静态场及其边值问题求解方法

合集下载

电磁场与电磁波6静态场边值问题的求解

电磁场与电磁波6静态场边值问题的求解
n 1
( An ' cos K n x Bn ' sin K n x)(Cn ' chKn y Dn ' shKn y )
n 1
4)利用给定边界条件确定积分常数,最终得到电位函数的解。 a ) y轴 x 0 0 y a 0
b ) x轴 y 0 0 x a 0 0 C0 0 Cn 0 Cn c) x a 0 y a 0 B0 0 Bn 0
400
1 n n sin xsh y n1 nshn a a

接地金属槽内的等位线分布
(n 1, 3, 5 )
三、分离变量法:柱坐标系中
电位微分方程在圆柱坐标系中的展开式为
1 1 2 2 2 0 r 2 2 r r r r z
( ) A sin m B cosm
考虑到 k m,以及变量 的方程式,则前述方程可表示为
1 d dR m 2 1 d 2 Z 0 r 2 2 Rr dr dr r Z dz
三、分离变量法:柱坐标系中
上式左边第一项仅为变量 r 的函数,第二项仅为变量 z 的函数,因
(6 )
(7 )
1 d 21 2 K n 1 dx2
1 d 2 2 2 K n 2 dy2
Kn 2 0
(8)
3)解常微分方程,将各特解线性叠加得通解。
1 ( x) 2 ( y) ( A0 B0 x)(C0 D0 y)
( An chKn x Bn shKn x)(Cn cos K n y Dn sin K n y )
1 d 2 2 k d 2

第5章 静态场边值问题的解法

第5章 静态场边值问题的解法

两边同乘 sin
b
b m y n y m y 0 V sin b dy 0 Cn sin b sin b dy n 1 b m y n y
b
并从0 → b积分:
C
n 1
n 0
sin
0 m y n y ∵ sin sin dy 0 b b b / 2

,即
n
具有轴对称性,通解为
P0 1
bn ( R, ) (a n R n 1 ) Pn (cos ) R n
若 与
P1 (cos ) cos
Pn (cos ) -----为勒让德函数
1 P2 (cos ) (3 cos 2 1) 2
三 、求解场方法
(一)、直接积分法(一维场)
适用条件:一些简单对称的问题 例:5.1
(二).
拉普拉斯方程
—— 分离变量法
•分离变量法的适用条件 •拉普拉斯方程的解在坐标系中的形式 •解题步骤 •应用实例
•拉普拉斯方程的适用条件 1、空间 0 ,自由电荷只分布在某些介质(或导
体)表面上,将这些表面视为区域边界, 可用 拉普拉斯方程。 2、在所求区域的介质中若有自由电荷分布,则要求 自由电荷分布在真空中产生的势为已知。 一般所求区域为分区均匀介质,则不同介质分界 面上有束缚面电荷。区域V中电势可表示为两部分 的和,即 0 0 为已知自由电荷产生 , 的电势, 不满足 2 0 , 为束缚电荷产生 的电势,满足拉普拉斯方程 2 0 但注意,边值关系还要用 S 而不能用 S
1 S 2
S
1 2 1 2 n S n
S
一般讨论分 界面无自由 电荷的情况

电磁场与电磁波第三章静态场及其边值问题的解PPT课件

电磁场与电磁波第三章静态场及其边值问题的解PPT课件

解法的优缺点
分离变量法的优点是简单易行,适用于具有多个变量 的偏微分方程。但是,该方法要求边界条件和初始条
件相互独立,且解的形式较为复杂。
有限差分法的优点是简单直观,适用于各种形状的求 解区域。但是,该方法精度较低,且对于复杂边界条
件的处理较为困难。
有限元法的优点是精度较高,适用于各种形状的求解 区域和复杂的边界条件。但是,该方法计算量大,且
05 实例分析
实例一:简单电场的边值问题求解
总结词
通过一个简单的电场边值问题,介绍如 何运用数学方法求解静态场的边值问题 。
VS
详细描述
选取一个简单的电场模型,如平行板电容 器间的电场,通过建立微分方程和边界条 件,采用有限差分法或有限元法进行数值 求解,得出电场分布的解。
实例二:复杂电场的边值问题求解
恒定磁场与准静态场的定义与特性
恒定磁场
磁场强度不随时间变化的磁场。
准静态场
接近静态场的动态场,其特性随 时间缓慢变化。
特性
恒定磁场与准静态场均不产生电 磁波,具有空间稳定性和时间恒
定性。
恒定磁场与准静态场的边值问题
边值问题
描述场域边界上物理量(如电场强度、磁场强度)的约束条件。
解决边值问题的方法
静电屏蔽
在静电屏蔽现象中,静态 场用于解释金属屏蔽壳对 内部电荷或电场的隔离作 用。
高压输电
在高压输电线路中,静态 场用于分析电场分布和绝 缘性能。
02 边值问题的解法
定义与分类
定义
边值问题是指在一定的边界条件下,求解微分方程或积分方程的问题。在电磁场理论中,边值问题通常涉及到电 场、磁场和波的传播等物理量的边界条件。
特性
空间均匀性

第3章(2) 静态场的边值问题及解的唯一性定理

第3章(2) 静态场的边值问题及解的唯一性定理
导体表面总的感应电荷:
qh ∞ ∞ dxdy ′ = ∫ ρ S dS = − q 2π ∫−∞ ∫−∞ ( x 2 + y 2 + h 2 )3/2 qh ∞ 2πρ d ρ =− ∫0 ( ρ 2 + h2 )3/2 = −q 2π
第3章
电场线与等位面的分布特性与前述的电偶极子的上半部分完全相同。 电场线与等位面的分布特性与前述的电偶极子的上半部分完全相同。
设E1 = −∇ϕ1 和E 电场,所以场分布是唯一确定的。 ⇒ ϕ1和ϕ 2描述同样的电场,所以场分布是唯一确定的。
对于第三类边值问题,可以得到同样的结论。 对于第三类边值问题,可以得到同样的结论。 唯一性定理的意义: 唯一性定理的意义:
第3章
qx 1 1 qy 1 1 q z −h z +h Ex = 3 − 3 , Ey = 3 − 3 , Ez = 3 − 3 4πε0 r r′ 4πε0 r r′ 4πε0 r r′
∂ϕ qh 则,面密度ρ S = ε 0 Ez |z =0 = −ε 0 |z =0 = − ∂z 2π ( x 2 + y 2 + h 2 )3/ 2
求置于无限大接地平面导体上方, 例2、求置于无限大接地平面导体上方,距导体面为 处的长直 求置于无限大接地平面导体上方 距导体面为h 线电荷的电位。 线电荷的电位。
第3章
原问题 ∇ 2ϕ = 0(除源电荷所在位置外), z > 0; ϕ = 0, z = 0 显然可将感应电荷的作用用位于- h 处的镜 像线电荷 ρl′=-ρl替代。 z R
1、指出了静态场边值问题具有唯一解的条件; 指出了静态场边值问题具有唯一解的条件; 2、为静态场边值问题求解方法提供了理论依据,为结果正确性提供了判据。 为静态场边值问题求解方法提供了理论依据,为结果正确性提供了判据。

静态场边值问题的解法.ppt

静态场边值问题的解法.ppt
R
l
l
d '
' a2
l
/d

dl'
' d
(l 舍去)
结论:线电荷关于接地导体圆柱面的镜像为
l ' l (电量)
d
'
a2
/
d
(位置)
四、点电荷对电介质分解面的镜像
问题:
1
点电荷位于两种电介质分
界面上方h,求空间电位分布。
q
z
v R
h
P(x, y, z) x
分析:
2
在介质分界面上将存在极化电荷,空间电位由极
接地导体平面垂直相交。
q2 q h2
h2 q
要满足在导体平面 上电位为零,则必须引入 3个镜像电荷。如图所示。
h1
x
h1
q3 q
q1 q
对于非垂直相交的两 导体平面构成的边界,
若夹角为 ,则所有
n
镜像电荷数目为2n-1个。
q
x
二、点电荷对球面导体分解界的镜像
1、点电荷对接地球面导体边界的镜像
1 X (x)
d
2 X (x) dx2
Y
1 ( y)
d
2Y ( y) dy 2
k 2
若假设为:
1 d 2 X (x) 1 d 2Y ( y) k 2
X (x) dx2
Y ( y) dy2
( A0 x B0 )(C0 y D0 )+
[ Ansh(kn x) Bnch(kn x)][Cn sin(kn y) Dn cos(kn y)]
k 2
分离常数
1 X (x)
1 Y ( y)
d 2 X (x) dx2

静态场及其边值问题求解方法

静态场及其边值问题求解方法
式(5 -27). 取“ - ” 是为了与电磁学讨论一致. 表示电场指向电
位减小最快的方向.
• 在均匀介质中. 对E = - ∇φ 两边取散度. 再利用本构关系D = εE.
得一泊松方程
上一页 下一页
返回
5.1
静态场的基本方程
• (二) 引入电位的意义
• 1.引入电位函数的优越性
• 将求矢量函数的问题转化为求标量函数的问题. 由于标量微积分比矢
量微积分简单. 从而简化电场的求解. 在某些情况下. 直接求解电场强
度很困难. 但求解电位函数则相对简单. 因此可通过先求电位函数. 再
由关系式(5 -27) 得到电场解. 这是一种常用的电磁场间接求解法.
• 2.电位与电位差
• 空间某点电位无物理意义. 两点间电位差才有意义.电位差是电场空间
中不同位置点电位的变化量.
= ∇ × A. 代入∇ × H = J. 有
• 而∇ × (∇ × A) = ∇(∇·A) - ∇2A. 考虑到A 满足规范条件∇·A =
0 有- ∇2A = μJ.得到
上一页 下一页
返回
5.1
静态场的基本方程
• 5.1.7 磁标位
• (一) 磁标位的引入
上一页 下一页
返回
5.1
静态场的基本方程
何情况. 微分形式适用于同一种介质的情形. 并且在边界附近需要根据
积分形式推出其边值关系.
上一页 下一页
返回
5.1
静态场的基本方程
• 注意: 积分形式和微分形式的区别在于微分是对场点. 积分是对源点.
积分对总体、宏观. 微分对局部、对点.
• 5.1.2 静电场基本方程
• 静电场是位置固定、带电量不随时间变化的电荷激发的电场. 是电磁

第5章 静态场的边值问题(1)静态场边值问题的基本概念

第5章  静态场的边值问题(1)静态场边值问题的基本概念
2
★三类边值问题 ——对应的三类边界条件
第一类:已知整个边界面上的位函数;
第二类:已知整个边界面上的位函数的法向导数;
第三类:已知一部分边界面上的位函数值, 和另一部分边界面上位函数的法向导数。
3
§5.1 静态场边值问题的基本概念
一、静态电磁场的方程
二、三类边值问题 三、基本计算方法
4
§5.1 静态场边值问题的基本概念
第三类:已知一部分边界面上的位函数值, 和另一部分边界面上位函数的法向导数。(1分)
18
8
★三类边界条件
第一类:
已知位函数在整个边界面上的
亦即:
已知 | f1 (S ),S为边界上的点。
9
第二类:
已知位函数在整个边界面上的法向导数。
(即:已知整个边界面上的位函数的法向导数)
亦即:
f 2 (S ) | n
10
第三类:
第五章 静态场的边值问题
§5.1 静态场边值问题的基本概念
§5.2 唯一性定理和解的叠加原理
§5.3 镜像法 §5.4 分离变量法
§5.5 有限差分法
第五章 静态场的边值问题
§5.1 静态场边值问题的基本概念
§5.2 唯一性定理和解的叠加原理
§5.3 镜像法 §5.4 分离变量法
§5.5 有限差分法
一、静态电磁场的方程 二、三类边值问题 三、基本计算方法
5
一、静态电磁场的方程
静 电 场:由电 荷(通量源)激发
恒定磁场:由恒定电流(涡旋源)激发
静态电磁场与时间无关,属于时不变场, 具有相同的基本特性: 数学上满足同一类方程(Poisson方程)
/ 2 A J

第15讲 静态场及其边值问题的解(5)

第15讲 静态场及其边值问题的解(5)

( x, 0) 0
n x An Dn sin a 0 n 1

Dn 0
n x n y n x n y ( x, y ) AnCn sin sinh A 'n sin sinh a a a a n 1 n 1
( x, b) U 0
此导体槽内的电位分布。 解:位函数满足的方程和边界条 件为 2 2 2 0 2 x y (0, y ) 0, (a, y ) 0 (0 y b)
b
y
U0
( x, 0) 0, ( x, b) U 0 (0 x a)
位函数的通解应取为
( x, y ) ( A0 x B0 )(C0 y D0 )
( A sinh k x B
n 1 n n

n
cosh kn x )(Cn sin kn y Dn cos kn y )
例 无限长的矩形金属导体槽上有一盖板,盖板与金属槽
绝缘,盖板电位为U0,金属槽接地,横截面如图所示,试计算
Qn 根据第二类连带勒让德函数的特性知,当 x 1时, m ( x)
因此,当场存在的区域包括 0 或 时, 1,此时只能取第 x 一类连带勒让德函数作为方程的解。所以,通常令
( ) Pnm ( x) Pnm (cos )
那么,电位微分方程的通解通常取为下列线性组合
1
直角坐标系中的分离变量法
在直角坐标系中,若位函数与z无关,则拉普拉斯方程为
2 2 0 2 2 x y
将 (x,y)表示为两个一维函数X(x)和Y(y)的乘积,即
( x, y) X ( x)Y ( y)
将其代入拉普拉斯方程,得

静态场的边值问题

静态场的边值问题
a
xsh
n
a
b
U (x) U0
( x, b)
U0

n1
Dn
sin
n
a
xsh
n
a
b
因上式右边为三角函数级数,要确定 Dn ,
其左边也应展开成三角函数级数,亦称
傅里叶级数,再比较其系数即可确定 Dn .
(n 1,2,3)
(5-2-27)
(x) 0
2019/7/3
1、分离变量法: (x, y, z; r, ,z; r, , )
F(x, y, z) f (x) g(y)h(z)
2、分离变量法的一般步骤:
由给定边界条件,选择适当的坐标系,并写 出该坐标系的拉氏(泊松)方程的表示式。
2019/7/3
5
电磁场理论
第五章
把待求的位函数用分离变量法表示出来;
ay
ky2
n
a

0

(
n
a
)
2

(
ja
y
)
(n 1,2,3)
2
13 (5-2-25)

g( y)

n
Bn sh
n1
a
y
(n 1,2,3)
c. (x, y) f (x) g(y)
(5-2-26)

(x, y)

n
AnBn sin
n1
a
xsh n
将 (5-2-31) 代入 (5-2-30) ,并整理得:
1 d (r df ) n2 1 d 2h 0 rf dr dr r 2 h dz2
(5-2-32)

静态场及其边值问题的解课件

静态场及其边值问题的解课件

6.3.2 接地导体平面的镜像 1. 点电荷对无限大接地导体平面的镜像
q
有效区域
h
h
14
q
R
R
镜像电荷 电位函数
q q, h h
q ( 1 1 ) (z 0) 4π R R
h
q
因 z = 0 时,R R z0 0
满足原问题的边界条件,所得的结果是正确的。
第6章 静态场的边值问题
例:
y
b 0 x
O
U0 0 x
ax
2
x2
2
y2
0
x
x0 0,
x
xa 0
(x, 0) 0,(x,b) U0
(第三类边值问题)
第6章 静态场的边值问题
6.2 唯一性定理 唯一性定理的表述
在场域V 的边界面S上给定 或 的
n 值,则泊松方程或拉普拉斯方程在场域V 具 有唯一值。
5
V S
21
例6.3.1 一个点电荷q与无限大导体平面距离为d,如果把它移
至无穷远处,需要做多少功?
x
解:移动电荷q时,外力需要克服电
q
场力做功,而电荷q受的电场力来源于导 0
d
体板上的感应电荷。可以先求电荷q 移至 无穷远时电场力所做的功。
=∞
-d q'
由镜像法,感应电荷可以用像电荷 q q替代。当电荷q 移 至x时,像电荷 q应位于-x,则像电荷产生的电场强度
E ( x)
ex
q
4π0 (2x)2
q2
Wo We 16π0d
We
qE(x) dx
d
q2
4π 0
d
1 (2x)2
dx

第三章 静态场边值问题的解析解1

第三章 静态场边值问题的解析解1

第三章 静态场边值问题的解法静电场和恒定电场的边值问题的求解,可归结为在给定边界条件下,对拉普拉斯方程或泊松方程的求解。

求解边界值问题的方法,可以分为解析法和数值法两大类。

解析法中的分离变量法是解拉普拉斯方程的最基本方法,本章将介绍在直角坐标、圆柱坐标和球坐标中拉普拉斯方程的解;以及某些特定情况下,用镜像法求拉普拉斯方程的特解。

3.1唯一性定理静电场的边值问题是在给定边界条件下求泊松方程式或拉普拉斯方程式的解,这种求解称为偏微分方程法。

3.3.1边值问题的分类根据问题所给的边界条件不同,边值问题分为以下三类:1) 第一类边值问题是指所给定的边界条件为整个边界上的电位值,又称为狄里赫利问题;2) 第二类边值问题是指所给定的边界条件为整个边界上的电位法向导数值,又称为纽曼问题;3) 第三类边值问题是指所给定的边界条件部分为电位值,部分为电位法向导数值,又称为混合边值问题。

如果边界是导体,则上述三类问题变为:已知各导体表面的电位;已知各导体的总电量;已知一部分导体表面的电位和另一部分导体的电荷量。

3.3.2唯一性定理在边值问题的求解中,对于一维问题可以直接用积分方法求解,但是二、三维问题如果用积分求解会变得非常复杂,对于这一类问题一般可采用间接求解方法。

在讨论这些方法之前,需要解决这样一个问题:满足泊松方程或拉普拉斯方程和给定的边界条件的解是否唯一?在什么条件下是唯一的?答案是只有一个唯一解,这就是唯一性定理。

此定理的表述十分简单:满足泊松方程或拉普拉斯方程及所给的全部边界条件的解ϕ是唯一的。

也就是说,若要保证ϕ为问题的唯一正确解,ϕ必须满足两个条件。

第一, 要满足方程2ρϕε∇=-或20ϕ∇=,这是必要条件;第二, 在整个边界上满足所给定的边界条件。

所谓边界条件包含了边值问题给出的三种情况。

证明 解的唯一性定理证明用的是反证法,即假定在表面为S 的空间V 内有两组不同的解ϕ和ϕ',它们都满足同一个边界条件及方程,即有2ρϕε∇=-和 2ρϕε'∇=-取两解之差ϕϕϕ*'=-,在V 内ϕ*一定满足拉普拉斯方程 2222()0ϕϕϕϕϕ*''∇=∇-=∇-∇= 利用格林第一恒等式, 2()VSdV dS nψϕψϕψϕ∂∇+∇⋅∇=∂⎰⎰令式中的ϕψϕ*==,得22[()]VSdV dS nϕϕϕϕϕ*****∂∇+∇=∂⎰⎰因为20ϕ*∇=,所以2()VSdV dS nϕϕϕ***∂∇=∂⎰⎰ (3.1)1) 在边界S 上,对于第一类边值问题,由于两个解ϕ和ϕ'都满足同样的边界条件,所以有|||0S S S ϕϕϕ*'=-=,代入(3.1)式得到2()0VdV ϕ*∇=⎰因为被积函数2()φ*∇ 一定为正值,因此要使积分为零,必须有20ϕ*∇=,即ϕϕϕ*'=-=常数我们在引入电位函数时就曾指出,电位ϕ的绝对值无意义,因为ϕ和C ϕ+代表的是同一电场,所以ϕ和ϕ'实际上是一个解,亦即解是唯一的。

第五章静态场的边值问题

第五章静态场的边值问题

对于(B)问题
U
a
(
x,
y)
U0 b
y
沿y轴方向存在两个零电位边界,取 gn ( y) Bn sin(n y b)
沿x轴正方向边界无界且电位趋于零,取
f n (x) An exp[n x b]
因此(B)问题的电位通解应为
U b (x, y)
n x
Cn e b sin
n1
n
b
y
将边界条件(c)代入,得
2n
eb
x
sin
2n
y
b
n1
n
b
二. 圆柱坐标系中的分离变量法
1、方法介绍 圆柱坐标中拉普拉斯方程为
①变量的分离
1 r
r
r
r
1 r2
2 2
2
z 2
0
令 (r,, z) f (r) g() h(z) ,代入上式,并在两边同乘以r 2 ( fgh)

r (r f ) 1 2 g r 2 1 2h 0
y
U U0
b
b2
o
U 0
x
图5-3 缝隙导体板间的电位
解:电位分布与z无关,这是一个二维拉普拉斯问题
2U (x, y) 2U (x, y) 0
x 2
y 2
①边界条件
U 0 (0 x )
(a)
y0
U yb U0 (0 x )
(b)
U
x0
U 0 0
(b y b)
2
(0 y b)
i
若对任意x成立,则 B2i 0
于是
U (x, y) A1i sin ki x B1i sh ki y Ci sin ki x sh ki y

电动力学 第三章 静态电磁场及其边值问题的解

电动力学 第三章 静态电磁场及其边值问题的解

最后得
所以
第3章 静态电磁场及其边值问题的解
18
3.1.3 导体系统的电容与部分电容
电容器广泛应用于电子设备的电路中: • 在电子电路中,利用电容器来实现滤波、移相、隔直、旁
路、选频等作用; • 通过电容、电感、电阻的排布,可组合成各种功能的复杂
电路; • 在电力系统中,可利用电容器来改善系统的功率因数,以
减少电能的损失和提高电气设备的利用率;
第3章 静态电磁场及其边值问题的解
19
1. 电容 电容是导体系统的一种基本属性,是描述导体系统 储存电荷
能力的物理量。
孤立导体的电容
孤立导体的电容定义为所带电量q与其电位 的比值,即
两个带等量异号电荷(q)的导 体组成的电容器,其电容为
电容的大小只与导体系统的几何尺寸、形状和及周围电介质 的特性参数有关,而与导体的带电量和电位无关。

两端点乘 ,则有
上式两边从点P到点Q沿任意路径进行积分,得
电场力做 的功
关于电位差的说明
P、Q 两点间的电位差
P、Q 两点间的电位差等于电场力将单位正电荷从P点移至Q 点 所做的功,电场力使单位正电荷由高电位处移到低电位处;
电位差也称为电压,可用U 表示; 电位差有确定值,只与首尾两点位置有关,与积分路径无关。
第3章 静态电磁场及其边值问题的解
2
3.1 静电场分析
学习内容 3.1.1 静电场的基本方程和边界条件 3.1.2 电位函数 3.1.3 导体系统的电容与部分电容 3.1.4 静电场的能量 3.1.5 静电力
第3章 静态电磁场及其边值问题的解
3
3.1.1 静电场的基本方程和边界条件
1. 基本方程
两点间电位差有定值

静态场及其边值问题的解

静态场及其边值问题的解

3.1.2 电位函数 1. 电位函数旳定义
E 0
E
即静电场能够用一种标量函数旳梯度来表达,标量函数 称
为静电场旳标量电位或简称电位。
2. 电位旳体现式
对于连续旳体分布电荷,由
R r r
E(r )
1
4
V
(r ) R3
RdV
1
4
V
(r)( 1 )dV
R
[ 1
4
V
(r)( 1 )dV ]
3.
电位差

E
两端点乘 dl,则有
E
dl
dl
(
dx
dy
dy)
d
x y y
上式两边从点P到点Q沿任意途径进行积分,得
电场力对单 位正电荷做
旳功
Q
Q
P E dl P d (P) (Q)
有关电位差旳阐明:
P、Q 两点间旳电位差
P、Q 两点间旳电位差等于电场力将单位正电荷从P点移至Q 点 所做旳功,电场力使单位正电荷由高电位处移到低电位处; 电位差也称为电压,可用U 表达; 电位差有拟定值,只与首尾两点位置有关,与积分途径无关。
U
2
ln(b / a)
F/m
21
电磁场与电磁波 第3章 静态电磁场及其边值问题的解
3.1.4 静电场旳能量 静电场对电荷有作用力,这表白静电场具有能量。静电场能
量起源于建立电荷系统旳过程中外电源提供旳能量。
1. 静电场旳能量 体分布电荷旳电场能量为
We
1 2
dV
V
对于面分布电荷,电场能量为
We
电磁场与电磁波 第3章 静态电磁场及其边值问题的解
1

静态场及其边值问题的解

静态场及其边值问题的解

R r r
3. 电位差 将 E 两端点乘 dl ,则有 E dl dl ( dx dy dy) d x y y 上式两边从点P到点Q沿任意路径进行积分,得
电场力做 的功

Q
P
Q E dl d ( P) (Q)
P
关于电位差的说明
P、Q 两点间的电位差
P、Q 两点间的电位差等于电场力将单位正电荷从P点移至Q 点 所做的功,电场力使单位正电荷由高电位处移到低电位处。
电位差也称为电压,可用U 表示。
电位差有确定值,只与首尾两点位臵有关,与积分路径无关。
4. 电位参考点 静电位不惟一,可以相差一个常数,即
C ( C )

• •
静态电磁场:场量不随时间变化,包括:
静电场、恒定电场和恒定磁场 时变情况下,电场和磁场相互关联,构成统一的电磁场 静态情况下,电场和磁场由各自的源激发,且相互独立
本章内容
3.1 静电场分析 3.2 导电媒质中的恒定电场分析 3.3 恒定磁场分析 3.4 静态场的边值问题及解的惟一性定理 3.5 镜像法
如果选择参考点在rQ=∞,得P=∞,显然不合理。 l 1 ln ,显然这种形式最简单。 如果选择rQ=1,得 P 2 0 rP l 1 由此得到线电荷电位的一般表达式 ln 2 0 r l l 1 1 对于位于r 的线电荷,电位表达式为 ln ln 2 0 r r 2 0 R
线电荷:设线电荷 l 在原点,参考点 Q ,场点 ( 电位考察 点)P,沿如前路径进行积分,有 M Q l Q r P E d l E d l d r 2 P M M 2 0 r

3 电磁场与电磁波--静态电磁场及其边值问题的解

3 电磁场与电磁波--静态电磁场及其边值问题的解
第三章 静态电磁场及其边值问题的解
静态电磁场:当场源(电荷、电流)不随时间变化时,所激
发的电场、磁场也不随时间变化,称为静态电磁场,是电磁 场的一种特殊形式。 时变情况下,电场和磁场相互关联,构成统一的电磁场; 静态情况下,电场和磁场由各自的源激发,且相互独立。 三种静态电磁场: 静电场:由静止电荷产生; 恒定电场:由导电媒质中的恒定运动电荷形成; 恒定磁场:由恒定电流产生。
P
P、Q两点 间的电位差
*关于电位差的说明*
P、Q两点间的电位差等于电场力将单位正电荷从P点移至Q点所做的 功,电场力使单位正电荷由高电位处移到低电位处。 电位差也称为电压,可用U 表示。 电位差有确定值,只与首尾两点位置有关,与积分路径无关。 • 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解
l (r ')
S (r ') 1 dS ' C 面电荷 4 S ' | r r ' | 体电荷 dV ' C V ' 4 | r r ' | 1
V (r ')
引入电位函数的意义: 简化电场强度的求解!在某些情况下,直接求解电场强度很困难,但求 解电位函数则相对简单,因此可以通过先求电位函数,再由 E 关系得到电场解——间接求解法。
• 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解
• 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解
• 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解
• 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解
• 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解

my第三章静态场及其边值问题的解讲解

my第三章静态场及其边值问题的解讲解

3.1 静电场分析
学习内容 3.1.1 静电场的基本方程和边界条件 3.1.2 电位函数 3.1.3 导体系统的电容与部分电容 3.1.4 静电场的能量 3.1.5 静电力
3.1.1 静电场的基本方程和边界条件
1. 基本方程
微分形式:
D
E 0
本构关系: D E
积分形式:SD
dS
q
CE dl 0
D和2 ) S
D
媒质1 1 媒质2 2
1 P1 2 P2
l
2
2
n
1
1
n
S
• 若介质分界面上无自由电荷,即S 0
2
2
n
1
1
n

导体表面上电位的边界条件: 常数,
n
S
例 3.1.1 求电偶极子的电位.
解 在球坐标系中
(r )
q
(1 1)
q
r2 r1
40 r1 r2 40 r1r2
1
dz
40 L 2 (z z)2
z ' dl dz
y
l0 ln[z z
L
2 (z z)2 ]
4 0
L
x
l0 ln 2 (z L)2 (z L)
2. 边界条件
en
(D1
D2
)
S
en (E1 E2 ) 0

ED11tn
D2 E2t
n
0
S
若分界面上eenn不 (存(DE1在1面DE电22))荷0,0 即ρ或S=0,则ED11tn
D2 E2t
n
场矢量的折射关系
tan 1 E1t / E1n 1 / D1n 1 tan 2 E2t / E2n 2 / D2n 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档