第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)讲解

合集下载

矩阵的行列式、秩与迹及特征值分析

矩阵的行列式、秩与迹及特征值分析
A=[1,-2,3;2,3,1;3,T,T] B=det(A) C=rank(A) D=trace(A) E=eig(A) [V,D]=eig(A)
Al=[l,2,3;4,5,6] B1=det(A1) C1=trace(A1)
2.2矩阵的迹 矩阵的迹等于矩阵主对角线元素的总和。 也等于矩阵特征值的总和。
运算符:trace() 注意:要求矩阵是方阵
3.矩阵的特征值分析
E=eig(A ) 求矩阵A的全部特征值, 并构成向量E
[V,D]=eig(A )求矩阵A的全部特征值,构成 对角矩阵D;求A的特征向量 构成列向量V。
例2.4一1
矩阵的行列式、秩与迹 及特征值分析
主要内容
矩阵的行列式 矩 阵的秩与迹 矩阵 的特征值分析
1・矩阵的行列 式
运算符:det() 注意:用于求方阵阵的秩 矩阵的秩是矩阵的列向量组(或行向量组) 的任一极大线性无关组所含向量的个数。
运算符:rank()
2.矩阵的秩与迹

关于矩阵特征值有关性质的探讨

关于矩阵特征值有关性质的探讨

关于矩阵特征值有关性质的探讨矩阵特征值是线性代数中的一个重要概念,它与矩阵的特征向量密切相关,给出了矩阵在某些方面的重要信息。

本文将探讨矩阵特征值的一些基本性质,包括其定义、性质、计算方法以及应用等方面。

一、矩阵特征值的定义给定一个$n$阶方阵$A$,如果存在一个常数$\lambda$以及非零向量$x$,使得下式成立:$A x = \lambda x$则称$\lambda$是矩阵$A$的一个特征值,而$x$则是对应的特征向量。

特别地,如果$x$可以选成单位向量,则称之为规范化特征向量。

1. 特征值的数量等于矩阵的阶数,且特征值可以存在重复。

2. 特征值和矩阵的行列式有以下关系:其中$I$是$n$阶单位矩阵。

$\operatorname{tr}(A) = \sum_{i=1}^n a_{ii} = \sum_{i=1}^n \lambda_i$其中$\lambda_i$表示矩阵$A$的第$i$个特征值。

4. 矩阵的特征向量线性无关。

5. 如果矩阵是可对角化的,则其特征向量构成矩阵的一组基。

6. 矩阵的特征值具有可乘性,即:1. 求解特征值的通常方法是通过计算矩阵的特征多项式的根,即通过求解以下方程组:2. 特殊情况下,例如矩阵为三角矩阵或对称矩阵时,特征值可以更加容易地求解。

矩阵特征值是线性代数中一个极其重要的概念,它在众多领域中都有重要的应用,例如:1. 信号处理与图像处理领域中,利用矩阵特征值进行信号与图像的压缩、噪声去除等处理。

2. 机器学习中,利用矩阵特征值进行降维、分类、聚类等操作。

3. 物理学中,矩阵特征值被广泛应用于量子力学、波动问题、振动问题等领域。

4. 工程与应用数学中,矩阵特征值被应用于控制系统分析与设计、特征提取、优化问题等领域。

总之,矩阵特征值在数理学科以及众多应用领域中都具有广泛的应用,其重要性显而易见。

因此,对于矩阵特征值的认识和掌握将对于我们深入理解许多数学和工程问题非常有帮助。

矩阵代数ppt课件

矩阵代数ppt课件
特征向量
对于一个给定的矩阵A,如果存在一 个非零向量x,使得Ax = λx成立,则 称x为矩阵A的对应于特征值λ的特征 向量。
特征值与特征向量的计算
定义法
根据特征值和特征向量的定义,通过解方程组Ax = λx来计算特征值和特征向量。
幂法
通过计算矩阵A的幂来逼近特征值和特征向量,即通过计算A^n x来逼近Ax = λx的解。
04
矩阵分解
矩阵的三角分解
总结词
三角分解是一种将一个矩阵分解为一个 下三角矩阵和一个上三角矩阵之和的方 法。
VS
详细描述
三角分解也称为LU分解,它将一个矩阵A 分解为一个下三角矩阵L和一个上三角矩 阵U的乘积,即A = LU。这种分解对于解 决线性方程组和计算行列式值等数学问题 非常有用。
矩阵的QR分解
谱分解法
将矩阵A进行谱分解,即A = Σλi Pi,其中Σ为对角矩阵,λi为特征值,Pi为特征向量所构 成的特征矩阵。通过谱分解可以方便地计算出矩阵A的特征值和特征向量。
特征值与特征向量的性质
特征值的唯一性
一个矩阵的特征值是唯一的,但对应于同一特征值的特征向量不一定唯一。
特征向量的正交性
对应于不同特征值的特征向量是正交的,即如果λ1≠λ2,那么对应于λ1和λ2的特征向量x1和x2是正交 的。
总结词
矩阵的加法、数乘、乘法运算规则
详细描述
矩阵的加法运算规则是对应行和列的元素相加,数乘运算规则是对应元素乘以一 个常数,乘法运算规则是按照一定的规则对应元素相乘。
矩阵的逆与行列式
总结词
矩阵的逆、行列式的定义与性质
详细描述
矩阵的逆是一个特殊的矩阵,与原矩阵相乘为单位矩阵,行列式反映了矩阵的某些重要性质。

第五专题矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)讲解学习

第五专题矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)讲解学习

第五专题矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p x q, B q x p,则|l p+AB| = |l q + BA|证明一:参照课本194 页,例4.3.证明二:利用AB 和BA 有相同的非零特征值的性质;从而l p+AB ,l q+BA 中不等于1 的特征值的数目相同,大小相同;其余特征值都等于1。

行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。

二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。

下面讨论有关迹的一些性质和不等式。

nn定义:tr(A) a ii i ,etrA=exp(trA)i 1 i 1性质:1. tr( A B) tr(A) tr(B) ,线性性质;2. tr(A T ) tr(A) ;3. tr(AB) tr(BA) ;14. tr(P 1AP) tr(A) ;5. tr(x H Ax) tr(Axx H),x 为向量;nn6. tr(A) i ,tr(A k) i k;i 1 i 1从Schur 定理(或Jordan 标准形) 和(4)证明;7. A 0,则tr(A) 0 ,且等号成立的充要条件是A=0;8. A B(即A B 0),则tr(A) tr(B),且等号成立的充要条件是A=B( A B i(A) i(B) );9. 对于n阶方阵A,若存在正整数k,使得A k=0, 则tr(A)=0 (从Schur 定理或Jordan 标准形证明)。

若干基本不等式对于两个m x n复矩阵A和B, tr(A H B)是m x n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式2[x,y] w [x,x]. [y,y]得定理:对任意两个m x n 复矩阵A 和B|tr(A H B)|2w tr(冲A) • tr(B H B)这里等号成立的充要条件是A=cB,c为一常数。

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题 矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例.证明二:利用AB 和BA 有相同的非零特征值的性质;从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。

行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。

二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。

下面讨论有关迹的一些性质和不等式。

定义:nnii i i 1i 1tr(A)a ====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2.Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4.1tr(P AP)tr(A)-=; 5.H H tr(x Ax)tr(Axx ),x =为向量; 6. nnkk i i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。

若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A HB)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c 为一常数。

矩阵的范数及相关数学含义

矩阵的范数及相关数学含义

矩阵的范数及相关数学含义
矩阵的奇异值:
设A为复数域内m*n阶矩阵,A*表⽰A的共轭转置矩阵,A*·A的n个⾮负特征值的算术平⽅根(即A*·A的开根号值)叫作矩阵A的奇异值。

记为σi(A)。

如果把A*·A的特征值记为λi(A*·A),则σi(A)=sqrt(λi(A*·A))。

或者说矩阵A的奇异值是A*·A 的特征值的平⽅根。

任意矩阵都有奇异值。

对于⼀般的⽅阵来说,其奇异值与是没有关系的。

奇异值的数⽬是矩阵的最⼩的维数。

当A是⽅阵时,其奇异值的⼏何意义是:若X是n维单位球⾯上的⼀点,则Ax是⼀个n维椭球⾯上的点,其中椭球的n个半轴长正好是A的n个奇异值。

简单地说,在⼆维情况下,A将单位圆变成了椭圆,A的两个奇异值是椭圆的长半轴和短半轴。

如果取维空间的单位球,⽤ × 矩阵乘其中对于每个点的向量,这将得到维空间的椭球体. 的奇异值给出椭球体主轴的长度.
矩阵的2-范数 Norm 是椭球体的最⼤的主轴,等于矩阵最⼤的奇异值. 这也是对于任何可能的单位向量,的最⼤的2-范数长度.。

矩阵知识点总结图解

矩阵知识点总结图解

矩阵知识点总结图解一、矩阵的定义1.1 矩阵的概念矩阵是一个由m行n列的数域中的数字组成的矩形数组。

例如,一个3行2列的矩阵可以表示为:\[ \begin{bmatrix}a_{11} & a_{12} \\a_{21} & a_{22} \\a_{31} & a_{32} \\\end{bmatrix}\]1.2 矩阵的基本术语- 行数:矩阵中的行数为m。

- 列数:矩阵中的列数为n。

- 元素:矩阵中的每个数字称为元素,如矩阵中的a11、a12等。

- 维数:一个m行n列的矩阵的维数为m×n。

1.3 矩阵的表示矩阵可以用方括号表示,矩阵中的元素用逗号隔开,例如:\[ A = \begin{bmatrix}1 &2 &3 \\4 &5 &6 \\\end{bmatrix}\]二、矩阵的基本运算2.1 矩阵的加法对于两个相同维数的矩阵A和B,它们的加法定义为矩阵中相应位置元素的和。

即:\[ A + B = \begin{bmatrix}a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23} \\\end{bmatrix}\]2.2 矩阵的数乘对于一个m行n列的矩阵A和一个数k,它们的数乘定义为矩阵中每个元素与k的乘积。

即:\[ kA = \begin{bmatrix}ka_{11} & ka_{12} & ka_{13} \\ka_{21} & ka_{22} & ka_{23} \\\end{bmatrix}\]2.3 矩阵的乘法对于一个m行n列的矩阵A和一个p行q列的矩阵B,若n=p,则它们的乘法定义为:\[ AB = C \]其中C是一个m行q列的矩阵,其中元素cij的计算方式为:\[ c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj} \]2.4 矩阵的转置一个m行n列的矩阵A的转置是一个n行m列的矩阵,其中元素aij转置为aji。

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)讲解

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)讲解

第五专题矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p×q, B q×p, 则|I p+AB|=|I q+BA|证明一:参照课本194页,例4.3.证明二:利用AB和BA有相同的非零特征值的性质;从而I p+AB,I q+BA中不等于1的特征值的数目相同,大小相同;其余特征值都等于1。

行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。

二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。

下面讨论有关迹的一些性质和不等式。

定义:n nii ii1i1tr(A)a====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2. Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4. 1tr(P AP)tr(A)-=;5. H Htr(x Ax)tr(Axx ),x =为向量;6. nnk ki i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。

若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c为一常数。

矩阵的范数和条件数课件

矩阵的范数和条件数课件

02
条件数
定义与性质
定义
条件数是衡量矩阵数值稳定性的一个 重要指标,定义为矩阵A的谱范数与 Frobenius范数的比值,记为cond(A) 。
性质
条件数具有对称性,即cond(A) = cond(A^T),且对于任意常数c,有 cond(cA) = |c| * cond(A)。
条件数的计算方法
考虑计算效率和精度
在选择范数和条件数时,需要权衡计算效率和精度。如果计算效率更重要,可以选择较小 的范数和条件数;如果精度更重要,可以选择较大的范数和条件数。
使用预处理技术改善计算的稳定性和精度
当矩阵的条件数较大时,可以考虑使用预处理技术来改善计算的稳定性和精度。例如,在 求解线性方程组时,可以使用不完全分解(Incomplete LU Factorization)或共轭梯度 法(Conjugate Gradient Method)等预处理技术来降低条件数的影响。
条件数对计算稳定性的影响
矩阵的条件数越大,计算过程中数值不稳定的程度越高,计 算结果可能偏离真实值。因此,在求解线性方程组时,如果 系数矩阵的条件数较大,则需要采取适当的预处理技术来改 善计算的稳定性。
如何选择合适的范数和条件数
根据问题需求选择合适的范数
在某些应用中,可能需要选择特定的范数来衡量矩阵的大小或稳定性。例如,在图像处理 中,可能需要使用Frobenius范数来衡量矩阵的大小。
THANKS
在数值分析中的应用
矩阵的范数可以用于求解线性方程组的迭代法和直接法中,以确定收敛性和误差控制。
条件数可以用于分析数值方法的稳定性和误差传播。
05
总结与展望
矩阵的范数和条件数的重要性和意义
矩阵的范数在数学、物理、工程等领域中有着广泛的应用,如线性方程组的解、控制系统稳定性分析 、图像处理等。

矩阵的行列式行列式的定义性质与计算方法

矩阵的行列式行列式的定义性质与计算方法

矩阵的行列式行列式的定义性质与计算方法矩阵是线性代数中的一个重要概念,它广泛应用于数学、物理、计算机科学等领域。

矩阵的行列式是矩阵理论中的一个重要概念,它具有定义性质与计算方法,对于矩阵的性质和运算具有重要的指导作用。

一、行列式的定义对于一个n阶方阵A = [aij],其中aij表示矩阵A的第i行第j列的元素,那么行列式的定义如下:det(A) = Σ(±a1j A1j),其中±表示正负号,A1j表示aij划去第i行第j列后的(n-1)阶行列式。

二、行列式的性质1. 如果矩阵A的某一行(列)全为零,则行列式det(A) = 0。

2. 交换矩阵A的两行(列)的位置,行列式det(A)的值不变。

3. 如果矩阵A的某一行(列)所有元素都乘以k倍(k为常数),则行列式det(A)乘以k。

4. 如果矩阵A的某一行(列)元素表示为两个数之和,例如aij =bij + cij,则行列式可以分解为两个行列式之和,即det(A) = det(A') +det(A")。

5. 如果矩阵A的两行(列)元素一一对应相等,行列式det(A) = 0。

三、行列式的计算方法1. 二阶和三阶行列式的计算特别简单,可以直接应用定义进行计算。

2. 对于n阶行列式,可以通过展开行列式的方法来进行计算。

例如,对于行列式det(A) = a1j A1j + a2j A2j + ... + anj Anj,其中aij是A的第i行第j列的元素,A1j是(aij划去第i行第j列后的n-1)阶行列式。

可以选择任意一行或一列展开,然后在展开的基础上继续展开剩余的(n-1)阶行列式,直到得到二阶行列式进行计算。

3. 利用行列式的性质,可以通过递推的方法来计算较大阶数的行列式。

例如,使用行列式的性质进行行列变换,将矩阵转化为上(下)三角阵,此时行列式即为对角线上元素的乘积。

4. 利用行列式的性质,可以通过化简的方法来计算较大阶数的行列式。

2024版第5章矩阵分析ppt课件

2024版第5章矩阵分析ppt课件

矩阵函数以及矩阵微分方程等问题时,都可以利用若尔当标准型来简化
计算。
05
二次型及其标准型
二次型定义及性质
二次型定义
对称性
线性变换下的不变性
二次型的值
二次型是n个变量的二次多项式, 其一般形式为$f(x_1, x_2, ..., x_n) = sum_{i=1}^{n}sum_{ j=1}^{n} a_{ij}x_ix_j$,其中$a_{ij}$为常 数,且$a_{ij} = a_{ ji}$。
若尔当标准型简介
01
若尔当标准型定义
对于任意一个n阶方阵A,都存在一个可逆矩阵P,使得$P^{-1}AP=J$
为若尔当标准型,其中J由若干个若尔当块组成。
02
若尔当块
一个若尔当块是一个上三角矩阵,它的对角线上的元素相等,且对角线
上方的元素或者是1,或者是0。
03
若尔当标准型的应用
若尔当标准型在矩阵分析中有着广泛的应用,例如在求解矩阵的高次幂、
矩阵性质总结
结合律 $(AB)C = A(BC)$。
数乘结合律 $(kA)(lB) = kl(AB)$。
分配律
$(A + B)C = AC + BC, C(A + B) = CA + CB$。
数乘分配律
$(k + l)A = kA + lA, k(A + B) = kA + kB$。
02
矩阵变换与等价类
求解过程
先求出矩阵A的特征值,然后将其代 入(A-λE)X=0,解出对应的特征向量。
特征值和特征向量在矩阵分析中的应用
判断矩阵是否可对角化
如果矩阵A有n个线性无关的特征向量,则A可对角化。

《矩阵的行秩列秩秩》课件

《矩阵的行秩列秩秩》课件
矩阵的秩也可以用于确定向量空间的子空间。如果矩阵的秩等于子空间中向量 的个数,则该子空间是向量空间的一个子集。
在矩阵分解中的应用
矩阵的奇异值分解
矩阵的秩可以用于奇异值分解中,奇异值分 解可以将一个矩阵分解为一个由奇异向量和 奇异值组成的分解式,其中奇异值的个数等 于矩阵的秩。
矩阵的QR分解
矩阵的秩也可以用于QR分解中,QR分解可 以将一个矩阵分解为一个正交矩阵和一个上 三角矩阵的乘积,其中上三角矩阵的对角线 元素即为矩阵的奇异值,其个数等于矩阵的 秩。
03
矩阵的秩的应用
在线性方程组中的应用
Байду номын сангаас
线性方程组的解的判定
矩阵的秩可以用于判断线性方程组是否 有解,以及解的个数。如果系数矩阵的 秩小于增广矩阵的秩,则线性方程组无 解;如果系数矩阵的秩等于增广矩阵的 秩,则线性方程组有唯一解;如果系数 矩阵的秩小于增广矩阵的秩,则线性方 程组有无穷多解。
VS
线性方程组的求解
详细描述
设矩阵$A$的行(或列)向量为$a_1, a_2, ..., a_n$,则行(或列)向量组的线性组合的秩等于$r(a_1) + r(a_2) + ... + r(a_n)$。这是因为行(或列)向量的线性组合可以看作是一个新的矩阵,其秩等于所有行(或列)向量 的秩之和。
秩的性质三:矩阵的等价变换
适用范围
适用于矩阵列数较少的情况,便于观察和计算 。
步骤
对矩阵进行列变换,化简为阶梯形矩阵,数阶梯形矩阵中非零列的列数。
利用子式和代数余子式计算秩
定义
利用子式和代数余子式计算矩阵的秩,通过计算矩阵所有子式的 值和代数余子式的值,得到矩阵的秩。
适用范围

特征矩阵行列式

特征矩阵行列式

特征矩阵行列式特征矩阵是线性代数中一个非常重要的概念,也是很多应用数学领域,例如图像处理、信号处理、统计学习、物理学等等中经常用到的一个知识点。

本文将以特征矩阵的行列式为主线,介绍特征矩阵的相关概念、性质以及应用。

一、特征矩阵的定义特征矩阵是指一个 $n \times n$ 的矩阵 $A$ 所满足的特殊条件:存在一个 $\lambda$,使得当一个向量 $x$ 满足 $Ax=\lambda x$ 时,$x$ 是非零向量。

此时 $\lambda$ 被称为矩阵 $A$ 的一个特征值,而列向量$x$ 被称为矩阵 $A$ 对应于特征值 $\lambda$ 的特征向量。

一个矩阵可以具有 $n$ 个特征值和 $n$ 个对应的特征向量。

特征向量不同所对应的特征值也不同。

二、特征值与行列式对于一个 $n \times n$ 的矩阵 $A$,我们可以定义其特征值方程:$$det(A - \lambda I_n) = 0$$其中 $I_n$ 为 $n$ 阶单位矩阵,$det$ 表示行列式。

这个方程根据矩阵$A$ 的特征矩阵(即矩阵 $A - \lambda I_n$)的行列式为零的特殊性质得到。

我们来解释一下这个方程:对于一个非零特征向量 $x$ 和其对应的特征值 $\lambda$,有 $Ax=\lambda x$,可以转化成 $(A - \lambda I_n)x=0$,因此矩阵 $(A - \lambda I_n)$ 是奇异矩阵,其行列式为零。

因此,我们可以解出特征值方程的 $n$ 个根 $\lambda_1,\lambda_2, \cdots ,\lambda_n$,它们就是矩阵 $A$ 的 $n$ 个特征值。

特别地,当 $n=2$ 时,对于矩阵$A=\begin{bmatrix}a&b\\c&d\end{bmatrix}$,有其特征值方程为:$$det(A - \lambda I_n) = \begin{vmatrix}a-\lambda & b\\c & d-\lambda\end{vmatrix} = (a-\lambda)(d-\lambda)-bc = \lambda^2 -(a+d)\lambda + (ad-bc) = 0$$其根为:$$\lambda_1,\lambda_2 = \frac{a+d \pm \sqrt{(a+d)^2-4(ad-bc)}}{2}$$三、特征值与特征向量的关系对于特征值方程 $det(A - \lambda I_n) = 0$,我们可以求解出 $n$ 个特征值 $\lambda_1, \lambda_2, \cdots, \lambda_n$。

矩阵行列式的定义和性质

矩阵行列式的定义和性质

矩阵行列式的定义和性质矩阵是线性代数理论中的一个重要概念,它是由若干行和若干列组成的矩形表格。

而矩阵行列式则是矩阵理论中的又一重要概念,它不仅有着较高的实用价值,而且为进一步研究矩阵理论打下了坚实的理论基础。

本文将以矩阵行列式的定义和性质为主题,为大家深入阐述矩阵行列式的本质与重要性。

第一部分:矩阵行列式的定义首先,我们需要明确一个概念,那就是“行列式是一个数值”。

而这个数值的计算方法,就是通过矩阵的元素,按照一定规则计算得来的。

在讲矩阵行列式的计算方法之前,我们需要先阐述一种新的矩阵概念——代数余子式。

代数余子式是指将矩阵的某一行或某一列的元素删除后,剩余部分的行列式在整个矩阵中所处的位置所构成的代数数。

而行列式的计算方法,则是将矩阵的元素按照一定的排列方式,计算得出。

下面,我们来介绍一下行列式的具体计算方法。

首先,我们需要选取一个行或列,并将该行或列认定为基准线,然后将其上或下的元素分别乘以其代数余子式,并加减得到该行或列上的元素所对应的值。

通过反复迭代这个过程,我们就可以求得整个矩阵的行列式。

以上是矩阵行列式的基本定义及计算方法。

行列式的定义虽然看似简单,但这个概念的实际应用非常广泛。

接下来,我们将从多个方面来介绍矩阵行列式的性质,以更好地理解行列式对于线性代数理论的重要性。

第二部分:矩阵行列式的性质矩阵行列式有许多性质,这里我们列举部分重要性质。

性质1:行列式的值等于其转置矩阵的行列式值这一性质可以用数学公式表示为:$$ det(A) = det(A^T) $$也就是说,矩阵和其转置矩阵的行列式是相等的。

这一性质对于证明矩阵性质的正确性及简化计算具有关键作用。

性质2:交换矩阵的两行或两列,行列式的值相反这一性质也可以用数学公式表示为:$$ det(B) = -det(A)$$其中,矩阵A中,B为将其任何两行或两列进行交换后所得到的矩阵。

这一性质告诉我们,矩阵行列式与其行列元素的外部排列方式有关,从而反映出矩阵的性质。

线性代数 第五章第一节 矩阵的特征值与特征向量 PPT精品课件

线性代数 第五章第一节 矩阵的特征值与特征向量 PPT精品课件

性质6 设 λ1,λ2 ,L,λs为矩阵A的互异特征值 , 对应的
第 五
特征向量分别为 ξ1,ξ2 ,L,ξ s , 则ξ1,ξ2 ,L,ξ s线性无关.
证:⑴ s=1时结论成立;


⑵假设s=r-1时成立,则s=r时:
阵 的
设 k1ξ1 + k2ξ2 + L + kr−1ξr−1 + krξ r = 0, (∗)

n
特 征 值 与
其中 trA = ∑ aii 为A的迹。 i =1 性质2 设相似矩阵有相同的特征多项式,从而特征
对 角
值也相同。

证:设A与B相似, 则存在可逆阵P,使得 B = P −1AP
fB (λ ) = λI − B = λI − P −1AP = P −1(λI − A)P
= P−1 λI − A P = λI − A = fA(λ )
⎜⎛ 1 ⎟⎞
ξ1 = ⎜ 1 ⎟;
⎜⎝ 0 ⎟⎠
⎜⎛ 1 ⎟⎞
ξ2 =⎜ 0⎟;
⎜⎝ 1 ⎟⎠
⎜⎛ 1 ⎟⎞
ξ3 =⎜ −1⎟ .
⎜⎝ − 1 ⎟⎠
-6-
第一节 矩阵的特征值与特征向量

例3 设λ0 为A的特征值,则


⑴ λm0 为Am的特征值;
矩 阵 的 特

若A可逆,

1
λ0
为A−1的特征值;
征 值 与 对

若A可逆,

1
λ0
A 为A∗的特征值.


-7-
第一节 矩阵的特征值与特征向量
特征值与特征向量的性质:
特征方程在复数范围内恒有解,其个数为方程的次

矩阵基础知识

矩阵基础知识

矩阵基础知识贺国宏 编为了学好测绘工程专业的核心课程〈测量平差基础〉,必须掌握以下所述矩阵的基础知识,同时,学习这些知识,对于学习测绘工程的其它课程,以及以后的深造,都是重要的。

1、矩阵的秩定义:矩阵A 的最大线性无关的行(列)向量的个数r ,称为矩阵A 的行(列)秩。

由于矩阵的行秩等于列秩,故统称为矩阵的秩,记为R(A)。

对于矩阵的秩有性质:{})(),(m in )(B R A R AB R ≤(1)2、矩阵的迹定义:方阵A 的主对角元素之和称为该方阵的迹,记为∑==ni ii a A tr 1)((2)对于矩阵的迹有下面的性质:(1) tr (A T )=tr (A)(3) (2) tr (A+B)=tr (A)+tr (B) (4) (3) tr (kA)=k tr (A) (5) (4) tr (AB)=tr (BA)(6)3、矩阵的特征值和特征向量定义:对于n 阶方阵A ,若存在非零向量χ,使得x x λ=A(7)则称常数λ为矩阵A 的特征值(或特征根),而χ称为矩阵A 属于特征值λ的特征向量。

由此可得=-χ)(A E λ0(8)因此,该齐次线性方程有非零解的条件是0)(0111=++++=-=--a a a A E f n n n λλλλλΛ(9)称λE-A 为矩阵A 的特征矩阵,而f (λ)为矩阵A 的特征多项式。

显然,矩阵A 的特征根),,2,1(n i i Λ=λ为特征方程(9)的根。

应该指出,对于一般的实矩阵A ,特征根可能是复数,从而特征向量也是复数。

以后将会看到,对于实对称矩阵,其特征根和特征向量都是实的。

这一点是很重要的。

特征值和特征向量具有下列性质:(1) 设n λλλ,,,21Λ为n 阶方阵A 的n 个特征值,则:A K 的特征值为kn k k λλλ,,,21Λ A -1的特征值为11211,,,---n λλλΛ(2) tr (A)=n λλλ+++Λ21 =A n λλλΛ21⋅(3) 矩阵A 的属于不同特征值的特征向量是线性无关的。

矩阵的特征值和特征向量教学讲义

矩阵的特征值和特征向量教学讲义

返回
下页
结束
性质5 n阶矩阵A互不相同的特征值l1,l2, ,lm,对应的
特征向量X1,X2, ,Xm线性无关.
补充性质
性质7 矩阵A的m个不同的特征值所对应的m组线性 无关的特征向量组并在一起仍然是线性无关的。
性质8 设λ0是n阶方阵A的一个 t 重特征值,则λ0对应 的特征向量集合中线性无关的向量个数不超过 t .
所以齐次线性方程组AXo有非零解X1 ,由此可知|A|0,即A为 奇异矩阵.
《线性代数》
返回
下页
结束
1.2 特征值与特征向量的性质
性质1 设X1, X2,…, Xm都是矩阵A的对应于特征值l的特征向量,
如果它们的线性组合
k1X1+k2X2+…+ kmXm≠o,
则k1X1+k2X2+…+ kmXm也是矩阵A的对应于特征值l的特征向量.
② 设Ak=0,k是正整数,则A必有一特征值为( 0 ) .
③ 若A2=A,则A的特征值为( 0, 1 ) . ④ 设A是3阶方阵,已知方阵E-A,E+A,3E-A都不可逆, 则A的特征值为( 1, -1, 3 ).
⑤ 已知三阶矩阵A的特征值为1,-1,2,
则|A-5E|=( -72 ) .
《线性代数》
AXlX, 则称l为A的特征值,称向量X为A的对应于特征值l的特征向量.
注意:如果X是A的对应于特征值l的特征向量,则
AXlX lX-AXo (lE-A)Xo |lE-A|0
●矩阵 lE-A 称为 A 的特征矩阵; ●l 的 n 次多项式 |lE-A| 称为 A 的特征多项式; ●方程 |lE-A|0 称为 A 的特征方程.
问题:对角矩阵的特征值是什么? 例5.试证:n阶矩阵A是奇异矩阵(不可逆,秩亏)的充
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五专题矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p×q, B q×p, 则|I p+AB|=|I q+BA|证明一:参照课本194页,例4.3.证明二:利用AB和BA有相同的非零特征值的性质;从而I p+AB,I q+BA中不等于1的特征值的数目相同,大小相同;其余特征值都等于1。

行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。

二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。

下面讨论有关迹的一些性质和不等式。

定义:n nii ii1i1tr(A)a====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2. Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4. 1tr(P AP)tr(A)-=;5. H Htr(x Ax)tr(Axx ),x =为向量;6. nnk ki i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。

若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c为一常数。

特别当A和B为实对称阵或Hermit矩阵时0≤|tr(AB)|≤定理:设A和B为两个n阶Hermite阵,且A≥0,B≥0,则0≤tr(AB)≤λ1(B)tr(A) ≤tr(A)﹒tr(B)λ1(B)表示B的最大特征值。

证明:tr(AB)= tr(A1/2BA1/2) ≥0,又因为A1/2[λ1(B)I-B]A1/2≥0,所以λ1(B)tr(A)≥A1/2BA1/2,得tr(AB)= tr(A1/2BA1/2)≤tr(λ1(B) A)=λ1(B) tr(A)≤tr(A)﹒tr(B)推论:设A为Hermite矩阵,且A>0,则tr(A)tr(A-1)≥n另外,关于矩阵的迹的不等式还有很多,请参考《矩阵论中不等式》。

三、矩阵的秩矩阵的秩的概念是由Sylvester于1861年引进的。

它是矩阵的最重要的数字特征之一。

下面讨论有关矩阵秩的一些性质和不等式。

定义:矩阵A 的秩定义为它的行(或列)向量的最大无关组所包含的向量的个数。

记为rank(A)性质:1. rank(AB)min(rank(A),rank(B))≤;2. rank(A B)rank(A,B)rank(A)rank(B)+≤≤+;3.H Hrank(AA )rank(A )rank(A)==; 4. rank(A)rank(XA)rank(AY)rank(XAY)===,其中X 列满秩,Y 行满秩(消去法则)。

定理(Sylvester ):设A 和B 分别为m×n 和n×l 矩阵,则rank(A)rank(B)n rank(AB)+-≤m i n (r a n k (A ),r a≤ Sylveste 定理是关于两个矩阵乘积的秩的不等式。

其等号成立的充要条件请参考王松桂编写的《矩阵论中不等式》,三个矩阵乘积的秩的不等式也一并参考上述文献。

四、相对特征根定义:设A 和B 均为P 阶实对称阵,B>0,方程 |A-λB |=0的根称为A 相对于B 的特征根。

性质:|A-λB |=0等价于|B -1/2AB -1/2-λI|=0(因为B>0,所以B 1/2>0)注:求A相对于B的特征根问题转化为求B-1/2AB-1/2的特征根问题或AB-1的特征根。

因B-1/2AB-1/2是实对称阵,所以特征根为实数。

定义:使(A-λi B)l i=0的非零向量l i称为对应于λi 的A相对于B的特征向量。

性质:①设l是相对于λ的A B-1的特征向量,则A B-1l=λl 或 A (B-1l)=λB( B-1l)B-1l 为对应λ的A相对于B的特征向量(转化为求A B-1的特征向量问题)。

②设l是相对于λ的B-1/2AB-1/2的特征向量,则B-1/2AB-1/2l=λl可得A (B-1/2l)=λB(B-1/2l)则B-1/2l 为对应λ的A相对于B的特征向量(转化为求B-1/2AB-1/2对称阵的特征向量问题)。

五、向量范数与矩阵范数向量与矩阵的范数是描述向量和矩阵“大小”的一种度量。

先讨论向量范数。

1. 向量范数定义:设V为数域F上的线性空间,若对于V的任一向量x,对应一个实值函数x,并满足以下三个条件:(1)非负性 x 0≥,等号当且仅当x=0时成立; (2)齐次性 x x ,k,x V;α=α⋅α∈∈ (3)三角不等式x y x y ,x,y V +≤+∈。

则称x 为V 中向量x 的范数,简称为向量范数。

定义了范数的线性空间定义称为赋范线性空间。

例1. n x C ∈,它可表示成[]T12n x =ξξξ,i C ξ∈,1n22i 2i 1x ∆=⎛⎫=ξ ⎪⎝⎭∑就是一种范数,称为欧氏范数或2-范数。

证明:(i )非负性 1n22i 2i 1x 0=⎛⎫=ξ≥ ⎪⎝⎭∑,当且仅当()i 0i 1,2,,n ξ==时,即x =0时,2x=0(ii )齐次性11nn 2222i i 22i 1i 1x x ==⎛⎫⎛⎫α=αξ=α⋅ξ=α⋅ ⎪⎪⎝⎭⎝⎭∑∑(iii )三角不等式[]T12n y =ηηη ,i C η∈[]T1122n n x y +=ξ+ηξ+ηξ+ηn22i i 2i 1x y =+=ξ+η∑()22222i i i i i i i i i i 2Re 2ξ+η=ξ+η+ξη≤ξ+η+ξηn222i i 222i 1x y x y 2=+≤++ξη∑()222222222x y x y 2x y +=++根据Hölder 不等式:11nnnpqp q i i i i i 1i 1i 1a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑,i i 11p,q 1,1,a ,b 0p q >+=> 11nnn2222i i i i 22i 1i 1i 1x y ===⎛⎫⎛⎫=ξη≥ξη ⎪ ⎪⎝⎭⎝⎭∑∑∑∴ 222x y x y +≤+2. 常用的向量范数(设向量为[]T12n x =ξξξ)1-范数:ni 1i 1x==ξ∑;∞-范数:1i nx i max ∞≤≤=ξ;P-范数:1npp i p i 1x =⎛⎫=ξ ⎪⎝⎭∑ (p>1, p=1, 2,…,∞,);2-范数:()1H22x x x=;椭圆范数(2-范数的推广):()1H2Axx Ax=,A 为Hermite 正定阵.加权范数:1n22i i wi 1xw =⎛⎫=ξ ⎪⎝⎭∑,当[]12n A W diag w w w ==,i w 0>证明:px显然满足非负性和齐次性(iii )[]T12n y =ηηη1npp i p i 1x =⎛⎫=ξ ⎪⎝⎭∑,1n pp i pi 1y =⎛⎫=η ⎪⎝⎭∑,1npp ii p i 1x y =⎛⎫+=ξ+η ⎪⎝⎭∑()nnppp 1i i i ii ipi 1i 1nnp 1p 1i ii i iii 1i 1x y-==--==+=ξ+η=ξ+ηξ+η≤ξ+ηξ+ξ+ηη∑∑∑∑应用Hölder 不等式()11nnnqpp 1p 1q p ii i i ii i 1i 1i 1--===⎡⎤⎡⎤ξ+ηξ≤ξ+ηξ⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑ ()11nnnqpp 1p 1q p iii i ii i 1i 1i 1--===⎡⎤⎡⎤ξ+ηη≤ξ+ηη⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑()111p 1q p p q+=⇒-= ∴111nnnnqpppp p p iii i i i i 1i 1i 1i1====⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥ξ+η≤ξ+ξ+η ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦∑∑∑∑ 111nnn pppp p p i i i i i 1i 1i 1===⎛⎫⎛⎫⎛⎫ξ+η≤ξ+η ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑即 p p px y x y+≤+3. 向量范数的等价性 定理 设α、β为nC 的两种向量范数,则必定存在正数m 、M ,使得m xx M xαβα≤≤,(m 、M 与x无关),称此为向量范数的等价性。

同时有11x x x Mmβαβ≤≤注:(1)对某一向量X 而言,如果它的某一种范数小(或大),那么它的其它范数也小(或大)。

(2)不同的向量范数可能大小不同,但在考虑向量序列的收敛性问题时,却表现出明显的一致性。

4、矩阵范数向量范数的概念推广到矩阵情况。

因为一个m ×n 阶矩阵可以看成一个mn 维向量,所以m nC ⨯中任何一种向量范数都可以认为是m ×n 阶矩阵的矩阵范数。

1. 矩阵范数定义:设m n C ⨯表示数域C 上全体m n⨯阶矩阵的集合。

若对于m n C ⨯中任一矩阵A ,均对应一个实值函数A ,并满足以下四个条件:(1)非负性:A 0≥ ,等号当且仅当A=0时成立; (2)齐次性:A A ,C;α=αα∈(3)三角不等式:m n A B A B ,A,B C ⨯+≤+∈,则称A 为广义矩阵范数;(4)相容性:AB A B ≤⋅,则称A 为矩阵范数。

5. 常用的矩阵范数(1)Frobenius 范数(F-范数)F-范数:12n2ij Fi j 1Aa =⎛⎫= ⎪⎝⎭∑,=矩阵和向量之间常以乘积的形式出现,因而需要考虑矩阵范数与向量范数的协调性。

定义:如果矩阵范数A 和向量范数x 满足Ax A x ≤⋅则称这两种范数是相容的。

给一种向量范数后,我们总可以找到一个矩阵范数与之相容。

(2)诱导范数设A ∈C m ×n ,x ∈C n , x 为x 的某种向量范数, 记x 1A max Ax == 则A 是矩阵A 的且与x 相容的矩阵范数,也称之为A 的诱导范数或算子范数。

相关文档
最新文档