出方程.〔3〕设未知数的方法:有“直接设未知数〞和“间接设未知数〞两种.〔4〕从课本问题中, 同学们看到了列方程比拟方便, 而列算式很困难, 所以从算式到方程是数学的进步.1.自学指导:(1)自学内容:教材第79页从例1开始的所有内容.(2)自学时间:6分钟.(3)自学方法:认真阅读课文, 分析例1中所列方程的等号两边式子表示的实际意义, 学会找列方程所需要的等量关系, 并分析归纳这些方程的特点.(4)自学参考提纲:①解释例1所列的每个方程的等号两边的式子的意义, 寻找列出这些方程时所依据的相等关系分别是什么?4x=24, 等号左边表示正方形四条边长的和, 等号右边表示正方形的周长.1700+150x=2450, 等号左边表示这台计算机已使用的时间与在x 月里使用的时间和, 等号右边表示x月后计算机的使用总时间.0.52x-(1-0.52)x=80, 等号左边表示女生人数与男生人数的差, 等号右边表示女生比男生多的人数.列方程时等号左右两边表示的量相等.②例1中三个方程都只含有一个未知数(元), 未知数的次数都是1, 并且等号两边都是整式, 这样的方程叫做一元一次方程.③以下式子哪些是方程?哪些是一元一次方程?A.2x+1B.2m+15=3C.3x-5=5x+4 2+2x-6=0 E.-3x+1.8=3y F.3a+9>15B、C、D、E是方程, B、C是一元一次方程.2.自学:学生可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:教师巡视课堂, 充分了解学生自学的情况.②差异指导:对学习困难的学生进行点拨和指导.〔2〕生助生:小组内同学进行相互展示交流、研讨纠错.4.强化:〔1〕一元一次方程的概念, 明确其三要素.〔2〕归纳列方程的方法.〔即教材第80页“归纳〞的内容〕〔3〕练习.①方程〔1-a〕x2+2x-3=2是关于x的一元一次方程, 那么a=1.②教材第80页“练习〞的第1、2、3、4题.1.设沿跑道跑x周, 由题意, 得400x=3000.2.设购置甲种铅笔x支, 那么购置乙种铅笔〔20-x〕支, 根据题意得0.3x+0.6〔20-x〕=9.〔x+2+x〕3.设上底为x cm,那么下底为〔x+2〕cm,由题意, 得12×5=40.4.方法一:设小水杯的单价是x元, 那么大水杯的单价是〔x+5〕元, 由题意10〔x+5〕=15x.方法二:设大水杯的单价是y元, 那么小水杯的单价是〔y-5〕元, 由题意, 得10y=15(y-5).1.自学指导:(1)自学内容:教材第80页“归纳〞下方至“练习〞之前的内容.(2)自学时间:3分钟.(3)自学方法:阅读课文, 明确什么是解方程, 什么叫方程的解, 以及如何检验一个数是不是方程的解.(4)自学参考提纲:①阅读下面方程的解的检验方法〔注意格式〕:当x=5时, 方程1700+150x=2450的左边=1700+150×5=1700+750=2450.右边=2450.∴左边=右边.∴x=5是方程1700+150x=2450的解.仿照此方法检验:x=1000和x=2000中哪一个是方程0.52x-(1-0.52)x=80的解?×1000-(1-0.52)×1000=40.×2000-(1-0.52)×2000=80.∴x=2000是方程的解.②由上面过程可知:使方程中等号左右两边相等的未知数的值, 叫做方程的解.求出方程的解的过程叫做解方程.2.自学:学生可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:明了学生会不会检验一个数是不是方程的解.②差异指导:对自学中存在的问题进行点拨和指导.〔2〕生助生:小组内学生相互展示交流, 共同研讨提高.4.强化:〔1〕解方程和方程的解的意义.〔2〕方程的解的检验方法.三、评价1.学生的自我评价:由学生谈自己如何进行自学和合作交流的, 对自己的学习成果和表现进行自我评价.2.教师对学生的评价:〔1〕表现性评价:教师对本节课学习中同学们的表现、成效和缺乏之处进行总结点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:本课时教学要整体贯穿以下数学思想:〔1〕突出数学的应用意识, 可由学生感兴趣的问题引入课题;〔2〕强调学生自主探索新知识, 利用交流完善对新知识的理解;〔3〕表达思维的层次性, 教师先引导学生用算术方法解题, 再引导他们列方程表示, 在比拟中体会方程的作用;〔4〕渗透建模思想, 指导学生通过设未知数, 列代数式, 寻找等量关系列方程, 形成抽象能力.一、根底稳固1.〔10分〕以下等式中, 是方程的是〔D〕x+1=5④3x+4y=12⑤5x2+x=3①3+6=9②2x-1③13A.①②③④⑤B.①③④⑤C.②③④⑤D.③④⑤2.〔10分〕以下各式中, 是一元一次方程的是〔C〕A.3x-2=y 2-1=0 3=2 D.3x=23.〔30分〕根据条件列出等式:〔1〕比a大5的数等于8 a+5=8b=9〔2〕b的三分之一等于9 13〔3〕x的2倍与10的和等于18 2x+10=18x-y=6〔4〕x的三分之一减y的差等于63〔5〕比a的3倍大5的数等于a的4倍3a+5=4ab-7=a+b 〔6〕比b的一半小7的数等于a与b的和124.〔10分〕x=3,x=0,x=-2,各是以下哪个方程的解?〔1〕5x+7=7-2x;〔2〕6x-8=8x-4;〔3〕3x-2=4+x.解:x=3是方程〔3〕的解, x=0是方程〔1〕的解, x=-2是方程〔2〕的解.二、综合应用〔每题15分, 共30分〕5.〔30分〕列方程:〔1〕某校七年级〔1〕班共有学生48人, 其中女生人数比男生多3人, 这个班有男生多少人?人数的45〔2〕把1400元奖学金按照两种奖项奖给22名学生, 其中一等奖每人200元, 二等奖每人50元, 获得一等奖的学生有多少人?解:〔1〕设这个班有男生x 人, 那么女生人数为〔45“男生人数+女生人数=总人数〞列方程得: x+〔45x+3〕=48.〔2〕设获得一等奖的学生有x 人, 那么200x+50〔22-x 〕=1400.三、拓展延伸〔20分〕6.〔10分〕小明从家到学校时, 每小时行5千米, 按原路返回家时, 每小时行4千米, 结果返回的时间比去学校的时间多花10分钟, 小明家到学校有多远?〔用两种方法列方程〕解:方案一:设小明家离学校x 千米, 由题意, 得4x -5x=1060 方法二:设小明去学校时花了y 小时, 那么小明家到学校的距离为5y 千米.由题意, 得5y 4-y=1060第1课时 弧长和扇形面积1.经历弧长和扇形面积公式的探求过程.2.会利用弧长和扇形面积的计算公式进行计算.一、情境导入在我们日常生活中, 弧形随处可见, 大到星体运行轨道, 小到水管弯管, 操场跑道, 高速立交的环形入口等等, 你有没有想过, 这些弧形的长度怎么计算呢?二、合作探究探究点一:弧长【类型一】求弧长在半径为1cm 的圆中, 圆心角为120°的扇形的弧长是________cm.解析:根据弧长公式l =n πr 180, 这里r =1, n =120, 将相关数据代入弧长公式求解.即l =120·π·1180=23π. 方法总结:半径为r 的圆中, n °的圆心角所对的弧长为l =n πR 180, 要求出弧长关键弄清公式中各项字母的含义.如图, ⊙O 的半径为6cm, 直线AB 是⊙O 的切线, 切点为点B , 弦BC ∥AO .假设∠A=30°, 那么劣弧BC ︵的长为________cm.解析:连接OB 、OC , ∵AB 是⊙O 的切线, ∴AB ⊥BO .∵∠A =30°, ∴∠AOB =60°.∵BC ∥AO , ∴∠OBC =∠AOB =60°.在等腰△OBC 中, ∠BOC =180°-2∠OBC =180°-2×60°=60°.∴BC ︵的长为60×π×6180=2π. 方法总结:根据弧长公式l =n πR 180, 求弧长应先确定圆弧所在圆的半径R 和它所对的圆心角n 的大小.【类型二】利用弧长求半径或圆心角(1)扇形的圆心角为45°, 弧长等于π2, 那么该扇形的半径是________; (2)如果一个扇形的半径是1, 弧长是π3, 那么此扇形的圆心角的大小为________. 解析:(1)假设设扇形的半径为R , 那么根据题意, 得45×π×R 180=π2, 解得R =2. (2)根据弧长公式得n ×π×1180=π3, 解得n =60, 故扇形圆心角的大小为60°. 方法总结:逆用弧长的计算公式可求出相应扇形的圆心角和半径.【类型三】求动点运行的弧形轨迹如图, Rt △ABC 的边BC 位于直线l 上, AC =3, ∠ACB =90°, ∠A =30°.假设Rt △ABC 由现在的位置向右无滑动地翻转, 当点A 第3次落在直线l 上时, 点A 所经过的路线的长为________(结果用含π的式子表示).解析:点A 所经过的路线的长为三个半径为2, 圆心角为120°的扇形弧长与两个半径为3, 圆心角为90°的扇形弧长之和, 即l =3×120π×2180+2×90π×3180=4π+3π.故填(4+3)π.方法总结:此类翻转求路线长的问题, 通过归纳探究出这个点经过的路线情况, 并以此推断整个运动途径, 从而利用弧长公式求出运动的路线长.探究点二:扇形面积【类型一】求扇形面积一个扇形的圆心角为120°, 半径为3, 那么这个扇形的面积为________.(结果保存π)解析:把圆心角和半径代入扇形面积公式S =n πr 2360=120×32π360=3π. 方法总结:公式中涉及三个字母, 只要知道其中两个, 就可以求出第三个.扇形面积还有另外一种求法S =12lr , 其中l 是弧长, r 是半径. 【类型二】求运动形成的扇形面积如图, 把一个斜边长为2且含有30°角的直角三角板ABC 绕直角顶点C 顺时针旋转90°到△A 1B 1C , 那么在旋转过程中这个三角板扫过图形的面积是( )A .π B. 3C.3π4+32D.11π12+34解析:在Rt △ABC 中, ∵∠A =30°, ∴BC =12AB =1, 由于这个三角板扫过的图形为扇形BCB 1和扇形ACA 1, ∴S 扇形BCB 1=90·π·12360=π4, S 扇形ACA 1=90·π·〔3〕2360=3π4,∴S 总=π4+3π4=π.应选A. 【类型三】求阴影局部的面积如图, 半径为1cm 、圆心角为90°的扇形OAB 中, 分别以OA 、OB 为直径作半圆, 那么图中阴影局部的面积为( )A .πcm 2 B.23πcm 2 C.12cm 2 D.23cm 2 解析:设两个半圆的交点为C , 连接OC , AB , 根据题意可知点C 是半圆OA ︵, OB ︵的中点,所以BC ︵=OC ︵=AC ︵, 所以BC =OC =AC , 即四个弓形的面积都相等, 所以图中阴影局部的面积等于Rt △AOB 的面积, 又OA =OB =1cm , 即图中阴影局部的面积为12cm 2, 应选C. 方法总结:求图形面积的方法一般有两种:规那么图形直接使用面积公式计算;不规那么图形那么进行割补, 拼成规那么图形再进行计算.三、板书设计教学过程中, 强调学生应熟记相关公式并灵活运用, 特别是求阴影局部的面积时, 要灵活割补法、转换法等.。
一元一次方程的解法
一元一次方程的解法一元一次方程是指只有一个未知数且未知数的最高次数为1的方程。
求解一元一次方程是初中数学中的基础内容,而且在实际问题中也经常用到。
本文将介绍两种常见的解法:等式法和代入法。
一、等式法等式法是求解一元一次方程的最常用的方法。
其基本思路是通过等式两边的操作将未知数的系数和常数项转移到方程的一边,最终得到未知数的值。
下面以一个具体的例子来说明等式法的步骤:例题:求解方程3x + 2 = 7。
步骤一:将方程转化为3x = 7 - 2。
步骤二:计算等式右边的数值,得到3x = 5。
步骤三:根据等式两边的操作,将未知数的系数3移到方程的另一边,得到x = 5 ÷ 3。
步骤四:计算等式右边的数值,最终得到x = 5/3。
通过以上步骤,我们求解出了方程的解x = 5/3。
在实际应用中,我们可以继续验证求得的解是否符合原方程。
二、代入法代入法是另一种常用的求解一元一次方程的方法。
其基本思路是通过将已知的解代入原方程,验证是否满足相等关系,从而求解出未知数的值。
下面以一个例题来说明代入法的步骤:例题:求解方程5x - 3 = 12。
步骤一:假设x = 3为方程的解。
步骤二:将假设的解代入方程,得到5 × 3 - 3 = 12。
步骤三:计算等式左边的数值,得到15 - 3 = 12。
步骤四:判断等式左右两边是否相等,根据结果可以得出结论。
在本例中,等式左右两边不相等,因此假设的解不是方程的解。
步骤五:重新尝试其他数值,直到找到使得等式成立的解。
通过以上步骤,我们可以不断尝试不同的数值,直到找到满足方程的解为止。
代入法在一些特殊的情况下,例如求解含有分数的方程时,往往比等式法更加方便和直观。
综上所述,等式法和代入法是求解一元一次方程的常见方法。
在实际应用中,我们可以根据具体情况选择合适的方法进行求解。
通过掌握这两种方法,我们可以解决一元一次方程相关的问题,提高数学解题能力。
解一元一次方程习题精选附答案
考点:
解一元一次方程.
专题:
计算题.
分析:
这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.
解答:
解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),
化简可得:3x+3=8x﹣8,
移项可得:5x=11,
解可得x= .
故原方程的解为x= .
点评:
若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.
解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1
3x﹣7=4x﹣2
∴x=﹣5;
(2)原方程可化为:
去括号得:6﹣3x﹣18=﹣3,
移项合并得:﹣3x=9,
∴x=﹣3.
点评:
本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.
5.解方程
(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);
(2)x﹣ =2﹣ .
考点:
解答:
解:(1)3x﹣3=2x+3
3x﹣2x=3+3
x=6;
(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)
x+3=6x﹣3x+3
x﹣6x+3x=3﹣3
﹣2x=0
∴x=0.
点评:
本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.
求解一元一次方程(3)教案
课题5.2求解一元一次方程(3)授课教师授课时间2019.11.21学习内容简析本节课主要学习解分数系数的一元一次方程,必须要让学生明白算理(去分母的依据是等式的性质2).学情分析学生在前两节课已经会用移项法则、去括号法则解一元一次方程,但去括号时少部分学生仍会出现错误。
教学目标知识目标会用较简单的方法解含分数系数的一元一次方程,并归纳解一元一次方程的步骤.能力目标1.体验把复杂转化为简单,把“陌生”转化为“熟知”基本思想.2.通过解方程的方法、步骤的灵活多样,培养学生分析问题、解决问题的能力.情感态度与价值观:1.提倡学生自主地选择合理的方法解题,关注学生个性的发展.2.增强学习的兴趣和信心.教学重、难点重点:灵活掌握和运用解一元一次方程的基本步骤.难点:解方程时如何去分母.①不漏乘不含分母的项.②注意如果分子是一个多项式,要将分子作为一个整体加上括号.策略、方法“和谐互助”教学模式教 学 过 程教学环节 教学内容教师活动学生活动一、情境导入丢番图的墓志铭 引领学生分析理解题意,列出方程感受数学学科悠久历史,并进一步体会数学来源于生活,并服务于生活二、探究新知)20(41)14(71+=+x x 观察学生板演情况,引导学生对比 进行板演三、典例析解3141136x x --=-.37-x -21515x =+进行板演配合老师四、总结归纳一般地,解一元一次方程的基本步骤,注意事项。
引导学生思考总结归纳学生主动回答五、巩固提升3122.05.03.0-=+x x指导学生完成,发现问题,并适时评价自主思考,学生合作 六、课堂小结今天你有什么收获板书设计1.例题62.解一元一次方程的基本步骤。
一元一次方程的运用3(鸡兔同笼问题)
数学
7
练习(课本第11页)第1题 1.学校田径队的小刚在400米跑测试时,先以6米/秒 的速度跑完了大部分路程,最后以8米/秒的速度冲刺 到达终点,成绩为1分零5秒,问小刚在冲刺阶段花了多 少时间?
路程
前一段 后一段 总数
400
速度
6 8
时间(秒)
65 x
x
65
解:设小刚在冲刺阶段花了
6(65 x)
x 5.
秒时间.
经检验, 符合题意 .
答:小刚在冲刺阶段花了 5
习题(课本第12页)第4、5、6题 4.足球的表面是由一些呈多边形的黑、白皮块缝而成的,共计 有32块,已知黑色皮块比白色皮块数的一半多2,问两种皮块各 有多少? 解1:设黑色皮块有 根据题意,则
x 块,则白色皮块有
1 (32 x) 2 2
①如果一个学生得90分,那么他选对几道题?
②有得83分的同学吗?
选对
数 量 x
解:设他选对了x道题,由题意得: 4x -(25-x) = 90
不选或选错
(25-x)
x = 23
若4x-(25-x)= 83 x=21.6 ∵题目选对的数量x是整数 ∴ x=21.6 不符合题意 答:如果一个学生得90分,那么他选对 23道题,没有得83分的同学.
解方程得:X=30 经检验X=30是方程的 解并符合题意 答:这些新团员中有30 名男同学
参加人数 每人共搬砖数 共搬砖数
X
65-X
65
8× 4
6× 4
32X 24(65-X) 1800
一份试卷共25题,每道题都给出四个答案,其中只有一个是正确的,
要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分。