圆锥曲线中的定点定值问题的四种模型

合集下载

圆锥曲线中的四种经典模型

圆锥曲线中的四种经典模型

圆锥曲线中的定点定值问题的四种经典模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。

直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。

技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。

如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。

下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。

求证:直线l 过定点,并求出该定点的坐标。

解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k -+=-⋅=++22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k-⋅=+⋅+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k --+++=+++,整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220ba b a y b a b a x +-+-。

圆锥曲线中的定点、定值问题(含解析)

圆锥曲线中的定点、定值问题(含解析)

圆锥曲线中的定点、定值问题一、题型选讲题型一 、 圆锥曲线中过定点问题圆锥曲线中过定点问题常见有两种解法: (1)、求出圆锥曲线或直线的方程解析式,研究解析式,求出定点(2)、从特殊位置入手,找出定点,在证明该点符合题意(运用斜率相等或者三点共线)。

例1、【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.例2、(2020届山东省临沂市高三上期末)如图,已知点F 为抛物线C :22y px =(0p >)的焦点,过点F 的动直线l 与抛物线C 交于M ,N 两点,且当直线l 的倾斜角为45°时,16MN =.(1)求抛物线C 的方程.(2)试确定在x 轴上是否存在点P ,使得直线PM ,PN 关于x 轴对称?若存在,求出点P 的坐标;若不存在,请说明理由.例3、【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.题型二、圆锥曲线中定值问题圆锥曲线中常见的定值问题,属于难题.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值例4、【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.例5、(2020届山东省泰安市高三上期末)已知椭圆()2222:10x y E a b a b+=>>的离心率e 满足2220e −+=,右顶点为A ,上顶点为B ,点C (0,-2),过点C 作一条与y 轴不重合的直线l ,直线l 交椭圆E 于P ,Q 两点,直线BP ,BQ 分别交x 轴于点M ,N ;当直线l 经过点A 时,l .(1)求椭圆E 的方程;(2)证明:BOM BCN S S ∆∆⋅为定值.例6、(2019苏州三市、苏北四市二调)如图,在平面直角坐标系xOy 中,已知椭圆C 1:x 24+y 2=1,椭圆C 2:x 2a 2+y 2b 2=1(a>b>0),C 2与C 1的长轴长之比为2∶1,离心率相同.(1) 求椭圆C 2的标准方程; (2) 设点P 为椭圆C 2上的一点.①射线PO 与椭圆C 1依次交于点A ,B ,求证:PAPB 为定值;②过点P 作两条斜率分别为k 1,k 2的直线l 1,l 2,且直线l 1,l 2与椭圆C 1均有且只有一个公共点,求证k 1·k 2为定值..思路分析 (1)根据已知条件,求出a ,b 的值,得到椭圆C 2的标准方程.(2)①对直线OP 斜率分不存在和存在两种情况讨论,当OP 斜率存在时,设直线OP 的方程为y =kx ,并与椭圆C 1的方程联立,解得点A 横坐标,同理求得点P 横坐标,再通过弦长公式,求出PAPB 的表达式,化简整理得到定值.②设P(x 0,y 0),写出直线l 1的方程,并与椭圆C 1联立,得到关于x 的一元二次方程,根据直线l 1与椭圆C 1有且只有一个公共点,得到方程只有一解,即Δ=0,整理得(x 20-4)k 21-2x 0y 0k 1+y 20-1=0,同理得到(x 20-4)k 22-2x 0y 0k 2+y 20-1=0,从而说明k 1,k 2是关于k 的一元二次方程的两个根,运用根与系数的关系,证得定值.二、达标训练1、(2020届浙江省温州市高三4月二模)如图,已知椭圆22:14x C y +=,F 为其右焦点,直线()0:k y x m l m k +<=与椭圆交于1122(,),(,)P x y Q x y 两点,点,A B 在l 上,且满足,,PA PF QB QF OA OB ===.(点,,,A P Q B 从上到下依次排列)(I )试用1x 表示PF :(II )证明:原点O 到直线l 的距离为定值.2、【2018年高考北京卷理数】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.3、(2019苏锡常镇调研)已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,焦点到相应准线的距离为33.(1) 求椭圆E 的标准方程;(2) 已知P(t ,0)为椭圆E 外一动点,过点P 分别作直线l 1和l 2,直线l 1和l 2分别交椭圆E 于点A ,B 和点C ,D ,且l 1和l 2的斜率分别为定值k 1和k 2,求证:PA ·PBPC ·PD 为定值.4、(2018苏州暑假测试)如图,已知椭圆O :x 24+y 2=1的右焦点为F ,点B ,C 分别是椭圆O 的上、下顶点,点P 是直线l :y =-2上的一个动点(与y 轴的交点除外),直线PC 交椭圆于另一个点M.(1) 当直线PM 经过椭圆的右焦点F 时,求△FBM 的面积;(2) ①记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1•k 2为定值;5、(2016泰州期末)如图,在平面直角坐标系xOy 中, 已知圆O :x 2+y 2=4,椭圆C :x 24+y 2=1,A 为椭圆右顶点.过原点O 且异于坐标轴的直线与椭圆C 交于B ,C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的另一交点为Q ,其中D (-65,0).设直线AB ,AC 的斜率分别为k 1,k 2.(1) 求k 1k 2的值;(2) 记直线PQ ,BC 的斜率分别为k PQ ,k BC ,是否存在常数λ,使得k PQ =λk BC ?若存在,求λ的值;若不存在,说明理由;(3) 求证:直线AC 必过点Q .圆锥曲线中的定点、定值问题解析一、题型选讲例1【解析】(1)由题设得A (–a ,0),B (a ,0),G (0,1).则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3.由于直线P A 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +−=−,可得121227(3)(3)y y x x =−++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219x y +=得222(9)290.m y mny n +++−=所以12229mn y y m +=−+,212299n y y m −=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +−−++++=解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).例2、【解析】(1)当直线l 的倾斜角为45°,则l 的斜率为1,,02p F ⎛⎫⎪⎝⎭,l ∴的方程为2p y x =−.由2,22,p y x y px ⎧=−⎪⎨⎪=⎩得22304p x px −+=.设()11,M x y ,()22,N x y ,则123x x p +=, ∴12416x x p M p N ++===,4p =, ∴抛物线C 的方程为28y x =.(2)假设满足条件的点P 存在,设(),0P a ,由(1)知()2,0F , ①当直线l 不与x 轴垂直时,设l 的方程为()2y k x =−(0k ≠),由()22,8,y k x y x ⎧=−⎨=⎩得()22224840k x k x k −++=,()22222484464640k k k k ∆=+−⋅⋅=+>,212248k x x k++=,124x x =. ∵直线PM ,PN 关于x 轴对称, ∴0PM PN k k +=,()112PM k x k x a −=−,()222PNk x k x a−=−. ∴()()()()()()122112128(2)222240a k x x a k x x a k x x a x x a k+−−+−−=−+++=−=⎡⎤⎣⎦, ∴2a =−时,此时()2,0P −.②当直线l 与x 轴垂直时,由抛物线的对称性,易知PM ,PN 关于x 轴对称,此时只需P 与焦点F 不重合即可. 综上,存在唯一的点()2,0P −,使直线PM ,PN 关于x 轴对称. 例3、【解析】(1)由抛物线2:2C x py =−经过点(2,1)−,得2p =.所以抛物线C 的方程为24x y =−,其准线方程为1y =.(2)抛物线C 的焦点为(0,1)F −. 设直线l 的方程为1(0)y kx k =−≠.由21,4y kx x y=−⎧⎨=−⎩得2440x kx +−=.设()()1122,,,M x y N x y ,则124x x =−. 直线OM 的方程为11y y x x =. 令1y =−,得点A 的横坐标11A x x y =−. 同理得点B 的横坐标22B x x y =−. 设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=−−−=−−− ⎪ ⎪⎝⎭⎝⎭, 21212(1)x x DA DB n y y ⋅=++ 2122212(1)44x x n x x =++⎛⎫⎛⎫−− ⎪⎪⎝⎭⎝⎭21216(1)n x x =++ 24(1)n =−++.令0DA DB ⋅=,即24(1)0n −++=,则1n =或3n =−. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)−.例4、【解析】(1)由题设得22411a b +=,22212a b a −=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++−=. 于是2121222426,1212km m x x x x k k −+=−=++.①由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y −−+−−=,可得221212(1)(2)()(1)40k x x km k x x m ++−−++−+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k−+−−−+−+=++. 整理得(231)(21)0k m k m +++−=.因为(2,1)A 不在直线MN 上,所以210k m +−≠,故2310k m ++=,1k ≠.于是MN 的方程为21()(1)33y k x k =−−≠.所以直线MN 过点21(,)33P −.若直线MN 与x 轴垂直,可得11(,)N x y −.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y −−+−−−=.又2211163x y +=,可得2113840x x −+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P −.令Q 为AP 的中点,即41(,)33Q .若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP =. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.例5、【解析】(1)由2220e −+=解得2e =或e =,∴a =,又222a b c =+,a ∴=,又()020AC k a −−==−a ∴=1b ∴=,∴椭圆E 的方程为2212x y +=;(2)由题知,直线l 的斜率存在,设直线l 的方程为2y kx =−,设()()1122,,,P x y Q x y ,由22212y kx x y =−⎧⎪⎨+=⎪⎩得()2221860k x kx +−+=, ∴12122286,2121k x x x x k k +==++, ()()22=84621k k −−⨯⨯+=216240k −> 232k ∴>, ∴()121224421y y k x x k −+=+−=+,()()121222y y kx kx =−−()21212=24k x x k x x −++=224221k k −+, 直线BP 的方程为1111y y x x −=+,令0y =解得111x x y =−,则11,01x M y ⎛⎫⎪−⎝⎭,同理可得22,01x N y ⎛⎫⎪−⎝⎭, 12123411BOMBCNx x SSy y ∴=−−=()()()12121212123341141x x x x y y y y y y =−−−++=22226321444212121k k k k +−++++=12, BOM BON S S∆∴为定值12. 例6、 (1) 规范解答 设椭圆C 2的焦距为2c ,由题意,a =22,c a =32,a 2=b 2+c 2,解得b =2,因此椭圆C 2的标准方程为x 28+y 22=1.(3分)(2)①1°当直线OP 斜率不存在时,PA =2-1,PB =2+1,则PAPB =2-12+1=3-2 2.(4分) 2°当直线OP 斜率存在时,设直线OP 的方程为y =kx ,代入椭圆C 1的方程,消去y ,得(4k 2+1)x 2=4, 所以x 2A =44k 2+1,同理x 2P =84k 2+1.(6分)所以x 2P =2x 2A ,由题意,x P 与x A 同号,所以x P =2x A ,从而PAPB=|x P-x A||x P-x B|=|x P-x A||x P+x A|=2-12+1=3-2 2.所以PAPB=3-22为定值.(8分)②设P(x0,y0),所以直线l1的方程为y-y0=k1(x-x0),即y=k1x-k1x0+y0,记t=-k1x0+y0,则l1的方程为y=k1x+t,代入椭圆C1的方程,消去y,得(4k21+1)x2+8k1tx+4t2-4=0,因为直线l1与椭圆C1有且只有一个公共点,所以Δ=(8k1t)2-4(4k21+1)(4t2-4)=0,即4k21-t2+1=0,将t=-k1x0+y0代入上式,整理得,(x20-4)k21-2x0y0k1+y20-1=0,(12分)同理可得,(x20-4)k22-2x0y0k2+y20-1=0,所以k1,k2为关于k的方程(x20-4)k2-2x0y0k+y20-1=0的两根,从而k1·k2=y20-1x20-4.(14又点在P(x0,y0)椭圆C2:x28+y22=1上,所以y20=2-14x20,所以k1·k2=2-14x20-1x20-4=-14为定值.(16分)二、达标训练1、【解析】(I) 椭圆22:14xC y+=,故)F,1 ||22FP x ====−.(II)设()33,A x y,()44,B x y,则将y kx m=+代入2214xy+=得到:()222418440k x kmx m+++−=,故2121222844,4141km mx x x xk k−−+==++,21241x xk−=+,OA OB=,故()3434343421k x x my yx x x x k+++==−++,得到34221kmx xk−+=+,PA PF=13122x x−=−42222x x−=−,由已知得:3124x x x x<<<或3124x x x x>>>,)()123421x x x x x+−+=−,2228241141km kmk k k−+=+++,化简得到221m k=+.故原点O到直线l的距离为1d==为定值.2、【解析】(1)因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛物线的方程为y2=4x.由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k≠0).由241y xy kx⎧=⎨=+⎩得22(24)10k x k x+−+=.依题意22(24)410k k∆=−−⨯⨯>,解得k<0或0<k<1.又P A,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)设A(x1,y1),B(x2,y2).由(1)知12224kx xk−+=−,1221x xk=.直线P A的方程为1122(1)1yy xx−−=−−.令x=0,得点M的纵坐标为1111212211My kxyx x−+−+=+=+−−.同理得点N的纵坐标为22121Nkxyx−+=+−.由=QM QOλ,=QN QOμ得=1Myλ−,1Nyμ=−.所以2212121212122224112()111111=2111(1)(1)11M Nkx x x x x x k ky y k x k x k x x kk λμ−+−−−++=+=+=⋅=⋅−−−−−−.所以11λμ+为定值.3、规范解答(1)设椭圆的半焦距为c,由已知得,ca=32,则a2c-c=33,c2=a2-b2,(3分)解得a=2,b=1,c=3,(5分)所以椭圆E的标准方程是x24+y2=1.(6分)(2) 解法1 由题意,设直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2-4=0,(8分)设A(x 1,y 1),B(x 2,y 2).则x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,因为PA =1+k 21|x 1-t|,PB =1+k 21|x 2-t|,(10分)所以PA·PB =(1+k 21)|x 1-t||x 2-t|=(1+k 21)|t 2-(x 1+x 2)t +x 1x 2| =(1+k 21)|t 2-8k 21t 21+4k 21+4k 21t 2-41+4k 21|=(1+k 21)|t 2-4|1+4k 21,(12分) 同理,PC ·PD =(1+k 22)|t 2-4|1+4k 22,(14分) 所以PA·PB PC·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21)为定值.(16分)解法2 由题意,设直线l 1的方程为y =k 1(x -t),直线l 2的方程为y =k 2(x -t),设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4).直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2-4=0,(8分) 则x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,同理则x 3+x 4=8k 22t1+4k 22,x 3x 4=4k 22t 2-41+4k 22,PA →·PB →=(x 1-t ,y 1)(x 2-t ,y 2)=(x 1-t)(x 2-t)+k 21(x 1-t)(x 2-t)=(x 1-t)(x 2-t)(1+k 21), PC →·PD →=(x 3-t ,y 3)(x 4-t ,y 4)=(x 3-t)(x 4-t)+k 22(x 3-t)(x 4-t)=(x 3-t)(x 4-t)(1+k 22).(12分) 因为P ,A ,B 三点共线,所以PA →·PB →=PA·PB ,同理,PC →·PD →=PC ·PD.PA ·PB PC ·PD =PA →·PB →PC →·PD →=(x 1-t )(x 2-t )(1+k 21)(x 3-t )(x 4-t )(1+k 22)=(1+k 21)(1+k 22)·(x 1-t )(x 2-t )(x 3-t )(x 4-t )=(1+k 21)(1+k 22)·x 1x 2-t (x 1+x 2)+t 2x 3x 4-t (x 3+x 4)+t 2.代入x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,x 3+x 4=8k 22t 1+4k 22,x 3x 4=4k 22t 2-41+4k 22,化简得PA ·PB PC ·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21),(14分)因为是定值,所以PA ·PB PC ·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21)为定值.(16分)4规范解答 (1) 由题意B(0,1),C(0,-1),焦点F(3,0),当直线PM 过椭圆的右焦点F 时,则直线PM 的方程为x 3+y -1=1,即y =33x -1,联立⎩⎨⎧x 24+y 2=1,y =33x -1,解得⎩⎨⎧x =837,y =17或⎩⎪⎨⎪⎧x =0,y =-1(舍),即M ⎝⎛⎭⎫837,17.(2分)连结BF ,则直线BF :x 3+y1=1,即x +3y -3=0,而BF =a =2,点M 到直线BF 的距离为d =⎪⎪⎪⎪837+3×17-312+(3)2=2372=37.故S △MBF =12·BF ·d =12×2×37=37.(4分)(2) 解法1(点P 为主动点) ①设P(m ,-2),且m≠0,则直线PM 的斜率为k =-1-(-2)0-m =-1m , 则直线PM 的方程为y =-1m x -1,联立⎩⎨⎧y =-1m x -1,x 24+y 2=1化简得⎝⎛⎭⎫1+4m 2x 2+8m x =0,解得M ⎝ ⎛⎭⎪⎫-8m m 2+4,4-m 2m 2+4,(6分)所以k 1=4-m 2m 2+4-1-8m m 2+4=-2m 2-8m =14m ,k 2=1-(-2)0-m =-3m ,(8分)所以k 1·k 2=-3m ·14m =-34为定值.(10分)5、规范解答 (1) 设B (x 0,y 0),则C (-x 0,-y 0),x 204+y 20=1,因为A (2,0),所以k 1=y 0x 0-2,k 2=y 0x 0+2,所以k 1k 2=y 0x 0-2·y 0x 0+2=y 20x 20-4=1-14x 20x 20-4=-14.(4分)(2) 设直线AP 方程为y =k 1(x -2),联立⎩⎪⎨⎪⎧y =k 1x -2,x 2+y 2=4得(1+k 21)x 2-4k 21x +4(k 21-1)=0,解得x P =2k 21-11+k 21,y P =k 1(x P -2)=-4k 11+k 21, 联立⎩⎪⎨⎪⎧y =k 1x -2,x24+y 2=1得(1+4k 21)x 2-16k 21x +4(4k 21-1)=0,解得x B =24k 21-11+4k 21,y B =k 1(x B -2)=-4k 11+4k 21,(8分) 所以k BC =y B x B =-2k 14k 21-1,k PQ =y Px P +65=-4k 11+k 212k 21-11+k 21+65=-5k 14k 21-1, 所以k PQ =52k BC ,故存在常数λ=52,使得k PQ =52k BC .(10分) (3) 设直线AC 方程为y =k 2(x -2),当直线PQ 与x 轴垂直时,Q ⎝⎛⎭⎫-65,-85,则P -65,85,所以k 1=-12,即B (0,1),C (0,-1),所以k 2=12,则k AQ =-85-65-2=12=k 2,所以直线AC 必过点Q .当直线PQ 与x 轴不垂直时,设直线PQ 方程为y =-5k 14k 21-1⎝⎛⎭⎫x +65, 联立⎩⎪⎨⎪⎧y =-5k 14k 21-1⎝⎛⎭⎫x +65,x 2+y 2=4解得x Q =-216k 21-116k 21+1,y Q =16k 116k 21+1, 因为k 2=-y B -x B -2=4k 11+4k 2121-4k 211+4k 21-2=-14k 1, 所以k AQ =16k 116k 21+1-216k 21-116k 21+1-2=-14k 1=k 2,故直线AC 必过点Q .(16分) (不考虑直线与x 轴垂直的情形扣1分)。

圆锥曲线中的定点定值问题的四种模型

圆锥曲线中的定点定值问题的四种模型

圆锥曲线中的定点定值问题的四种模型Last revision on 21 December 2020圆锥曲线中的定点定值问题的四种模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。

直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。

技巧在于:设哪一条直线如何转化题目条件圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。

如果能够熟识这些常见的结论,那么解题必然会事半功倍。

下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。

求证:直线l 过定点,并求出该定点的坐标。

解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++, 整理得:2271640m mk k ++=,解得:1222,7km k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-。

高中数学:圆锥曲线中的定值、定点问题

高中数学:圆锥曲线中的定值、定点问题

高中数学:圆锥曲线中的定值、定点问题【基础回顾】一、课本基础提炼1.将直线方程与圆锥曲线方程联立,消去y得到关于x的方程mx2+nx+p=0.(1)若m≠0,当△>0时,直线与圆锥曲线有两个交点. 当△=0时,直线与圆锥曲线有且只有一个公共点,此时直线与双曲线相切. 当△<0时,直线与圆锥曲线无公共点.(2)当m=0时,若圆锥曲线为双曲线,则直线与双曲线只有一个交点,此时直线与双曲线的渐近线平行;若圆锥曲线为抛物线,则直线与抛物线只有一个交点,此时直线与抛物线的对称轴平行.(3)设直线与圆锥曲线的交点A(x1,y1),B(x2,y2),则2. 直线y=kx+b(k≠0)与椭圆相交于A(x1,y1),B(x2,y2)两点,则弦长二、二级结论必备1.对与圆锥曲线有关的中点弦问题,常用点差法,及设出弦的端点坐标,代入曲线方程,两式相减,利用中点公式和直线的斜率公式即可得出直线的斜率.2. 已知抛物线y2=2px(p>0),过其焦点的直线交抛物线于A、B 两点(如右图所示),设A(x1,y1),B(x2,y2).则有以下结论:(1)|AB|=x1+x2+p,或(α为AB所在直线的倾斜角);(3)y1y2=-p2.(4)以AB为直径的圆与抛物线的准线相切.3.过抛物线焦点且与对称轴垂直的弦称为抛物线的通径,抛物线的通径长为2p4.椭圆与双曲线的通径长为5.P(x0,y0)是抛物线C上一点,F为抛物线的焦点.(1)当焦点在x轴正半轴上时,(2)当焦点在x轴负半轴上时,(3)当焦点在x轴正半轴上时,(4)当焦点在x轴正半轴上时,【技能方法】定点问题解题技巧:(1)引进参数法。

设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点,即为所求定点。

(2)特殊到一般法。

从特殊位置入手,找到定点,再证明该定点与变量无关。

定值问题解题技巧:(1)特殊方法。

圆锥曲线的定点定值问题

圆锥曲线的定点定值问题

圆锥曲线的定点定值问题(最新版)目录一、圆锥曲线的定点定值问题概述1.定点问题的定义与求解方法2.定值问题的定义与求解方法3.圆锥曲线中定点定值问题的重要性二、定点问题的求解方法1.引进参数法2.直接解法三、定值问题的求解方法1.函数与方程思想2.转化与化归思想3.数形结合思想四、圆锥曲线中定点定值问题的典型例题分析1.椭圆中的定点定值问题2.双曲线中的定点定值问题3.抛物线中的定点定值问题五、总结与展望1.圆锥曲线中定点定值问题的解题技巧与方法2.对学生逻辑思维能力与计算能力的培养正文一、圆锥曲线的定点定值问题概述圆锥曲线是解析几何中的重要内容,也是高考数学中的热点问题。

圆锥曲线中的定点定值问题,主要包括定点问题和定值问题。

定点问题是指在运动变化过程中,直线或曲线恒过平面内的某个或某几个定点,而定值问题则是指几何量在运动变化中保持不变。

这类问题对学生的逻辑思维能力和计算能力有较高的要求,是高考数学中的难点之一。

二、定点问题的求解方法1.引进参数法在解决定点问题时,我们可以引入适当的参数,将问题转化为关于参数的方程或不等式,然后求解参数的取值范围,进而得到定点的坐标。

2.直接解法对于一些简单的定点问题,我们可以直接通过解析几何中的公式和定理求解。

例如,当直线与圆相交时,直线上的定点可以通过求解直线与圆的交点得到。

三、定值问题的求解方法1.函数与方程思想在解决定值问题时,我们通常可以将问题转化为函数与方程的问题。

通过寻找合适的函数关系,我们可以得到定值的表达式,进而求解问题。

2.转化与化归思想在解决定值问题时,我们可以通过转化与化归的思想,将问题转化为更容易解决的形式。

例如,在解决椭圆中的定值问题时,我们可以将椭圆转化为圆,从而简化问题。

3.数形结合思想在解决定值问题时,我们可以利用数形结合的思想,通过几何图形的性质和公式,得到定值的表达式。

例如,在解决抛物线中的定值问题时,我们可以通过抛物线的几何性质,得到定值的表达式。

圆锥曲线中的定点、定值问题(含解析)

圆锥曲线中的定点、定值问题(含解析)

圆锥曲线中的定点、定值问题一、题型选讲题型一 、 圆锥曲线中过定点问题圆锥曲线中过定点问题常见有两种解法:(1)、求出圆锥曲线或直线的方程解析式,研究解析式,求出定点·(2)、从特殊位置入手,找出定点,在证明该点符合题意(运用斜率相等或者三点共线)。

例1、【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.例2、(2020届山东省临沂市高三上期末)如图,已知点F 为抛物线C :22y px =(0p >)的焦点,过点F 的动直线l 与抛物线C 交于M ,N 两点,且当直线l 的倾斜角为45°时,16MN =.(1)求抛物线C 的方程.(2)试确定在x 轴上是否存在点P ,使得直线PM ,PN 关于x 轴对称?若存在,求出点P 的坐标;若不存在,请说明理由.例3、【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.题型二、圆锥曲线中定值问题圆锥曲线中常见的定值问题,属于难题.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值例4、【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.例5、(2020届山东省泰安市高三上期末)已知椭圆()2222:10x y E a b a b+=>>的离心率e 满足2220e -+=,右顶点为A ,上顶点为B ,点C (0,-2),过点C 作一条与y 轴不重合的直线l ,直线l 交椭圆E 于P ,Q 两点,直线BP ,BQ 分别交x 轴于点M ,N ;当直线l 经过点A 时,l .(1)求椭圆E 的方程;(2)证明:BOM BCN S S ∆∆⋅为定值.例6、(2019苏州三市、苏北四市二调)如图,在平面直角坐标系xOy 中,已知椭圆C 1:x 24+y 2=1,椭圆C 2:x 2a 2+y 2b 2=1(a>b>0),C 2与C 1的长轴长之比为2∶1,离心率相同.(1) 求椭圆C 2的标准方程; (2) 设点P 为椭圆C 2上的一点.①射线PO 与椭圆C 1依次交于点A ,B ,求证:PAPB 为定值;②过点P 作两条斜率分别为k 1,k 2的直线l 1,l 2,且直线l 1,l 2与椭圆C 1均有且只有一个公共点,求证k 1·k 2为定值.二、达标训练1、(2020届浙江省温州市高三4月二模)如图,已知椭圆22:14x C y +=,F 为其右焦点,直线()0:k y x m l m k +<=与椭圆交于1122(,),(,)P x y Q x y 两点,点,A B 在l 上,且满足,,PA PF QB QF OA OB ===.(点,,,A P Q B 从上到下依次排列)(I )试用1x 表示PF :(II )证明:原点O 到直线l 的距离为定值.2、【2018年高考北京卷理数】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.3、(2019苏锡常镇调研)已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,焦点到相应准线的距离为33.(1) 求椭圆E 的标准方程;(2) 已知P(t ,0)为椭圆E 外一动点,过点P 分别作直线l 1和l 2,直线l 1和l 2分别交椭圆E 于点A ,B 和点C ,D ,且l 1和l 2的斜率分别为定值k 1和k 2,求证:PA ·PBPC ·PD 为定值.4、(2018苏州暑假测试)如图,已知椭圆O :x 24+y 2=1的右焦点为F ,点B ,C 分别是椭圆O 的上、下顶点,点P 是直线l :y =-2上的一个动点(与y 轴的交点除外),直线PC 交椭圆于另一个点M.(1) 当直线PM 经过椭圆的右焦点F 时,求ⅠFBM 的面积;(2) Ⅰ记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1•k 2为定值;5、(2016泰州期末)如图,在平面直角坐标系xOy 中, 已知圆O :x 2+y 2=4,椭圆C :x 24+y 2=1,A 为椭圆右顶点.过原点O 且异于坐标轴的直线与椭圆C 交于B ,C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的另一交点为Q ,其中D (-65,0).设直线AB ,AC 的斜率分别为k 1,k 2.(1) 求k 1k 2的值;(2) 记直线PQ ,BC 的斜率分别为k PQ ,k BC ,是否存在常数λ,使得k PQ =λk BC ?若存在,求λ的值;若不存在,说明理由;(3) 求证:直线AC 必过点Q .一、题型选讲题型一 、 圆锥曲线中过定点问题圆锥曲线中过定点问题常见有两种解法:(1)、求出圆锥曲线或直线的方程解析式,研究解析式,求出定点·(2)、从特殊位置入手,找出定点,在证明该点符合题意(运用斜率相等或者三点共线)。

圆锥曲线中的典型问题与方法:圆锥曲线的定值、定点问题

圆锥曲线中的典型问题与方法:圆锥曲线的定值、定点问题

圆锥曲线中的定值、定点问题一、直线恒过定点问题例1. 已知动点E 在直线:2l y =-上,过点E 分别作曲线2:4C x y =的切线,EA EB , 切点为A 、B , 求证:直线AB 恒过一定点,并求出该定点的坐标;解:设),2,(-a E )4,(),4,(222211x x B x x A ,x y x y 214'2=∴=,)(2141121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(21421121x a x x -=--∴整理得:082121=--ax x同理可得:222280x ax --=8,2082,2121221-=⋅=+∴=--∴x x a x x ax x x x 的两根是方程)24,(2+a a AB 中点为可得,又2212121212124442ABx x y y x x a k x x x x --+====-- 2(2)()22a a AB y x a ∴-+=-直线的方程为,2()2ay x AB =+∴即过定点0,2.例2. 已知点是椭圆22:12x E y +=上任意一点,直线l 的方程为0012x xy y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。

解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --=设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n则0000001212022x nm y x n m y x y ⎧=-⎪+⎪⎨-⎪⋅--=⎪⎩,解得320002043200002002344424482(4)x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩∴ 直线PN 的斜率为4320000032000042882(34)n y x x x x k m x y x x -++--==---+ 从而直线PN 的方程为: 432000000320004288()2(34)x x x x y y x x y x x ++---=---+ 即3200043200002(34)14288y x x x y x x x x --+=+++--从而直线PN 恒过定点(1,0)G 二、恒为定值问题例3. 已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交椭圆于A 、B 两点。

圆锥曲线的经典模型

圆锥曲线的经典模型

圆锥曲线中的定点定值问题的四种经典模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。

直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。

技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。

如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。

下面总结圆锥曲线中几种常见的几种定点模型: 模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。

求证:直线l 过定点,并求出该定点的坐标。

解:设1122(,),(,)A x y B x y ,由223412y kx mx y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-,1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++, 整理得:2271640m mk k ++=,解得:1222,7km k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾; 当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220ba b a y b a b a x +-+-。

专题15 圆锥曲线中的定点与定值问题(解析版)

专题15 圆锥曲线中的定点与定值问题(解析版)

专题15 圆锥曲线中的定点与定值问题【考点1】、【直线过定点的解题策略】(1)如果题设条件没有给出这个定点,那么,我们可以这样思考:由于这个定点对符合要求的一些特殊情况必然成立,那么我们根据特殊情况先找到这个定点,再证明这个点与变量无关.(2)直接推理、计算,找出参数之间的关系,并在计算过程中消去部分参数,将直线方程化为点斜式方程,从而得到定点.(3)若直线方程含多个参数并给出或能求出参数满足的方程,观察直线方程特征与参数方程满足的方程的特征,即可找出直线所过顶点坐标,并带入直线方程进行检验.注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算. 【重要结论】1.动直线l 过定点问题,设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).2.动曲线C 过定点问题,引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.3.“弦对定点张直角”-圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-. 4.只要任意一个限定AP 与BP 条件(如=•BP AP k k 定值,=+BP AP k k 定值),直线AB 依然会过定点【考点2】、【定值问题的常见类型及解题策略】二、考点再现一、核心先导(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值; (2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得. 【知识拓展】1.设点(),P m n 是椭圆C :()222210x y a b a b +=>>上一定点,点A,B 是椭圆C 上不同于P 的两点,若PA PBk k λ+=,则0λ=时直线AB 斜率为定值()220bm n an≠,若0λ≠,则直线AB 过定点2222,n b m m n a λλ⎛⎫--- ⎪⎝⎭;2. 设点(),P m n 是双曲线C :()222210,0x y a b a b-=>>一定点,点A,B 是双曲线C 上不同于P 的两点,若PA PBk k λ+=,则0λ=时直线AB 斜率为定值()220bm n an-≠,若0λ≠,则直线AB 过定点2222,n b m m n a λλ⎛⎫--+ ⎪⎝⎭;3. 设点(),P m n 是抛物线C :()220y px p =>一定点,点A,B 是抛物线C 上不同于P 的两点,若PA PB k k λ+=,则0λ=时直线AB 斜率为定值()0pn n-≠,若0λ≠,则直线AB 过定点22,n p m n λλ⎛⎫--+ ⎪⎝⎭; 圆锥曲线的第三定义:平面内的动点到两定点1,0A a 2,0A a 的斜率乘积等于常数21e 点的轨迹叫做椭圆或双曲线,其中两个定点为椭圆和双曲线的两个顶点.其中如果常数211e 时,轨迹为双曲线,如果211,0e 时,轨迹为椭圆。

圆锥曲线专题(定点、定值问题)

圆锥曲线专题(定点、定值问题)

圆锥曲线专题——定点、定值问题定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。

直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。

技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。

如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。

下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型【例题】已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。

求证:直线l 过定点,并求出该定点的坐标。

解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++, 整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-。

圆锥曲线的定点定值问题

圆锥曲线的定点定值问题

圆锥曲线的定点定值问题一、引言圆锥曲线是数学中的重要概念,广泛应用于物理、工程、计算机图形学等领域。

圆锥曲线的定点定值问题是研究在给定条件下,确定圆锥曲线上的某个点或某些特定值的问题。

本文将深入探讨圆锥曲线的定点定值问题,包括椭圆、双曲线和抛物线三种常见的圆锥曲线。

二、椭圆的定点定值问题椭圆是圆锥曲线中的一种,其定义为平面上到两个固定点的距离之和等于常数的点的轨迹。

椭圆的定点定值问题主要包括确定椭圆上的某个点的坐标、确定椭圆的焦点和确定椭圆的离心率等问题。

2.1 确定椭圆上的某个点的坐标已知椭圆的长轴和短轴的长度,以及椭圆的中心点坐标,可以通过参数方程求解椭圆上任意一点的坐标。

设椭圆的半长轴为a,半短轴为b,中心点坐标为(h, k),参数为θ,则椭圆上任意一点的坐标可以表示为:x = h + a * cos(θ) y = k + b * sin(θ)2.2 确定椭圆的焦点椭圆的焦点是确定椭圆形状的重要参数之一。

已知椭圆的长轴和短轴的长度,可以通过以下公式计算椭圆的焦点坐标:c = sqrt(a^2 - b^2)其中c为焦距,a为半长轴长度,b为半短轴长度。

椭圆的焦点坐标可以表示为:F1 = (h + c, k) F2 = (h - c, k)2.3 确定椭圆的离心率椭圆的离心率是描述椭圆形状的重要参数之一,可以通过以下公式计算椭圆的离心率:e = c / a其中c为焦距,a为半长轴长度,e为离心率。

离心率描述了椭圆的扁平程度,当离心率为0时,椭圆退化为圆形;当离心率小于1时,椭圆的形状更加扁平;当离心率等于1时,椭圆退化为抛物线;当离心率大于1时,椭圆的形状更加拉长。

三、双曲线的定点定值问题双曲线是圆锥曲线中的一种,其定义为平面上到两个固定点的距离之差等于常数的点的轨迹。

双曲线的定点定值问题主要包括确定双曲线上的某个点的坐标、确定双曲线的焦点和确定双曲线的离心率等问题。

3.1 确定双曲线上的某个点的坐标已知双曲线的半轴长度、中心点坐标和参数,可以通过参数方程求解双曲线上任意一点的坐标。

圆锥曲线中的定点定值问题的四种模型

圆锥曲线中的定点定值问题的四种模型

圆锥曲线中的定点定值问题的四种模型圆锥曲线中的定点定值问题的四种模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。

直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。

技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。

如果能够熟识这些常见的结论,那么解题必然会事半功倍。

下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。

求证:直线l 过定点,并求出该定点的坐标。

解:设1122(,),(,)A x y B x y ,由223412y kx mx y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=,22226416(34)(3)0m k k m ∆=-+->,22340km +->212122284(3),3434mkm x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+Q以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BDk k ⋅=-, 1212122y y x x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++,整理得:2271640mmk k ++=,解得:1222,7k m k m=-=-,且满足22340k m +->当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((22222222ba b a y b a b a x +-+-。

圆锥曲线专题:定值问题的7种常见考法(解析版)

圆锥曲线专题:定值问题的7种常见考法(解析版)

圆锥曲线专题:定值问题的7种常见考法一、定值问题处理方法1、解析几何中的定值问题是指某些几何量(线段长度,图形面积,角度,直线的斜率等)的大小或某些代数表达式的值和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值,求定值问题常见的解题方法有两种:法一、先猜后证(特例法):从特殊入手,求出定值,再证明这个定值与变量无关;法二、引起变量法(直接法):直接推理、计算,并在计算推理过程中消去参数,从而得到定值。

2、直接法解题步骤第一步设变量:选择适当的量当变量,一般情况先设出直线的方程:b kx y +=或n my x +=、点的坐标;第二步表示函数:要把证明为定值的量表示成上述变量的函数,一般情况通过题干所给的已知条件,进行正确的运算,将需要用到的所有中间结果(如弦长、距离等)用引入的变量表示出来;第三步定值:将中间结果带入目标量,通过计算化简得出目标量与引入的变量无关,是一个常数。

二、常见定值问题的处理方法1、处理较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向;2、在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;3、巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算。

三、常见条件转化1、对边平行:斜率相等,或向量平行;2、两边垂直:斜率乘积为-1,或向量数量积为0;3、两角相等:斜率成相反数或相等或利用角平分线性质;4、直角三角形中线性质:两点的距离公式5、点与圆的位置关系:(·1)圆外:点到直径端点向量数量积为正数;(2)圆上:点到直径端点向量数量积为零;(3)圆内:点到直径端点向量数量积为负数。

四、常用的弦长公式:(1)若直线AB 的方程设为b kx y +=,()11y x A ,,()22y x B ,,则()a k x x x x k x x k AB ∆⋅+=-+⋅+=-⋅+=22122122121411(2)若直线AB 的方程设为n my x +=,()11y x A ,,()22y x B ,,则()am y y y y m y y m AB ∆⋅+=-+⋅+=-⋅+=22122122121411【注】上式中a 代表的是将直线方程带入圆锥曲线方程后,化简得出的关于x 或y 的一元二次方程的二次项系数。

圆锥曲线定点定值技巧方法

圆锥曲线定点定值技巧方法

高考圆锥曲线定点定值技巧一、定点、定值、定形问题中的两种常用方法1.“特殊”探求例1.已知直线过点)0)(0(>m m M ,且与抛物线)0(22>=p px y 交于)(11y x A ,、)(22y x B ,两点,求证:1x ·2x ,1y ·2y 均为定值,并求这个定值.解:①特殊位置的探讨:如图1,当过点)0)(0(>m m M ,的直线与x 垂直时,1x ·2x =2m ,1y ·2y =pm 2-;②一般性的证明:如图2,当过点)0)(0(>m m M ,的直线与x 垂直时,设过点)0)(0(>m m M ,的直线方程为:m ty x +=【“基本特征式”的运算】.由⎩⎨⎧=+=pxy mty x 22⇒0222=--pm pty y ⇒1y ·2y =pm 2-⇒1x ·2x =2m .小结:①定点、定值、定形问题的求解,先“特殊”探求,再证明一般的情况; ②“特殊”是指:特殊点、特殊位置、特殊直线、极端位置(空间图形的平面轨迹)、极限位置、特殊值、特殊图形(如:三棱锥→正四面体)、初始值(如数列问题,首先用1a 、2a 、3a 求出满足条件的参数,再证明一般的情况);③华罗庚教授反复强调:“退,退,退到原始状态,退到最简单的位置”,即“特殊”探路;④直线与x 轴垂直,是很“容易遗忘”的失分参数.有了“特殊”探路的解题意识,相反能提高警惕,提高得分能力;⑤相关结论:当直线过焦点时,1x ·2x =42p ,1y ·2y =2p -;当直线过点)02(,p -时,1x ·2x =42p ,1y ·2y =2p ; 例2.(09、辽宁)已知椭圆C :22143x y +=.F E 、是椭圆C 上的两个动点,点)231(,A 是椭圆上的一个定点.如果直线AF AE 、的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.解:①“特殊”探讨:取点)02(,F (即右顶点)2323=⇒-=⇒AE AF k k ⇒直线AE 的方程:x y 23=.由⇒⎪⎩⎪⎨⎧=+=12432322y x x y 231-=⇒-=y x ⇒ FE EFF Ey y k x x -=-)1(2)23(0----=21=. ②一般性的证明:设过点)231(,A 的直线方程为:23)1(+-=x m y 由⎪⎩⎪⎨⎧=++-=124323)1(22y x x m y ⇒22233+4+4(32)4()1202m x m m x m -+--=(). 设方程的两根为1x 、A x ,则1x ·A x =1x ⇒1x =2234()12234m m--+. 分别用“k ”“k -”替换“m ”2234()12234E k x k --=+=34312422+--k k k ,32E E y kx k =+-=34296622++--k k k , F x =34312422+-+k k k ,Fy =34296622+++-k k k .所以直线EF 的斜率 FE EFF Ey y k x x -=-=21)3124()3124()2966()2966(2222=----++---++-k k k k k k k k .即直线EF 的斜率为定值,其值为12.小结:①取特殊点,求出定值,后续运算仅仅是一个填空程序; ②上述解题过程,运用了“对偶运算”,减少运算、减轻思维负担. 2.“与参数k 无关”例3.已知直线L 与抛物线)0(22>=p px y 交于)(11y x A ,、)(22y x B ,两点,且1x ·2x =42p .求证:直线L 经过定点,并求出这个定点的坐标.解:①直线x L ⊥轴,设其方程为m x =)0(>m ⇒⇒)0()0(,,,m B m A 1x ·2x =2m .又1x ·2x =42p ⇒2m =42p ⇒由0>m ⇒2p m =⇒直线L过定点)02(,p. ②当直线L 不垂直于x 轴时,设其方程为m kx y +=,由⇒⎩⎨⎧=+=px y mkx y 220)22(222=+-+m x p km x k ⇒2221k m x x =,又1x ·2x =42p ⇒42p =22km ⇒2422kpm m k m ±=⇒=⇒直线L :m kx y +=⇒)2(p x k y ±=.当2px ±=时,0=y ,“与参数k 无关”⇒直线L 过定点)02(,p ,或定点)02(,p-. 小结:①“与参数k 无关”,是初一年级关于方程“b ax =”解状讨论的直接应用:R x b a ∈⇔==0;②“与参数k 无关”,体现为“零”多项式理论,或“零次”多项式理论. 例4.例10.(07、湖南理21)已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.【直接法求轨迹】(1)若动点M 满足1111FM F A F B FO =++(其中O 为坐标原点),求点M 的轨迹方程;(2)在x 轴上是否存在定点C ,使CA ·CB 为常数?若存在,求出点C 的坐标;若不存在,请说明理由. 解:(1)由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.设()M x y ,. 第一歩:“基本特征式”:设11()A x y ,,22()B x y ,,直线AB :2+=ty x .由⎩⎨⎧=-+=2222y x ty x 024)1(22=++-⇒ty y t ⇒ ⎪⎩⎪⎨⎧--=+≠-14012212t t y y t ⇒14221--=+t x x …………(*1); 第二歩:“向量特征式”:1(2)FM x y =+,,111(2)F A x y =+,,1(20)FO =,,122(2)FB x y =+,, 由 1111FM F A F B FO =++⇒121226x x x y y y +=++⎧⎨=+⎩⇒ ⎩⎨⎧=+-=+yy y x x x 21214……(*2) 第三歩:代入(整体):由(*1)与(*2)⇒⎪⎪⎩⎪⎪⎨⎧--=--=-)2(14)1(14422 t t y t x ;第四歩:消参:(1)÷(2)⇒4-=x y t ,代入(1):22(6)4x y --=.所以点M 的轨迹方程是22(6)4x y --=.【(2)在x 轴上是否存在定点C ,使CA ·CB 为常数?若存在,求出点C 的坐标;若不存在,请说明理由】解:假设在x 轴上存在定点(0)C m ,,使CA ·CB 为常数. 第一歩:先特殊探讨.当AB 与x 轴垂直时,点A B ,的坐标为(2,(2,⇒CA ·CB =)21(,·)21(-,=-1=常数;第二歩:再解决一般情况.【以下是基本“特征式”的运算】 当AB 不与x 轴垂直时.①两设:设直线AB 的方程是(2)(1)y k x k =-≠±,11()A x y ,,22()B x y ,. ②方程组→一元二次方程→基本“特征式”由⎩⎨⎧=--=2)1(22y x x k y ⇒2222(1)4(42)0k x k x k -+-+=⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-=+≠-1241401222122212k k x x k k x x k ; ③运用基本“特征式”求解问题:CA ·CB 22221212(1)(2)()4k x x k m x x k m =+-++++ ⇒CA ·CB 22222222(1)(42)4(2)411k k k k m k m k k +++=-++-- 2222(12)21m k m k -+=+-22442(12)1mm m k -=-++- 因为CA ·CB 是与k 无关的常数,所以440m -=,即1m =,此时CA ·CB =-1.【与例1的注⑥,用“与k 参数无关”的方法求定值】 综合:在x 轴上存在定点C ,使CA ·CB =-1.小结:①定点、定值的题目中,若存在(大多数是“隐含”条件)“与k 参数无关”类的语句,求解方法是:第一歩,将表达式→关于“参数k ”的多项式;第二歩,令含“参数k ”的项的系数为零,即得到求解结论;②其理论依据:若关于x 方程b ax =的解为0==⇔b a R ,即“零”多项式理论;若关于x 方程02=++c bx ax 的解为0===⇔c b a R ,即“零次”多项式理论;若关于x 的函数k m x k x m x f ++++-=2)22()12()(2的值与x 无关⇔函数)(x f 是常数函数⇔所有含x 项的系数=0,即“零次”多项式理论;③一般地,这类题目的运算结果,总是含有两个参数:“无关参数k ”和“待求参数m ”.而本题很特殊:含“无关参数k ”是关于“参数k ”分式,增加了问题的难度.例5.(2011、武汉市第二次质检、三中供题) 已知点00(,)P x y 是椭圆22:12x E y +=上任意一点001x y ≠,直线l 的方程为0012x x y y +=.(1)判断直线l与椭圆E 交点的个数;(2)直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标.解:(1)由22001212x y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩⇒222200002104x y x x x y +-+-=⇒△=0⇒直线l 与椭圆E 只有一个交点.(2)直线0l 的方程为0000()2()x y y y x x -=- ⇒000020y x x y x y --=.设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n ⇒ 0000001212022x nm y x n m y x y ⎧=-⎪+⎪⎨-⎪⋅--=⎪⎩⇒320002043200002002344424482(4)x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩⇒直线PN 的斜率4320000032000042882(34)n y x x x x k m x y x x -++--==---+⇒直线PN 的方程为:432000000320004288()2(34)x x x x y y x x y x x ++---=---+ 即3200043200002(34)14288y x x x y x x x x --+=+++--⇒直线PN 恒过定点(1,0)G .小结:①这道题是证明的圆锥曲线的光学性质,先猜想直线PN 经过另一个焦点G(1,0),然后再给予证明;②本题虽然计算量很大,但有了猜想的导向,运算方向清晰,中间过程可以猜想性的表述.二、先局部,后整体,有序地运算:“由局部→整体的重组” 小学解应用题的方法“先列分歩式,再列综合式”,是数学解题的基本要求.数学思维的有序性体现为解题的顺序性.“先解决一个子问题,再解决一个子问题,….当把所有的子问题完成,一个综合性的难题得到了解决”.数学顺序非常重要,“设问语句干扰性”的题目,曾经使我们吃亏不小.究其原因,是选择题设条件的顺序不当造成的.“数学是模式与顺序的科学”,在处理复杂的问题时,更应遵守这条原则.从功利性目标考虑,每一个子问题的解决,都是得分哇!解析几何中的数学顺序,表现为“由局部→整体的重组”,“整体消参”.而“对称运算”与“对偶运算”是强力支撑.例5.(08、武汉模拟)过双曲线22x m -2y =2m 的右顶点A ,作两条斜率分别为1k 、2k 的直线AM 、AN ,交双曲线于M 、N .其中1k ·2k =-2m ,1k +2k 0≠,且1k >2k ,求直线MN 的斜率为定值,并求这个定值.解:【分析:题设条件是1k ·2k =-2m ,提示了解题顺序.先局部地分别求出1k 、2k ,然后重组为1k ·2k =-2m .可以预定:一定能消除参数2m 】设过右顶点A (1,0)的直线方程:)1(-=x k y ,由方程组:⎩⎨⎧-==-)1(2222x k y m y x m ⇒ 0)(2)(22222=+-+-m k kx x k m ⇒ 1x ·2x =-2222k m k m -+.由1x =1(?)⇒2x =-2222km k m -+⇒ M x =-212212k m k m -+⇒N x =-222222k m k m -+【注:用的是“对偶”运算】. 又2m =-1k ·2k ,代入上式:M x =-21212121k k k k k k ---=2121k k k k +-,Nx =1212k k k k +-. 所以M y =)1(1-M x k =-2121k k k k +,【注:用的是“由局部→整体的重组”下的“整体消参”】由对称性:N y =-2112k k k k +⇒M y =N y ⇒MN ∥x 轴,得直线MN 的斜率k 0=.小结:①本题是“对偶运算”的经典题目,反复“复制”运算结果,节约了大量的时间;②在“对偶运算”的帮助下,“代点、代入”与“由局部→整体的重组”有效合成为一体;③本题可以先取2m =4,1k =1,2k =-4,求出直线MN 的斜率k 后,再有目标地运算.三、“代点配凑、代入消参”的运算定式“代点配凑、代入消参”的运算定式是非常重要的运算.“点差法”,本质上是这种定式的先期运用.反之:“代点配凑、代入消参”的定式,是“点差法”运算的深化.同时,“代点配凑、代入消参”的运算定式,也是“先局部,后整体,有序地运算”的深化.复杂一点的问题,其题型特征是:①曲线上有两个动点;②于是很容易误导 “直线与曲线相交于两点”运算模式;③一旦用上式,得到的是无效运算. 先看下面的一道“定值”形式的题,做完后再小结,期望得到解题定式.例6.(09、宣武)已知Q P 、是椭圆T :2x +22y 1=上两个不同的点,满足2||OP +2||OQ =23,求证:|OP K ·OQ K |是定值,并求这个定值.解:设)y (11,x P 、)(22y x Q ,⇒ (21x +21y )+(22x +22y )=23; ①代点:21x +212y 1=,22x +222y 1=②配凑:[2121x +21(21x +212y )] +[2122x +21(22x +222y )]=23;(2121x +21)+(2122x +21)=23⇒21x +22x =1.③代入消参:OP K (·2)OQ K =22121)(x x y y =22212221x x y y =22212221)1(21)1(21x x x x -⨯-= 222122212221)(141x x x x x x ++-⨯=222122211141x x x x +-⨯=41⇒|OP K ·OQ K |41==定值. 小结:“代点配凑、代入消参”的解题定式:①代点:因为)(11y x A ,、)(22y x B ,在曲线0)(=y x F ,上⇒0)(11=y x F ,,0)(22=y x F ,;【21x +212y 1=,22x +222y 1=】 ②配凑:按照求解目标,两式相加或相减,得到关于1x 、2x 、1y 、2y 的整体关系式;【(21x +21y )+(22x +22y )=23】 把上述关系式,整合为含有)(11y x F ,、 )(22y x F ,的式子,经过配凑得到一个新的关系式0)(2211=y x y x f ,,,;【21x +22x =1】③代入消元:把配凑得到的结果,代入求解目标,继续运算.【OP K (·2)OQ K =22121)(x x y y =22212221xx y y =22212221)1(21)1(21x x x x -⨯-=41】(是“点差法”运算的复制) 小结:①“代点配凑、代入消参”的解题定式,在求定点定值和轨迹方程时常常用到.同时还要注意:用“特殊”探求处理定点、定值、定形问题,仅仅是一种方法,并不是所有的问题都必须采用,不要构成错误的“思维定势”;②“代点配凑、代入消参”的解题定式是“点差法”运算的深化,所以求解时,可以按照“点差法”的模式,“先局部,后整体,有序地运算”;③“代点配凑、代入消参”的解题定式,仅仅是比“点差法”的运算多了一个“消参”环节,从而得到常数;【注:还有另外一种形式上的“代点配凑、代入消参”】例7.(09、全国1)过定点)(n m P ,作直线L 与椭圆C :22a x +22b y 1=相交于不同的两点B A 、,点Q 在线段AB 上,且||·||||·||PB AQ QB AP =.求证:点Q 总在定直线22b nya mx +1=上.证明:记λ=||||PB AP =||||QB AQ ,则λ>0,且λ≠1.由B Q A P 、、、四点共线⇒=-λ,=λ. 设点)(y x Q ,,)(11y x A ,,)(22y x B ,⇒①代点:221a x +221b y 1=,222a x +222by ;②配凑:=-λ,=λ⇒m =λλ--121x x ,n =λλ--121y y ,x =λλ++121x x ,y =λλ++121y y ⇒2a mx =)1(2222221λλ--a x x ,2b ny=)1(2222221λλ--b y y ; ③代入消参:22b ny a mx +=)1(2222221λλ--a x x +)1(2222221λλ--b y y=211λ-·[(221a x +221b y )-2λ(222a x +222by )]=211λ-·(1-2λ)=1, 所以:点Q 的轨迹方程为:22bnya mx +=1. 小结:①把线段的比,转化为向量关系.然后直接采用“定式”运算.这里没有使用“基本特征式”参与运算; ②根据求解目标:“22bnya mx +”, 代入、配凑、消元,一气呵成. 四、“代点配凑、代入消参”与求轨迹方程高考试卷中的解析几何题,是干扰学生得高分的“瓶颈”.两种情况: ①无法取得适当的运算途径,往往是只做第一问,得到4~5分,心安理得;②期望突破第二问,但运算途径不合理,越算越复杂,耽误时间,耗时耗精力.运气好,得到2~3分. 1.“代入法”求轨迹方程、曲线过定点中的“整体消元”例8.(09、江西)已知点),(001y x P 为双曲线182222=-by b x 上任一点,F 2为双曲线的右焦点.过1P 作右准线的垂线,垂足为A .连接A F 2并延长交y 轴于2P .(1) 求线段21P P 的中点P 的轨迹的方程;(2) 设轨迹E 与x 轴交于D B 、两点,在E 上任取一点)(11y x Q ,,直 线QB 、QD 分别交y 轴于N M 、两点.求证:以MN 为直径的圆过两定点. 解:(1)【分析:点P 的运动,是因为已知曲线上的已知运点1P 生成的,标准的“相关点法”求轨迹问题】由已知得)38()03(02y bA b F ,,,.则直线A F 2的方程为:03(3)y y x b b =--,令0x =得09y y =,即20(0,9)P y .由)(y x P ,是21P P 的中点⇒00002952x x y y y y⎧=⎪⎪⎨+⎪==⎪⎩⇒0025x xy y =⎧⎪⎨=⎪⎩代入22002218x y b b -=⇒22221225x y b b -=为轨迹E 的方程. (2) 【设轨迹E 与x 轴交于D B 、两点,在E 上任取一点)(11y x Q ,,直 线QB 、QD 分别交y 轴于N M 、两点.求证:以MN 为直径的圆过两定点】解:在22221225x y b b-=中令0y =得222x b =.设)02(,b B -,)02(,b D ⇒直线QB 的方程为:)2(211b x bx y y ++=,直线QD 的方程为:)2(211b x b x y y --=.⇒)220(11b x by M +,),N (0,b x by 2211--) ⇒以MN 为直径的圆的方程为: y x (2+-bx by 2211+)(y +0)2211=-bx by .【注:圆的直径式】令0y =⇒222122122b y x x b =-.【注:为什么想到0y =?】而)(11y x Q ,在22221225x y b b -=上⇒222112225x b y -=⇒b x 5±=⇒MN 为直径的圆过两定点(-5b ,0)、(5b ,0).【注:“代入消参”】小结:(1)“相关点法”(也叫“代入法”)求轨迹(注:求轨迹方程与求轨迹的关联与递进关系)的条件特征:①两个已知:已知的动点)(00y x P ,在已知的曲线0)(=y x F ,上运动; ②“真动点”)(y x P ,在已知的动点)(00y x P ,的“带动”、“帮助”下运动.(2)“相关点法”求轨迹的始终如一地“围绕求出⎩⎨⎧==)()(00y x g y y x f x ,,”,然后整体代入消除参数;(3)第二问“求证:MN 为直径的圆过定点”的难点:① “以MN 为直径的圆的方程:y x (2+-b x by 2211+)(y +0)2211=-b x by ” 求出后,为什么“令0y =”?【“整体代入消元”的思维定式】;②在得到“以MN 为直径的圆”与x 的交点的横坐标“222122122b y x x b =-”后,为什么会想到“而)(11y x Q ,在22221225x y b b -=上⇒222112225x b y -=”的运算歩骤?【“整体代入消元”的思维定式】.2.“参数法”求轨迹方程中的“整体消元”例9.(08、山东文22)已知曲线1C :||||1(0)x y a b a b+=>>所围成的封闭图形的面积为曲线1C,记2C 为以曲线1C 与坐标轴的交点为顶点的椭圆.(1)求椭圆2C 的标准方程【几何量】;(2)设AB 是过椭圆2C 中心的任意弦,L 是线段AB 的垂直平分线,M 是L 上异于椭圆中心的点.①若|MO|=λ|OA|(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程;【代点法、k 参数】②若M 是L 与椭圆2C 的交点,求△AMB 的面积的最小值.解:(1)由题意得2ab ⎧=⎪=⇒4522==b a , ⇒椭圆方程:2254x y +=1. (2)若AB 所在的斜率存在且不为零,设AB 所在直线方程为y =kx (k≠0),A(A A y x ,). ①由22154,x y y kx ⎧+=⎪⎨⎪=⎩⇒2222220204545A A k x y k k ==++, ⇒2222220(1)||45A Ak OA x y k +=+=+. 设M (x ,y),由|MO|=λ|OA|(λ≠0)⇒|MO|2=λ2|OA|2⇒2222220(1)45k x y k λ++=+. 由L 是AB 的垂直平分线,所以直线L 的方程为y =1x k -⇒k =x y-,代入上式:22222222222220(1)20()4545x x y y x y x y x yλλ+++==++⨯,由022≠+y x ⇒ 2225420x y λ+=.当k =0或不存时,上式仍然成立..综上所述,M 的轨迹方程为22245x y λ+=,(λ≠0). ②当k 存在且k ≠0时,2222220204545AA k x y k k ==++,⇒ |OA|2=222220(1)45A A k x y k ++=+.由221541x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩⇒ 2222220205454MM k x y k k ==++,⇒22220(1)||54k OM k +=+.⇒222222111120(1)20(1)4554k k OA OM k k +=+++++=209. 222119||||20OA OB OA OM≤+=⨯⇒||||OB OA ⨯≥940. ||||221OB OA S AMB ⨯⨯⨯=∆=||||OB OA ⨯≥940, 当且仅当4+5k 2=5+4k 2时,即k =±1时等号成立.当1400229AMB k S ∆==⨯=,; 当k不存在时,140429AMB S ∆==>. 综上所述,AMB ∆的面积的最小值为409. 小结:①椭圆的一个性质、极角、椭圆的参数方程的说明;②“22154x y y kx ⎧+=⎪⎨⎪=⎩⇒2222220204545A A k x y k k ==++,,2222220(1)||45A A k OA x y k +=+=+”是由局部→整体,为实施“整体消参”作准备;③不要忘记斜率为零和不存在的特殊情况.本节内容小结:这节内容的难度较高,有题型、有方法、有运算定式.归纳起来:1.“曲线过定点”、“定点、定值”问题,两种常用方法:①先用特殊点、特殊位置、特殊直线、极端位置、极限位置、特殊值、特殊图形,求出定点、定值.然后有目标地运算;②“与k 参数无关”问题的求解方法;2.先局部,后整体,有序地运算:“由局部→整体的重组”,是解题方法.熟练地运用,功能很大;3.“先局部,后整体,有序地运算,由局部→整体的重组”是“先列分歩式,再列综合式”的高级形式;4.由“点差法”、“局部→整体的重组”的解题思想,生成了“代点配凑、代入消参”的解题定式.运算过程比“点差法”多了“消参”.模式化为:①代点:因为)(11y x A ,、)(22y x B ,在曲线0)(=y x F ,上⇒0)(11=y x F ,,0)(22=y x F ,;②配凑:按照求解目标,两式相加或相减,得到关于1x 、2x 、1y 、2y 的整体关系式;把上述关系式,配凑为含有)(11y x F ,、 )(22y x F ,的式子,从而整体消除部分表达式,得到一个新的关系式0)(2211=y x y x f ,,,;③代入消参;6.“代点配凑、代入消参”的方法,主要运用于“定点、定值”、求轨迹方程两个方面,增加了“对称、对偶运算”、“代点配凑、代入消参”的方法;6.本节内容,还巩固了“代入法”求轨迹方程、“参数法”求轨迹方程问题.同时深化了求轨迹方程中的整体消元问题;。

圆锥曲线中的定点、定值、定线与探索性问题-专题突破

圆锥曲线中的定点、定值、定线与探索性问题-专题突破
交于 M,N 两点,M 在第二象限,直线 MA1 与 NA2 交于点 P.
证明:点 P 在定直线上.
解 (1)设双曲线 C 的方程为ax22-by22=1(a>0,b>0),由焦点坐标可知 c=2 5,
则由 e=ac= 5可得 a=2,b= c2-a2=4, 故 C 的方程为x42-1y62 =1.
所以 y1y2=-8,又yy2122==22xx12,, 所以 y21y22=4x1x2=64,
即 x1x2=16,则 k1k2=yx11·yx22=-168=-12.
目录 精做大题 1 2 3 4 5 6 7 8

②设直线 PQ 的方程为 x=ty+n(n≠0),P(x3,y3),Q(x4,y4),
因为 A(-2,0),则直线 AP:y=x1y+1 2(x+2),
令 x=0,解得 y=x12+y12,即 M0,x12+y12,
目录 精做大题 1 2 3 4 5 6 7 8

同理可得 N0,x22+y22,
则x12+y12+2 x22+y22=k(x1x+1+2)2 +3+k(x2x+2+2)2 +3
解 (1)易知直线 2x+4y-1=0 与 x 轴交于点12,0, 即焦点坐标为12,0,所以p2=12,p=1,则抛物线 C 的标准方程为 y2=2x.
(2)证明:①设直线 MN 的方程为 x=my+4,M(x1,y1),N(x2,y2),
联立方程组yx2==m2yx+,4,得 y2-2my-8=0,Δ=4m2+32>0,
目录 精做大题 1 2 3 4 5 6 7 8

二、模拟大题 3.(2024·四川巴蜀中学高三适应性月考(二))如图 所示,点 F1,A 分别为椭圆 E:ax22+by22=1(a>b>0)的 左焦点和右顶点,点 F 为抛物线 C:y2=16x 的焦点, 且|OF|=2|OA|=4|OF1|(O 为坐标原点). (1)求椭圆 E 的方程; (2)过点 F1 作直线 l 交椭圆 E 于 B,D 两点,连接 AB,AD 并延长交抛物线的准线于点 M,N,求证:∠MF1N 为定值.

圆锥曲线中的定点定值问题(教师版)

圆锥曲线中的定点定值问题(教师版)

第四讲圆锥曲线中的定点定值问题一、直线恒过定点问题例1.已知动点E在直线/:),= 一2上,过点E分别作曲线C:x2=4y的切线切点为A、B,求证:直线恒过一定点,并求出该定点的坐标;解:设2), A(X],— ), B(X7,—)>■/y = y =—x4 4 4 ' 2v2 i过点A的抛物线切线方程为y-^L = ±x l(x-x l),・.・切线过瓦点2X2 1-2- — = —%!(« -玉),整理得:X,2一2ax l -8 = 02同理可得:x? —2CIX2—8 = 0二X] ,了2是方程、一2ax - 8 = 0的两根X] + x2 = 2a, x x -x2 = -8可得从中点加3),又= = 4 = g2 x x - x2x} -x2 4 22直线AB的方程+ 2) = -(x-t/), B|Jy = -A + 2.\ AB过定点(0, 2).2 2 2Y Y例2、己知点P(XQo)是椭圆E: — + y2=\上任意一点,直线/的方程为于+ %),= 1, 直线/。

过P2 2点与直线/垂直,点M (・1, 0)关于直线/。

的对称点为N,直线PN恒过一定点G,求点G的坐标。

解:直线%的方程为工0()‘一光)=2〉0(工一工0),即2炉一玉丁一工0),0 =。

设M(-1,0)关于直线的对称点N的坐标为N(m, 〃)〃 _易奸2% ,解得, - 〃? _ ] W c2X(/ + 3吒-—4A*O— 4 〃? = ----- —: -------玉)- 4〃 _ 2工『+4吒3 _4xj _8x°2%(4-虹)2%・ --------- - 与)‘。

=0直线PN的斜率为& = 4k =对+4凡日2灯顷'。

-X 〃?_工0 2无(一羽_3叫「+4)从而直线PN的方程为:),一% = 土+切+也小_七) ,八2%(-虹-3用+4)2乂)(-虹_3右+4)即工= y+ix()4 + 4工。

圆锥曲线中的定点、定值问题的结论及多种证明方法 高考数学

圆锥曲线中的定点、定值问题的结论及多种证明方法 高考数学
得: AB的方程为化为: 即 由得 即当时,即直线AB恒过定点( ).
七、圆锥曲线中的平行弦的问题
在前面一、推论:“若圆锥曲线为圆,直线AB交C于A、B两点,的斜率分别为,当时,为定值,”给出了平移图像法、一般法、参数方程法等多种证明方法。现在我们对一、推论
31.采用另一种思维方式探究如下:设点是圆上的一定点,过点P作x轴的
2. 当 时, 【1】化为: 。即 时,为定值,,
3.当)时,,得, ,,即 ,
,即 。 得:
; 【2】
即: 或 (因为直线AB不过点P,舍去)AB的方程为化为: 即 由得 即直线AB恒过定点( )。
3. 当时, 由 【2】化为: , , , 即:。(因为直线AB不过点P,舍去)或;,即 为定值.
1.当时,, , ,
,即: , ,
化为:, (因为直线AB不过点P,舍去)或。, ; 【6】AB的方程为化为: 即 由得 即当时,直线AB恒过定点( )。
2.当 时, 【6】化为:; 即当时,为定值,。
3.当时, 即, ,,即 ,
, ; 【7】 ,化为:, (因为直线AB不过点P,舍去)或。由,
2.当时,直线AB恒过定点(
3.当时,为定值
4.当时,即直线AB恒过定点( ). 及其证法已知点(其中 是圆锥曲线上的一个定点,过点作直线分别与圆锥曲线C相交于点A、 则必定存在以下结论:
二、椭圆、双曲线、抛物线、圆中的定点、定值问题的统一结论
1.当时,为定值,
2.当时,直线AB恒过定点( )
圆锥曲线中的定点、定值问题的
结论及多种证明方法
主讲人:某某某老师
某某学校
山东东营 徐新华 大家都知道,圆锥曲线的很多重要结论,特别是圆锥曲线的定点、定值问题并没有列入高中数学教材,但它们一直确是高考数学试题中考察的重要内容。本文件中,从多个角度、采用多种方法对圆锥曲线的定点、定值问题的结论作出了证明,并力求对证明过程给予最大化的展示。需要说明的是,个别证法有相当大的难度,其证明过程也极为复杂,因此叙述也就比较详细具体。

圆锥曲线解答题中的定点和定值问题的解题策略(解析版)

圆锥曲线解答题中的定点和定值问题的解题策略(解析版)

圆锥曲线解答题中的定点和定值问题的解题策略在圆锥曲线中有一类曲线,当参数取不同值时,曲线本身性质不变或形态发生变化时,其某些共同的性质始终保持不变,我们把这类问题成为圆锥曲线的定值问题.圆锥曲线中的定值问题是近几年高考的热点题型,解题过程中应注重解题策略,善于在动点的“变”中寻求定值的“不变”性.题型一:定值问题解答圆锥曲线定值问题的策略:1、把相关几何量用曲线系的参变量表示,再证明结论与参数无关.求解这类问题的基本方法是“方程铺路、参数搭桥”,解题的关键是对问题进行综合分析,挖掘题目中的隐含条件,恰当引参,巧妙化归.2、把相关几何量的变元特殊化,在特例中求出几何量的定值,再证明结论与特定状态无关,即特殊到一般的思想.1、两点间的距离为定值例1:(2021·广东中山市高三期末)已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b +=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x y a b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为2,且经过点2A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.【答案】(1)2212x y +=;(2.【详解】(1)由题意知2222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=,联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫- ⎪--⎝⎭,所以PQ =====为定值. 解题思路:设动点()00,P x y ,由题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可.2、求某一代数式为定值例2:(2021·全国高三模拟)已知双曲线()2222:10,0x y C a b a b-=>>的左顶点为A ,右焦点为F ,离心率2e =,焦距为4. (1)求双曲线C 的方程;(2)设M 是双曲线C 上任意一点,且M 在第一象限,直线MA 与MF 的倾斜角分别为1α,2α,求122αα+的值.【答案】(1)2213y x -=;(2)π. 【详解】(1)由242c c a=⎧⎪⎨=⎪⎩,得12a c =⎧⎨=⎩,所以2223b c a =-=,所以双曲线C 的方程为2213y x -=.(2)由(1)知双曲线C 的方程为2213y x -=,所以左顶点()1,0A -,右焦点()2,0F .设()()0000,0,0M x y x y >>,则22013y x -=.当02x =时,03y =,此时1MA k =,1π4α=,2π2α=, 所以122παα+=;当02x ≠,010tan 1MA y k x α==+,020tan 2MF yk x α==-.因为()220031y x =-,所以()()()()()00000001222220000000221211tan 22113111y x y x y x y x x y x x y x α+++-====-+-+--⎛⎫- ⎪+⎝⎭,又由点M 在第一象限,易知1π0,3α⎛⎫∈ ⎪⎝⎭,()20,πα∈,所以122παα+=. 综上,122αα+的值为π.解题思路:利用点在双曲线上,满足22013y x -=,利用整体代换思想求出1tan 2α和2tan α相反.例3:(2021·安徽安庆市高三一模(理))已知椭圆2222:1(0)x y C a b a b+=>>,过椭圆左焦点F 的直线0x -+=与椭圆C 在第一象限交于点M ,三角形MFO(1)求椭圆C 的标准方程;(2)过点M 作直线l 垂直于x 轴,直线MA 、MB 交椭圆分别于A 、B 两点,且两直线关于直线l 对称,求证∶直线AB 的斜率为定值.【答案】(1)2214x y +=;(2)证明见解析.【详解】(1)直线0x -+=过左焦点F ,所以()F ,c =又由124OMF M S y ∆==可知1=2M y从而椭圆经过点12M ⎫⎪⎭由椭圆定义知1242a =+=,即2a = 故椭圆的方程为22:14x C y +=.(2)由条件知,直线MA MB 、斜率存在,且两直线斜率互为相反数,设直线(12MA y k x -=:交椭圆于点()11,A x y ,直线(12MB y k x -=--:交椭圆于点()22,B x y ,由(221244y k x x y ⎧-=⎪⎨⎪+=⎩得()()22224141230k x k x k +-++--=1=1x =,112y =+故1)2A +,同理可得221)2B +,k ===即证直线AB. 解题思路:将直线(12MA y k x -=:与椭圆方程联立求出交点221)2A +的坐标,再将A 中的k 用k -替换,即可求出B 点坐标,,再利用斜率公式,化简,即可.例4.(2021·河南高三月考(理))已知点()2,0A -,()2,0B ,动点(),S x y 满足直线AS 与BS 的斜率之积为34-,记动点S 的轨迹为曲线C .(1)求曲线C 的方程,并说明曲线C 是什么样的曲线;(2)设M ,N 是曲线C 上的两个动点,直线AM 与NB 交于点P ,90MAN ∠=︒. ①求证:点P 在定直线上;②求证:直线NB 与直线MB 的斜率之积为定值.【答案】(1)()221243x y x +=≠±,曲线C 为中心在坐标原点,焦点在x 轴上的椭圆,不含A ,B 两点;(2)①证明见解析;②证明见解析. 【详解】(1)解:由题意,得()32224y y x x x ⋅=-≠±+-, 化简,得()221243x y x +=≠±,所以曲线C 为中心在坐标原点,焦点在x 轴上的椭圆,不含A ,B 两点. (2)证明:①由题设知,直线MA ,NB 的斜率存在且均不为0. 设直线AM 的方程为()20x ty t =-≠,由AM AN ⊥,可知直线NA 的斜率为NA k t =-,方程为12x y t=--.由2212,{3412,x y t x y =--+=得()2243120t y ty ++=, 解得21243N ty t =-+,则2221126824343N t t x t t t -⎛⎫=-⋅--= ⎪++⎝⎭,即2226812,4343t t N t t ⎛⎫-- ⎪++⎝⎭. 直线NB 的斜率为222120343684243NBtt k t tt --+==--+, 则直线BN 的方程为()324y x t =-,将()324y x t=-代入2x ty =-,解得14x =-, 故点P 在直线14x =-上.②由(1),得34NA NB k k ⋅=-,34MA MB k k ⋅=-,所以3394416NA NB MA MB k k k k ⎛⎫⎛⎫⋅⋅⋅=-⨯-= ⎪ ⎪⎝⎭⎝⎭.结合1NA MA k k ⋅=-,得916MB NB k k ⋅=-为定值.即直线NB 与直线MB 的斜率之积为定值.解题思路:①设直线AM 的方程,由AM AN ⊥,可得直线AN 方程,与椭圆联立可求点N 坐标,进而可求得直线BN 方程,与AM 联立即可得证点P 在定直线上;②由(1)得34NA NB k k ⋅=-,34MA MB k k ⋅=-,又AM AN ⊥,进而可得直线NB与直线MB 的斜率之积.例5、(2021·江苏南通市高三期末)已知椭圆C :()222210x y a b a b+=>>的离心率为12,且过点31,2P ⎛⎫ ⎪⎝⎭. (1)求椭圆C 的方程;(2)已知A ,B 是椭圆C 上的两点,且直线OA ,OB 的斜率之积为34-,点M为线段OA 的中点,连接BM 并延长交椭圆C 于点N ,求证:OMBAMNS S △△为定值.【答案】(1)22143x y +=;(2)53. 【详解】(1)因为椭圆的离心率为12,且过点31,2P ⎛⎫ ⎪⎝⎭, 所以22911,214c a a b +==,又222a b c =+,解得224,3a b ==,所以椭圆C 的方程为22143x y +=; (2)设()()()112233,,,,,A x y B x y N x y ,因为点M 为线段OA 的中点,所以11,22x y M ⎛⎫⎪⎝⎭,因为B ,M ,N 三点共线,所以BN BM λ=, 所以()()3123121,122x x x y y y λλλλ=+-=+-,又因为A ,B 点在椭圆上,所以22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 又因为直线OA ,OB 的斜率之积为34-,所以1212340x x y y +=, 因为点N 在椭圆上,所以2233143x y +=,即()()()()()12122222221122341341482261x y x y x x y y λλλλ++-+-+=+,所以()22114λλ+-=,解得85λ=,所以85BN BM =,则53BM MN =,所以152132BOMB B AMNN N OM d BM Sd Sd MN AM d ⋅⋅====⋅⋅为定值.解题思路:设()()()112233,,,,,A x y B x y N x y ,根据M 为线段OA 的中点和B ,M ,N 三点共线,由BN BM λ=,表示点N 的坐标,再根据A ,B ,N 在椭圆上,结合直线OA ,OB 的斜率之积为34-,求得λ,从而得到BM 与MN 的比值,然后由1212BOMB B AMNN N OM d BM S dSd MN AM d ⋅⋅===⋅⋅求解. 例6、(2021·山东泰安市高三期末)已知椭圆)(2222:10x y C a b a b+=>>的左顶点为)(2,0A -,点31,2⎛⎫-⎪ ⎭⎝在椭圆C 上.(1)求椭圆C 的方程;(2)过橢圆C 的右焦点F 作斜率为)(0k k ≠的直线l ,交椭圆C 于M ,N 两点,直线AM ,AN 分别与直线2b x c=交于点P ,Q ,则FP FQ ⋅是否为定值?请说明理由.【答案】(1)22143x y +=;(2)是定值,94-. 【详解】(1)∵2a =,点31,2⎛⎫-⎪ ⎭⎝在椭圆C 上,∵219144b +=,∵23b =,∵椭圆C 的方程为:22143x y +=.(2)是定值94-,理由如下:设)(11,M x y ,)(22,N x y ,直线l 的方程为)()(10y k x k =-≠,由)(221143y k x x y ⎧=-⎪⎨+=⎪⎩,整理得)(22224384120k x k x k +-+-=,∵2122843k x x k +=+,212241243k x x k -=+,设)(3,P P y ,)(3,Q Q y ,则11322P y y x =++,∵)(111151522P k x y y x x -==++, 同理可得)(22512Q k x y x -=+,∵)(11512,2k x FP x ⎛⎫- =⎪⎪ +⎭⎝,)(22512,2k x FQ x ⎛⎫- =⎪⎪ +⎭⎝, ∵)()()()()()(212121221212122511144252224k x x x x x x FP FQ kx x x x x x ---++⋅=+=++++++222222222412819434342541216444343k k k k k k k k k --+++=+=--++++,∵FP FQ ⋅为定值94-.解题思路:设直线l 的方程,与椭圆方程联立,设)(3,P P y ,)(3,Q Q y ,由三点共线可得P y ,Q y ,结合韦达定理坐标表示FP FQ ⋅可得.3、求某一个量为定值例7、(2021·江苏盐城市伍佑中学高三期末)已知椭圆2222:1(0)x y C a b a b +=>>离心率为23,点A ,B ,D ,E 分别是C 的左,右,上,下顶点,且四边形ADBE 的面积为(1)求椭圆C 的标准方程;(2)已知F 是C 的右焦点,过F 的直线交椭圆C 于P ,Q 两点,记直线AP ,BQ的交点为T ,求证:点T 横坐标为定值.【答案】(1)22195x y +=;(2)T 横坐标为定值92,证明见解析. 【详解】(1)设椭圆C 的半焦距长为c,根据题意222231222c a a b c a b⎧=⎪⎪⎪⋅⋅=⎨⎪=-⎪⎪⎩,解得32a b c =⎧⎪=⎨⎪=⎩ 故C 的标准方程为22195x y +=. (2)由(1)知()30A -,,()3,0B ,()2,0F , 设00,,()T x y ,11(,)P x y ,()22,Q x y ,由010133TA PA y yk k x x =⇒=++'①, 020233TB QB y y k k x x =⇒=--,② ①②两式相除得0120123333x y x x x y --=⋅++, 又2211195x y +=,故2211195x y -=-,所以2111(3)(3)95x x y -+=-,故11113539y x x y -=-⋅+.所以0120123333x y x x x y --=⋅=++1212(3)(3)59x x y y ---③ 由题意知直线PQ 不平行于x 轴,由于直线PQ 经过F 点, 所以设直线PQ 的方程为2x my =+,(直线PQ 的方程为2x my =+,可避免讨论直线PQ 的斜率是否存在,简化计算,提高正确率)代入22195x y +=整理,得22(902)5250m y my ++-=, 把12212220592559m y y m y y m ⎧+=⎪⎪+⎨⎪=⎪+⎩代入③,所以0120123(3)(3)539x x x x y y ---=-⋅+1212(1)(1)59my my y y --=-⋅2121212()159m y y m y y y y -++=-⋅所以0033x x -+22222520()()15595925959mm m m m m ---+++=-⋅-+15=解得092x =. 所以点T 横坐标为定值92. 解题思路:设00,,()T x y ,11(,)P x y ,()22,Q x y ,根据TA PA k k =,TB QB k k =可得0126123333x y x x x y --=⋅++,根据11(,)P x y 在椭圆C 上,代入方程化简整理可得0120123333x y x x x y --=⋅=++1212(3)(3)59x x y y ---,设直线PQ 的方程为2x my =+,与椭圆C 联立,得到关于y 的一元二次方程,根据韦达定理,可得1212,y y y y +⋅的表达式,代入上式即可.例8、(2021·湖北武汉市高三月考)已知椭圆C :()222210x y a b a b +=>>的左右顶点分别为A ,B ,过椭圆内点2,03D ⎛⎫⎪⎝⎭且不与x 轴重合的动直线交椭圆C 于P ,Q 两点,当直线PQ 与x 轴垂直时,43PD BD ==. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设直线AP ,AQ 和直线l :x t =分别交于点M ,N ,若MD ND ⊥恒成立,求t 的值.【答案】(Ⅰ)22142x y +=;(Ⅱ)29t =-或103t =.【详解】(Ⅰ)由43BD =,得24233a =+=,故C 的方程为22214x y b+=,此时24,33P ⎛⎫ ⎪⎝⎭.代入方程2116199b +=,解得22b =,故C 的标准方程为22142x y +=. (Ⅱ)设直线PQ 方程为:23x my =+,与椭圆方程联立.得()224322039m m y y ++-=.设()11,P x y 、()22,Q x y ,则()()1221224323292m y y m y y m -⎧+=⎪+⎪⎨-⎪=⎪+⎩.①此时直线AP 方程为11(2)2y yxx ,与x t =联立.得点11(2),2t y M t x ⎛⎫+ ⎪+⎝⎭,同理,点22(2),2t y N t x ⎛⎫+ ⎪+⎝⎭.由MD ND ⊥,1MD ND k k ⋅=-.即()()1212(2)(2)1222233t y t y t x t x ++⋅=-⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭. 所以221212288(2)0333t y y t my my ⎛⎫⎛⎫⎛⎫++-++= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.即()2221212122864(2)0339m t y y t m y y y y ⎛⎫⎡⎤++-+++= ⎪⎢⎥⎝⎭⎣⎦. 将①代入得:()()()222222232(2)2323264039929292t m m t m m m ⎡⎤-+-⎛⎫⎢⎥+--+= ⎪+++⎝⎭⎢⎥⎣⎦. 化简得:()22222232(2)323264203t t m m m ⎛⎫⎡⎤-++---++= ⎪⎣⎦⎝⎭. 即222(2)403t t ⎛⎫+--= ⎪⎝⎭.2223t t ⎛⎫+=±- ⎪⎝⎭.解得29t =-或103t =.解题思路:设直线PQ 方程为:23x my =+,与椭圆方程联立,结合韦达定理得1212,y y y y +,再联立AP 方程得M 同理得N 坐标,结合MD ND ⊥恒成立得1MD ND k k ⋅=-,化简计算可得参数t 值.例9、(2021·陕西榆林市高三一模(理))已知椭圆222:1(1)Γ+=>y x a a与抛物线2:2(0)C x py p =>有相同的焦点F ,抛物线C 的准线交椭圆Γ于A ,B 两点,且1AB =.(1)求椭圆Γ与抛物线C 的方程;(2)O 为坐标原点,若P 为椭圆Γ上任意一点,以P 为圆心,OP 为半径的圆P 与椭圆Γ的焦点F 为圆心,F 交于M ,N 两点,求证:MN 为定值.【答案】(1)椭圆Γ的方程为:2214y x +=,抛物线C的方程为:2x =;(2)证明见解析. 【详解】(1)椭圆222:1(1)Γ+=>y x a a可得焦点(,抛物线2:2(0)C x py p =>的焦点为0,2p ⎛⎫ ⎪⎝⎭2p =①,由22221p y y x a ⎧=-⎪⎪⎨⎪+=⎪⎩可得22214p x a +=,解得x =,所以1AB ==②,由①②可得:24a =,p =所以椭圆Γ的方程为:2214y x +=,抛物线C的方程为:2x =;(2)设(,)P m n ,则2214+=n m ,圆P 的方程为:2222()()-+-=+x m y n m n ,圆F的方程为:22(5+-=x y ,所以直线MN的方程为:(10+--=mx n y , 设点F 到直线MN 的距离为d ,则2d ====.||2MN ==. 所以MN 为定值.解题思路:设(,)P m n ,则2214+=n m ,写出圆P 和圆F 的方程,两个圆的方程相减可得直线MN 的方程,计算点F 到直线MN 的距离为d ,再利用||MN =.题型二、证明动直线过定点或动点在定直线上的问题解答圆锥曲线的定点问题的策略:1、参数法:参数解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中核心变量(通常为变量k );②利用条件找到k 过定点的曲线0(),F x y =之间的关系,得到关于k 与,x y 的等式,再研究变化量与参数何时没有关系,得出定点的坐标;2、由特殊到一般发:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.1、直线过定点问题例10、(2020·江西吉安市高三其他模拟(理))已知椭圆()2222:10x y C a b a b +=>>经过点12P ⎫⎪⎭,且离心率e =(1)求椭圆C 的方程;(2)已知斜率存在的直线l 与椭圆相交于A ,B 两点,点Q ⎫⎪⎪⎝⎭总满足AQO BQO ∠=∠,证明:直线l 过定点.【答案】(1)2214x y +=;(2)证明见解析.【详解】(1)因为椭圆()2222:10x y C a b a b +=>>的离心率e =所以22221b e a =-=⎝⎭,即224a b =, 又椭圆()2222:10x y C a b a b+=>>经过点12P ⎫⎪⎭,代入椭圆方程可得223114a b +=, 联立方程组可得222231144a b a b⎧+=⎪⎨⎪=⎩,解得24a =,21b =. 所以椭圆C 的方程为2214x y +=.(2)设直线l 的方程为y kx m =+,()11,A x y ,()22,B x y ,联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 得()222148440k x kmx m +++-=,()2216410k m ∆=-+>,即2241m k <+, 122814km x x k -+=+,21224414m x x k -=+,因为AQO BQO ∠=∠,所以0AQ BQ k k +=,AQ BQ k k +===,即()()1221kx m x kx m x ⎛⎛+++ ⎝⎭⎝⎭()121220kx x m x x ⎛⎫=+-+= ⎪ ⎪⎝⎭得()()22244814033k m km m m k ⎛⎫----+= ⎪ ⎪⎝⎭,化简得m =,直线l 的方程为(y k x =-,所以,直线l 恒过定点).解题思路: 设直线l 的方程为y kx m =+,()11,A x y ,()22,B x y ,将直线方程与椭圆方程联立,写出韦达定理,又因为AQO BQO ∠=∠,所以0AQ BQ k k +=,将韦达定理代入得出答案.例11、(2021·湖北襄阳市高三期末)已知A ,B 分别为椭圆()222:11x C y a a+=>的左、右顶点,P 为C 的上顶点,8AP PB ⋅=. (1)求椭圆C 的方程;(2)过点()6,0作关于x 轴对称的两条不同直线1l ,2l 分别交椭圆于()11,M x y 与()22,N x y ,且12x x ≠,证明:直线MN 过定点,并求出该定点坐标.【答案】(1)2219x y +=;(2)证明见解析,定点3,02⎛⎫ ⎪⎝⎭.【详解】解:(1)由题意得(),0A a -,(),0B a ,()0,1P ,则(),1AP a =,(),1PB a =-.由8AP PB ⋅=,得218a -=,即3a =所以椭圆C 的方程为2219x y +=(2)由题易知:直线MN 的斜率存在,且斜率不为零,设直线MN 方程为x my n =+,()0m ≠,联立22990x my nx y =+⎧⎨+-=⎩, 得()2229290m y mny n +++-=,由0>得2290m n -+>,∴12229mn y y m -+=+,212299n y y m -=+,因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,∴1212066y y x x +=--,整理得()()1212260my y n y y +-+=, 即()()2222926099m n mn n m m ---=++,解得:32n =直线MN 方程为:32x my =+,所以直线MN 过定点3,02⎛⎫⎪⎝⎭.解题思路:设直线MN 方程并联立椭圆方程,结合韦达定理求得12,y y +12y y ,又因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,所以1212066y yx x +=--,通过计算化简即可求得定点.例12、(2021·山东德州市高三期末)已知点1F 、2F 分别是椭圆C 的左、右焦点,离心率为2,点P 是以坐标原点O 为圆心的单位圆上的一点,且120PF PF ⋅=. (1)求椭圆C 的标准方程;(2)设斜率为k 的直线l (不过焦点)交椭圆于M ,N 两点,若x 轴上任意一点到直线1MF 与1NF 的距离均相等,求证:直线l 恒过定点,并求出该定点的坐标.【答案】(1)22121x y +=;(2)证明见解析,(-2,0). 【详解】(1)设椭圆的标准方程为()22221,,x y P x y a b+=由题意可得2222221(,)(,)0c a x y x c y x c y b c a ⎧=⎪⎪⎪+=⎨⎪-⋅+=⎪+=⎪⎩解得:222211a b c ⎧=⎪=⎨⎪=⎩即椭圆C 的标准方程:22121x y +=.(2)设直线l :1122,(,),(,)y kx m M x y N x y =+则1111221122,1111MF NF y kx m y kx mk k x x x x ++====++++ 有22121x y y kx m ⎧+=⎪⎨⎪=+⎩,消去 y 得:222(12)4220k x mkx m +++-=,所以2221222122168(1)(12)04122212k m m k mk x x k m x x k ⎧⎪∆=--+>⎪-⎪+=⎨+⎪⎪-=⎪+⎩因为x 轴上任意一点到直线1MF 与1NF 的距离均相等, 所以x 轴为直线1MF 与1NF 的角平分线,所以111212011MF NF kx m kx mk k x x +++=+=++,即 12122()()20kx x m k x x m ++++= 所以2222242()201212m mk km k m k k --+++=++ 整理化简得:2m k =即直线l :2(2)y kx m kx k k x =+=+=+ 故直线恒过定点(-2,0).解题思路:先用设而不求法表示出1212,x x x x +,然后分析得到110MF NF k k +=,代入,求出2m k =,即可证明直线过定点(-2,0)."设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.2、动点在定直线上的问题例13、(2021·山东威海市高三期末)已知椭圆()2222:10x y C a b a b+=>>的离心率为1,,2A B 分别是它的左、右顶点,F 是它的右焦点,过点F 作直线与C 交于,P Q (异于,A B )两点,当PQ x ⊥轴时,APQ ∆的面积为92.(1)求C 的标准方程;(2)设直线AP 与直线BQ 交于点M ,求证:点M 在定直线上.【答案】(1)22143x y +=;(2)证明见解析. 【详解】 解:(1)由题意知12c a =,所以2a c =,又222a b c =+,所以b =当PQ x ⊥轴时,APQ 的面积为92, 所以()212922b ac a +⋅= 解得21,c = 所以224,3a b ==,所以椭圆C 的标准方程为22143x y +=.(2)由(1)知()1,0F ,设直线PQ 的方程为1x my =+,与椭圆22143x y +=联立,得()2234690m y my ++-=. 显然0∆>恒成立. 设1122(,),(,)P x y Q x y ,所以有12122269,3434m y y y y m m +=-=-++ ()* 直线AP 的方程为()112+2y y x x =+,直线BO 的方程为()2222y y x x =--, 联立两方程可得,所以()()121222+22y y x x x x +=-- ()()121212212121213232221my y x y my y y x x y x y my my y y ++++=⋅==---- 由()*式可得()121232y y y y m=+, 代入上式可得()()1212121221339222233322232y y y y x y y x y y y y +++==-+-=++, 解得4,x =故点M 在定直线4x =上.解题思路:设直线PQ 的方程为1x my =+,联立椭圆方程,设1122(,),(,)P x y Q x y ,由韦达定理,可知12122269,3434m y y y y m m +=-=-++,将直线AP 的方程()112+2y y x x =+与直线BO 的方程()2222y y x x =--联立,利用韦达定理,化简计算,即可证明结果.例14、(2021·福建高三模拟)椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,12P ⎛ ⎝⎭在C 上.(1)求椭圆C 的标准方程;(2),E F 设为短轴端点,过()0M ,1作直线l 交椭圆C 于AB 、两点(异于,E F ),直线AE BF 、交于点T .求证:点T 恒在一定直线上.【答案】(1)22143x y +=;(2)证明见解析.【详解】(1)因为点1,24P ⎛⎫ ⎪ ⎪⎝⎭在C 上,所以222141a b ⎝⎭+=, 又12c e a ==,222a b c =+,所以24a =,23b =, 故所求椭圆C 的方程为22143x y +=. (2)由题意知直线l 的斜率存在,设其方程为1y kx =+. 设()11,A x y ,()22,B x y ,(10x ≠,20x ≠).()222214388034120y kx k x kx x y =+⎧⇒++-=⎨+-=⎩, 122843kx x k -+=+,122843x x k -=+,且有1212x x kx x +=. 1122::AEBFy l y x x y l y x x ⎧=⎪⎪⎨+⎪+=⎪⎩(10x ≠,20x ≠) 11111y kx x x +====,故1y ⎤=⎥⎦2kx x xx x x +++-=3x x x x +-=3=故点T 恒在一定直线3y =上.解题思路:设出直线1y kx =+,联立直线与椭圆的方程结合韦达定理求出,AE BF 的直线方程,联立求出交点纵坐标为3,进而可得结果.3、圆过定点问题例14、(2021·湖北武汉市高三月考)设P 是椭圆C :22221(0)x y a b a b+=>>上异于长轴顶点A 1,A 2的任意一点,过P 作C 的切线与分别过A 1,A 2的切线交于B 1,B 2两点,已知|A 1A 2|=4,椭圆C 的离心率为12. (1)求椭圆C 的方程;(2)以B 1B 2为直径的圆是否过x 轴上的定点?如果过定点,请予以证明,并求出定点;如果不过定点,说明理由.【答案】(1)22143x y +=;(2)过定点,证明见解析,定点为(1,0),(1,0)-. 【详解】解:(1)由题可知122412A A a c e a ⎧==⎪⎨==⎪⎩,解得2,1a c ==,由222a b c =+得23b =, 椭圆C 的方程为22143x y +=.(2)设00(,)P x y ,由于P 是异于长轴顶点12,A A 的任意一点,故切线斜率存在.设过P 的椭圆的切线为y kx b =+,联立方程22143y kx b x y =+⎧⎪⎨+=⎪⎩,得222(34)84120k x kbx b +++-=,222(8)4(34)(412)0kb k b ∆=-+-=,得2234b k =+,由002200143y kx bx y =+⎧⎪⎨+=⎪⎩ 所以()220034y kx k -=+,则()22200004230x k y x k y --+-=,即222000016290y k y x k x ++=所以()200430y k x +=,则034x k y =-解得过P 点的切线方程为()000034x y y x x y -=--,即000334x x y y y =-+ 由于分别过12,A A 的切线分别为2,2x x =-=,解得12,B B 的坐标为0012006363(2,),(2,)22x x B B y y +--. 在x 轴上取点(),0M t ,则010632,2x MB t y ⎛⎫+=-- ⎪⎝⎭,020632,2x MB t y ⎛⎫-=-+ ⎪⎝⎭, 所以2220122369414x MB MB t t y -⋅=-+=-. 当1t =±时,120MB MB ⋅=.所以,以12B B 为直径的圆过x 轴上的定点为12(1,0),(1,0)F F -.解题思路: 设00(,)P x y ,设过P 的椭圆的切线为y kx b =+,与椭圆方程联立由0∆=,求出切线的斜率0034x k y =-,得出切线方程000334x x y y y =-+,由条件求出12,B B 坐标,在x 轴上取点(),0M t ,由120MB MB ⋅=得出答案.【巩固训练】1、(2020·广东高三一模)已知点()2,1P --为椭圆2222:1x y C a b+=(0)a b >>上一点,且椭圆C的一个焦点与抛物线2y =的焦点重合,过点P 作直线PA ,PB ,与椭圆C 分别交于点A ,B .(1)求椭圆C 的标准方程与离心率;(2)若直线PA ,PB 的斜率之和为0,证明:直线AB 的斜率为定值.【答案】(1)22163x y +=,离心率为2;(2)证明见解析. 【详解】(1)由题设,得22411a b+== 由①②解得26a =,23b =,所以椭圆C 的标准方程为22163x y +=,椭圆C 的离心率为2c e a ===. (2)直线AB 的斜率为定值1.证明:设直线PA 的斜率为k ,则直线PB 的斜率为k -, 记11(,)A x y ,22(,)B x y .设直线PA 的方程为1(2)y k x +=+,与椭圆C 的方程联立,并消去y 得()()222212848840k x k k x k k ++-+--=,则2-,1x 是该方程的两根,则212884212k k x k ---=+,即21244212k k x k-++=+. 设直线PB 的方程为1(2)y k x +=-+,同理得22244212k k x k --+=+.因为()1112y k x +=+,()2212y k x +=-+,所以()()()212121212121228224121812ABkk x k x k x x y y k k k x x x x x x k +++++-+=====---+,因此直线AB 的斜率为定值.2、(2021·山西阳泉市高三期末(理))已知圆22:4C x y +=,点P 为圆C 上的动点,过点P 作x 轴的垂线,垂足为Q ,设D 为PQ 的中点,且D 的轨迹为曲线E (PQD 三点可重合). (1)求曲线E 的方程;(2)不过原点的直线l 与曲线E 交于M 、N 两点,已知OM ,直线l ,ON 的斜率1k 、k 、2k 成等比数列,记以OM ,ON 为直径的圆的面积分别为S 1,S 2,试探究12S S +是否为定值,若是,求出此值;若不是,说明理由.【答案】(1)2214x y +=;(2)12S S +是否为定值,为54π.证明过程见解析.【详解】(1)设(,)D x y ,则有(,2)P x y ,又P 在已知不上,∴2244x y +=,所以曲线E 的方程为2214x y +=;(2)设直线l 方程为y kx t =+,1122(,),(,)M x y N x y ,0t ≠,由2214y kx t x y =+⎧⎪⎨+=⎪⎩得222(14)8440k x ktx t +++-=,2222644(14)(44)0k t k t ∆=-+->, ∴122814kt x x k +=-+,21224414t x x k-=+, 111y k x =,222y k x =,∵1k 、k 、2k 成等比数列,∴2121212y y k k k x x ==,∴2221212121212()()()kx t kx t k x x kt x x t k x x x x +++++==,212()0kt x x t ++=,又0t ≠,∴12()0k x x t ++=,228014k tt k -+=+,解得12k =±.1228414kt x x kt k +=-=-+,22122442214t x x t k-==-+, 22222222121212()2162(22)4444x x x x x x k t t t t +=+-=--=-+=,22222222121122()()2244OM ON S S OM ON x y x y ππππ⎛⎫⎛⎫+=⨯+⨯=+=+++ ⎪ ⎪⎝⎭⎝⎭, 222222222211221212124()()4()2()2x y x y kx t kx t k x x kt x x t +++=++++=+++++222244825k k t t =+-+=,∴1254S S π+=为定值. 3、(2021·湖北宜昌市高三期末)已知点A 、B坐标分别是(-,0),直线AP 、BP 相交于点P ,且它们斜率之积是12-.(1)试求点P 的轨迹Γ的方程;(2)已知直线:4l x =-,过点()2,0F -的直线(不与x 轴重合)与轨迹Γ相交于M .N 两点,过点M 作MD l ⊥于点D .求证:直线ND 过定点,并求出定点的坐标.【答案】(1)221(84x y x +=≠±;(2)证明见解析,()3,0-. 【详解】(1)设(),P x y ,由题意得:12PA PB k k ⋅=-12=-,化简得22184x y +=.又x ≠±,∴点P 的轨迹方程为221(84x y x +=≠±.(2)方法一:由椭圆的对称性知,直线ND 过的定点必在x 轴上, 由题意得直线MN 的斜率不为0,设:2MN x my =-,与22184x y +=联立消去x 得:()222440m y my +--=, ()23210m ∆=+>恒成立,设()11,M x y ,()22,N x y ,则()14,D y -,12242m y y m +=+,12242y y m -=+,∴()1212my y y y =-+,2112:(4)4y y ND y x y x -=+++,令0y =, ∴()()12122121424y x y my x y y y y +++=-=---()1211212121221y y y my y y y y y y -+++=-=-=--,3x =-,∴直线ND 过定点()3,0-.方法二:由题意可得直线MN 的斜率不为0,设:2MN x my =-,与22184x y +=联立消去x 得:()222440m y my +--=, ()23210m ∆=+>恒成立,设()11,M x y ,()22,N x y ,则()14,D y -,12242m y y m +=+,12242y y m -=+,()12422m y m -=+,()22422m y m +=+, ()2112121122(4)2:(4)42y y x my y y y y ND y x y x my -+++-=++=++2244)2222m x m m m my -+++++=+2222(4)3)2222x x m m my my +-+++==++ ∴3x =-时0y =, ∴直线ND 过定点()3,0-.4、(2021·安徽池州市高三期末(理))已知椭圆C :()222210x y a b a b+=>>的左顶点、右焦点分别为A ,F ,点31,2M ⎛⎫⎪⎝⎭在椭圆C 上,且椭圆C 离心率为12. (1)求椭圆C 的方程;(2)过点F 且斜率为()0k k ≠的直线l 与椭圆C 交于D ,E 两点,直线AD ,AE 斜率分别为1k ,2k ,证明:12kk kk +为定值.【答案】(1)22143x y +=;(2)证明见解析.【详解】(1)由题意可得2222222312112a b c a a b c ⎧⎛⎫⎪ ⎪⎝⎭⎪+=⎪⎪⎪=⎨⎪-=⎪⎪⎪⎪⎩,解得2a =,b =所以椭圆C 的方程为22143x y +=. (2)证明:由(1)可知()1,0F ,则直线l 的方程为()1y k x =-.联立22(1)143y k x x y =-⎧⎪⎨+=⎪⎩,得()22224384120k x k x k +-+-=.设()11,D x y ,()22,E x y ,则2122843k x x k +=+,212241243k x x k -=+,所以()()1212121212112222k x k x y yk k x x x x --+=+=+++++12331122k x x ⎛⎫=-+- ⎪++⎝⎭()()()()()12121212123434222224x x x x k k x x x x x x ⎡⎤⎡⎤++++=-=-⎢⎥⎢⎥+++++⎣⎦⎣⎦2222228344324128244343k k k k k k k ⎡⎤⎛⎫+⎢⎥ ⎪+⎝⎭⎢⎥=-⎢⎥-+⨯+⎢⎥++⎣⎦()222223816122412161612k k k k k k ⎡⎤++⎢⎥=--+++⎢⎥⎣⎦ 222112k k k k ⎛⎫+=-=- ⎪⎝⎭, 所以1211kk kk k k ⎛⎫+=-=- ⎪⎝⎭(定值).5、(2021·安徽蚌埠市高三二模(理))已知圆()22:224E x y ++=,动圆N 过点()2,0F 且与圆E 相切,记动圆圆心N 的轨迹为曲线C . (1)求曲线C 的方程;(2)P ,Q 是曲线C 上的两个动点,且OP OQ ⊥,记PQ 中点为M ,OP OQ t OM ⋅=,证明:t 为定值.【答案】(1)22162x y +=;(2)证明见解析.【详解】解:(1)点()2,0F 在圆()22:224E x y ++=内,∴圆N 内切于圆E,∴NE NF EF +=>,所以N 点轨迹是以E ,F为焦点的椭圆,且a =2c =,从而b =故点N 的轨迹C 的方程为:22162x y +=.(2)设()11,P x y ,()22,Q x y ,若直线PQ 斜率存在,设直线PQ 方程为y kx m =+,联立22162y kx mx y =+⎧⎪⎨+=⎪⎩,整理得:()222136360k x kmx m +++-=,122613km x x k -+=+,21223613m x x k-=+ 因为OP OQ ⊥,所以0OP OQ ⋅=,即12220x x y y +=.化简得:()()22121210k x x km x x m ++++=,即()22222366101313m km k km m k k--+⋅+⋅+=++, 从而,222330m k --=,①因为OP OQ ⊥,且M 为PQ 中点,所以2PQ OM =, 在直角ABC 中,记原点O 到直线PQ 的距离为d ,则2OP OQ d PQ d OM ⋅==,由①知,原点O 到直线l的距离为d ===所以t.若直线PQ 斜率不存在,设直线PQ 方程为x n =,联立22162x n x y =⎧⎪⎨+=⎪⎩,解得p n ⎛ ⎝,,n ⎛ ⎝ 由OP OQ ⊥得n =t = 综上,t.6、(2021·江苏无锡市高三月考)已知椭圆()2222:10,0x y C a b a b+=>>过点(2,1)-,216y x =-的准线l 交x 轴于点A ,过点A 作直线交椭圆C 于M ,N .(1)求椭圆C 的标准方程和点A 的坐标; (2)若M 是线段AN 的中点,求直线MN 的方程;(3)设P ,Q 是直线l 上关于x 轴对称的两点,问:直线PM 于QN 的交点是否在一条定直线上?请说明你的理由.【答案】(1)22182x y +=,()4,0A ;(2)(4)6y x =±-;(3)PM 与QN 的交点恒在直线2x =上,理由见解析.【详解】(1)由题意,椭圆()2222:10,0x y C a b a b +=>>过点(2,1)-可得22411a b +=且2c e a ==,又由222c a b =-, 解得228,2a b ==,即椭圆C 的方程为22182x y +=,又由抛物线216y x =-,可得准线方程为:4l x =,所以()4,0A .(2)设()00,N x y ,则004,22x y M +⎛⎫⎪⎝⎭, 联立方程组()2200220018241328x y x y ⎧+=⎪⎪⎨+⎪+=⎪⎩,解得001,x y ==当5,2M N ⎛ ⎝⎭时,可得直线:4)MN y x =-;当5,,(1,2M N ⎛ ⎝⎭时,可得直线:4)MN y x =-; 所以直线MN的方程为4)y x =-. (3)设()()4,,4,P t Q t -,可得:4MN x ky =+, 设()()1122,,,M x y N x y联立方程组224480x ky x y =+⎧⎨+-=⎩,整理得()224880k y ky +++=,所以12122288,44k y y y y k k +=-=++,则1212y y ky y +=-, 又由直线111114:44y t tx y PM y x x x --=+--,222224:44y t y tx QN y x x x ++=---, 交点横坐标为()121212242ky y y y x y y ++==+,所以PM 与QN 的交点恒在直线2x =上.7、(2021·全国高三专题练习)已知椭圆22221(0)x y a b a bΓ+=>>:过点(02),,其长轴长、焦距和短轴长三者的平方依次成等差数列,直线l 与x 轴的正半轴和y 轴分别交于点Q P 、,与椭圆Γ相交于两点M N 、,各点互不重合,且满足12PM MQ PN NQ λλ==,. (1)求椭圆Γ的标准方程;(2)若直线l 的方程为1y x =-+,求1211λλ+的值; (3)若123,试证明直线l 恒过定点,并求此定点的坐标.【答案】(1)221124x y +=;(2)83-;(3)证明见解析,(2,0). 【详解】(1)由题意,因为椭圆22221(0)x y a b a bΓ+=>>:过点(02),,可得2b =, 设焦距为2c ,又由长轴长、焦距和短轴长三者的平方依次成等差数列, 可得222(2)(2)2(2)a b c +=,即2222a b c +=又因为222a b c =+,解得212a =,所以椭圆Γ的标准方程为221124x y +=.(2)由直线l 的方程为1y x =-+,可得而(01)(10)P Q ,,,, 设1122()()M x y N x y ,,,,因为12PM MQ PN NQ λλ==,,可得1111122222(1)(1)(1)(1)x y x y x y x y λλ-=---=--,,,,,, 从而111222(1)(1)x x x x λλ=-=-,,于是12121211x x x x λλ==--,,所以12121212111122x x x x x x λλ++=+-=-,由2211241x y y x ⎧+=⎪⎨⎪=-+⎩,整理得24690x x --=,可得12123924x x x x +==-,,所以1212121211118223x x x x x x λλ++=+-=-=-. (3)显然直线l 的斜率k 存在且不为零,设直线l 的方程为()()0y k x m m =->,1122()()M x y N x y ,,,, 可得(0,)(,0)P km Q m -,, 由1PMMQ ,可得11111()()x y km m x y λ+=--,,, 所以()111x x m λ=-,从而111xm x λ=-,同理222xm x λ=-,又123,∴212122()30x x m x x m -++=①,联立221124()x y y k x m ⎧+=⎪⎨⎪=-⎩,得22222(13)63120k x k mx k m +-+-=,则()42222222364(13)(312)121240k m k k m k k m -∆=+-=+->②,且2221212226312,1313k m k m x x x x k k -+==++③③代入①得2222222231263122300131313k m k m m m m k k k ---⋅+=⇒=+++,∴2m =,(满足②) 故直线l 的方程为()2y k x =-,所以直线l 恒过定点(20),. 8、(2020·湖北高三月考)已知抛物线2:2(0)C y px p =>的焦点F ,若平面上一点(2,3)A 到焦点F 与到准线:2pl x =-的距离之和等于7. (1)求抛物线C 的方程;(2)又已知点P 为抛物线C 上任一点,直线PA 交抛物线C 于另一点M ,过M 作斜率为43k =的直线MN 交抛物线C 于另一点N ,连接.PN 问直线PN 是否过定点,如果经过定点,则求出该定点,否则说明理由.【答案】(1)28y x =;(2)过定点,1,34⎛⎫⎪⎝⎭.【详解】(1)由已知,定点(2,3)A 到焦点F 与到准线:2pl x =-的距离之和等于7.272p ⎛⎫+= ⎪⎝⎭,则4p =,即抛物线的方程28y x =(2)设11(,)P x y ,22(,)M x y ,33(,)N x y ,则121211212222888PM y y y y k y y x x y y ++=-=+=-,同理:238MNk y y =+,138PN k y y =+, 由23843MN k y y ==+知:236y y +=,即236y y =- ① 直线11128:()PM y y x x y y -=-+,即1212()8y y y y y x +-=过(2,3)A 求得1211633y y y -=- ② 同理求直线PN 方程1313()8y y y y y x +-= ③ 由①②得13133()2y y y y =+- 代入③得1313()3()28y y y y y x +-++=13()(3)280y y y x +-+-=故3y =且280x -=时,直线PN 恒过点1,34⎛⎫⎪⎝⎭. 9、(2021·北京高三期末)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为点A ,B ,且AB 4=,椭圆C 离心率为12. (1)求椭圆C 的方程;(2)过椭圆C 的右焦点,且斜率不为0的直线l 交椭圆C 于M ,N 两点,直线AM ,BN 的交于点Q ,求证:点Q 在直线4x =上. 【答案】(1)22143x y +=;(2)证明见解析.【详解】解:(1)因为AB 4=,椭圆C 离心率为12, 所以2222412a c a a b c=⎧⎪⎪=⎨⎪=+⎪⎩,解得24a =,23b =.所以椭圆C 的方程是22143x y +=.(2)①若直线l 的斜率不存在时,如图,因为椭圆C 的右焦点为()1,0,所以直线l 的方程是1x =.所以点M 的坐标是31,2⎛⎫⎪⎝⎭,点N 的坐标是31,2⎛⎫- ⎪⎝⎭.所以直线AM 的方程是()122y x =+, 直线BN 的方程是()322y x =-. 所以直线AM ,BN 的交点Q 的坐标是()4,3.所以点Q 在直线4x =上. ②若直线l 的斜率存在时,如图.设斜率为k .所以直线l 的方程为()1y k x =-.联立方程组()221143y k x x y ⎧=-⎪⎨+=⎪⎩消去y ,整理得()2223484120kx k x k+-+-=.显然0∆>.不妨设()11,M x y ,()22,N x y ,所以2122834kx x k +=+,212241234k x x k-⋅=+. 所以直线AM 的方程是()1122y y x x =++. 令4x =,得1162=+y y x . 直线BN 的方程是()2222y y x x =--.令4x =,得2222y y x =-. 所以()()121212126121622222k x k x y y x x x x ---=-+-+- ()()()()()()12121261222122k x x k x x x x ---+-=+-分子()()()()1212612221k x x k x x =---+-()()12211212232222k x x x x x x x x =--+--+-⎡⎤⎣⎦. ()12122258k x x x x =-++⎡⎤⎣⎦ ()2222241258283434k k k k k ⎡⎤-⨯⎢⎥=-+++⎢⎥⎣⎦22228244024322034k k k k k ⎛⎫--++== ⎪+⎝⎭. 所以点Q 在直线4x =上.10、(2021·安徽高三月考(理))已知圆22:5O x y +=,椭圆2222:1(0)x y a b a bΓ+=>>的左右焦点为12,F F ,过1F 且垂直于x 轴的直线被椭圆和圆所截得弦长分别为1和.(1)求椭圆的标准方程;(2)如图P 为圆上任意一点,过P 分别作椭圆两条切线切椭圆于A ,B 两点. (ⅰ)若直线PA 的斜率为2,求直线PB 的斜率; (ⅱ)作PQ AB ⊥于点Q ,求证:12QF QF +是定值.【答案】(1)2214x y +=;(2)(i )12-;(ii )证明见解析.【详解】解:(1)由题意得:222221a b c ba ⎧=+⎪⎪=⎨⎪=⎪⎩2,1,a b c ===得椭圆的标准方程为:2214x y +=(2)(ⅰ)设()00,P x y ,切线()00y y k x x -=-,则22005x y +=。

2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)

2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)

圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)3如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN 若存在,求出该定点坐标,若不存在,请说明理由.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.2双曲线C:x2a2-y2b2=1(a>0,b>0)的左顶点为A,焦距为4,过右焦点F作垂直于实轴的直线交C于B、D两点,且△ABD是直角三角形.(1)求双曲线C的方程;(2)已知M,N是C上不同的两点,MN中点的横坐标为2,且MN的中垂线为直线l,是否存在半径为1的定圆E,使得l被圆E截得的弦长为定值,若存在,求出圆E的方程;若不存在,请说明理由.3已知双曲线C:x2a2-y2b2=1a>0,b>0的右焦点,右顶点分别为F,A,B0,b,AF=1,点M在线段AB上,且满足BM=3MA,直线OM的斜率为1,O为坐标原点.(1)求双曲线C的方程.(2)过点F的直线l与双曲线C的右支相交于P,Q两点,在x轴上是否存在与F不同的定点E,使得EP⋅FQ=EQ⋅FP恒成立?若存在,求出点E的坐标;若不存在,请说明理由.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF =0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.5已知双曲线C :x 2-y 2b2=1b >0 的左、右焦点分别为F 1,F 2,A 是C 的左顶点,C 的离心率为2.设过F 2的直线l 交C 的右支于P 、Q 两点,其中P 在第一象限.(1)求C 的标准方程;(2)若直线AP 、AQ 分别交直线x =12于M 、N 两点,证明:MF 2 ⋅NF 2 为定值;(3)是否存在常数λ,使得∠PF 2A =λ∠PAF 2恒成立?若存在,求出λ的值;否则,说明理由.三、抛物线定点问题1已知动圆M 恒过定点F 0,18 ,圆心M 到直线y =-14的距离为d ,d =MF +18.(1)求M 点的轨迹C 的方程;(2)过直线y =x -1上的动点Q 作C 的两条切线l 1,l 2,切点分别为A ,B ,证明:直线AB 恒过定点.2已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1焦点,且l 1与C 2相切.(1)求抛物线C 1的方程;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在点A 处的切线l 2交y 轴于点B ,设MN =MA +MB ,证明点N 在定直线上,并求该定直线的方程.3已知直线l1:x-y+1=0过椭圆C:x24+y2b2=1(b>0)的左焦点,且与抛物线M:y2=2px(p>0)相切.(1)求椭圆C及抛物线M的标准方程;(2)直线l2过抛物线M的焦点且与抛物线M交于A,B两点,直线OA,OB与椭圆的过右顶点的切线交于M,N两点.判断以MN为直径的圆与椭圆C是否恒交于定点P,若存在,求出定点P的坐标;若不存在,请说明理由.4在平面直角坐标系中,已知圆心为点Q的动圆恒过点F(0,1),且与直线y=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(1)求曲线Γ的方程;(2)P为直线l:y=y0y0<0上一个动点,过点P作曲线Γ的切线,切点分别为A,B,过点P作AB的垂线,垂足为H,是否存在实数y0,使点P在直线l上移动时,垂足H恒为定点?若不存在,说明理由;若存在,求出y0的值,并求定点H的坐标.5已知抛物线C :y 2=2px p >0 ,直线x +y +1=0与抛物线C 只有1个公共点.(1)求抛物线C 的方程;(2)若直线y =k x -p 2与曲线C 交于A ,B 两点,直线OA ,OB 与直线x =1分别交于M ,N 两点,试判断以MN 为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.四、椭圆定值问题1已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =12,短轴长为23.(1)求椭圆C 的方程;(2)已知经过定点P 1,1 的直线l 与椭圆相交于A ,B 两点,且与直线y =-34x 相交于点Q ,如果AQ =λAP ,QB =μPB ,那么λ+μ是否为定值?若是,请求出具体数值;若不是,请说明理由.2在椭圆C :x 2a 2+y 2b2=1(a >b >0)中,其所有外切矩形的顶点在一个定圆Γ:x 2+y 2=a 2+b 2上,称此圆为椭圆的蒙日圆.椭圆C 过P 1,22,Q -62,12 .(1)求椭圆C 的方程;(2)过椭圆C 的蒙日圆上一点M ,作椭圆的一条切线,与蒙日圆交于另一点N ,若k OM ,k ON 存在,证明:k OM ⋅k ON 为定值.3已知O 为坐标原点,定点F 1-1,0 ,F 21,0 ,圆O :x 2+y 2=2,M 是圆内或圆上一动点,圆O 与以线段F 2M 为直径的圆O 1内切.(1)求动点M 的轨迹方程;(2)设M 的轨迹为曲线E ,若直线l 与曲线E 相切,过点F 2作直线l 的垂线,垂足为N ,证明:ON 为定值.4设椭圆E :x 2a 2+y 2b2=1a >b >0 过点M 2,1 ,且左焦点为F 1-2,0 .(1)求椭圆E 的方程;(2)△ABC 内接于椭圆E ,过点P 4,1 和点A 的直线l 与椭圆E 的另一个交点为点D ,与BC 交于点Q ,满足AP QD =AQ PD ,证明:△PBC 面积为定值,并求出该定值.5椭圆C :x 2a 2+y 2b2=1的右焦点为F (1,0),离心率为12.(1)求椭圆C 的方程;(2)过F 且斜率为1的直线交椭圆于M ,N 两点,P 是直线x =4上任意一点.求证:直线PM ,PF ,PN 的斜率成等差数列.五、双曲线定值问题1在平面直角坐标系xOy中,圆F1:x+22+y2=4,F22,0,P是圆F1上的一个动点,线段PF2的垂直平分线l与直线PF1交于点M.记点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点F2作与x轴不垂直的任意直线交曲线C于A,B两点,线段AB的垂直平分线交x轴于点H,求证:ABF2H为定值.2已知双曲线x2-y2=1的左、右顶点分别为A1,A2,动直线l:y=kx+m与圆x2+y2=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1),P2(x2,y2).(1)求k的取值范围;(2)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么k1k2是定值吗?证明你的结论.3已知P 是圆C :(x +2)2+y 2=12上一动点,定点M (2,0),线段PM 的垂直平分线n 与直线PC 交于点T ,记点T 的轨迹为C .(1)求C 的方程;(2)若直线l 与曲线C 恰有一个共点,且l 与直线l 1:y =33x ,l 2:y =-33x 分别交于A 、B 两点,△OAB 的面积是否为定值?若是,求出该定值,若不是,请说明理由.4已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±34x ,焦距为10,A 1,A 2为其左右顶点.(1)求C 的方程;(2)设点P 是直线l :x =2上的任意一点,直线PA 1、PA 2分别交双曲线C 于点M 、N ,A 2Q ⊥MN ,垂足为Q ,求证:存在定点R ,使得QR 是定值.5已知F1,F2分别为双曲线C:x2a2-y2b2=1(a>0,b>0)的左,右焦点,点P2,26在C上,且双曲线C的渐近线与圆x2+y2-6y+8=0相切.(1)求双曲线C的方程;(2)若过点F2且斜率为k的直线l交双曲线C的右支于A,B两点,Q为x轴上一点,满足QA=QB,试问AF1+BF1-4QF2是否为定值?若是,求出该定值;若不是,请说明理由.六、抛物线定值问题1已知抛物线C:x2=2py(p>0)的焦点为F,准线为l,过点F且倾斜角为π6的直线交抛物线于点M(M在第一象限),MN⊥l,垂足为N,直线NF交x轴于点D,MD=43.(1)求p的值.(2)若斜率不为0的直线l1与抛物线C相切,切点为G,平行于l1的直线交抛物线C于P,Q两点,且∠PGQ=π2,点F到直线PQ与到直线l1的距离之比是否为定值?若是,求出此定值;若不是,请说明理由.2已知抛物线C1:y2=2px p>0到焦点的距离为3.上一点Q1,a(1)求a,p的值;(2)设P为直线x=-1上除-1,-3两点外的任意一点,过P作圆C2:x-2,-1,32+y2=3的两条切线,分别与曲线C1相交于点A,B和C,D,试判断A,B,C,D四点纵坐标之积是否为定值?若是,求该定值;若不是,请说明理由.3已知点F是抛物线C:y2=2px p>0的焦点,纵坐标为2的点N在C上,以F为圆心、NF为半径的圆交y轴于D,E,DE=23.(1)求抛物线C的方程;(2)过-1,0作直线l与抛物线C交于A,B,求k NA+k NB的值.4贝塞尔曲线是计算机图形学和相关领域中重要的参数曲线.法国数学象卡斯特利奥对贝塞尔曲线进行了图形化应用的测试,提出了De Casteljau 算法:已知三个定点,根据对应的比例,使用递推画法,可以画出地物线.反之,已知抛物线上三点的切线,也有相应成比例的结论.如图所示,抛物线Γ:x 2=2py ,其中p >0为一给定的实数.(1)写出抛物线Γ的焦点坐标及准线方程;(2)若直线l :y =kx -2pk +2p 与抛物线只有一个公共点,求实数k 的值;(3)如图,A ,B ,C 是H 上不同的三点,过三点的三条切线分别两两交于点D ,E ,F ,证明:|AD ||DE |=|EF ||FC |=|DB ||BF |.5已知点A 为直线l :x +1=0上的动点,过点A 作射线AP (点P 位于直线l 的右侧)使得AP ⊥l ,F 1,0 ,设线段AF 的中点为B ,设直线PB 与x 轴的交点为T ,PF =TF .(1)求动点P 的轨迹C 的方程.(2)设过点Q 0,2 的两条射线分别与曲线C 交于点M ,N ,设直线QM ,QN 的斜率分别为k 1,k 2,若1k 1+1k 2=2,请判断直线MN 的斜率是否为定值以及其是否过定点,若斜率为定值,请计算出定值;若过定点,请计算出定点.七、椭圆定直线问题1椭圆E的方程为x24+y28=1,左、右顶点分别为A-2,0,B2,0,点P为椭圆E上的点,且在第一象限,直线l过点P(1)若直线l分别交x,y轴于C,D两点,若PD=2,求PC的长;(2)若直线l过点-1,0,且交椭圆E于另一点Q(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,说明理由.2已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).(1)若曲线C是椭圆,求m的取值范围.(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线l:y=kx+4与曲线C交于不同的两点M,N.设直线AN与直线BM相交于点G.试问点G是否在定直线上?若是,求出该直线方程;若不是,说明理由.3已知椭圆C :x 2a 2+y 2b2=1a >0,b >0 过点M 263,63 ,且离心率为22.(1)求椭圆C 的标准方程;(2)若直线l :y =x +m 与椭圆C 交y 轴右侧于不同的两点A ,B ,试问:△MAB 的内心是否在一条定直线上?若是,请求出该直线方程;若不是,请说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 过点Q 1,32 ,且离心率为12.(1)求椭圆C 的方程;(2)过点P 1,2 的直线l 交C 于A 、B 两点时,在线段AB 上取点M ,满足AP ⋅MB =AM ⋅PB ,证明:点M 总在某定直线上.5椭圆E的中心为坐标原点,坐标轴为对称轴,左、右顶点分别为A-2,0,B2,0,点1,6在椭圆E上.(1)求椭圆E的方程.(2)过点-1,0的直线l与椭圆E交于P,Q两点(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,请说明理由.八、双曲线定直线问题1如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E:x24-y2b2=1b>0的左、右焦点分别为F1、F2,从F2发出的光线经过图2中的A、B两点反射后,分别经过点C和D,且tan∠CAB=-34,AB⊥BD.(1)求双曲线E的方程;(2)设A1、A2为双曲线E实轴的左、右顶点,若过P4,0的直线l与双曲线C交于M、N两点,试探究直线A1M与直线A2N的交点Q是否在某条定直线上?若存在,请求出该定直线方程;如不存在,请说明理由.2已知曲线C上的动点P满足|PF1|-|PF2|=2,且F1-2,0,F22,0.(1)求C的方程;(2)若直线AB与C交于A、B两点,过A、B分别做C的切线,两切线交于点P .在以下两个条件①②中选择一个条件,证明另外一个条件成立.①直线AB经过定点M4,0;②点P 在定直线x=14上.3已知点(2,3)在双曲线C:x2a2-y2a2+2=1上.(1)双曲线上动点Q处的切线交C的两条渐近线于A,B两点,其中O为坐标原点,求证:△AOB的面积S 是定值;(2)已知点P12,1,过点P作动直线l与双曲线右支交于不同的两点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,证明:点H恒在一条定直线上.4已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 经过点D 4,3 ,直线l 1、l 2分别是双曲线C 的渐近线,过D 分别作l 1和l 2的平行线l 1和l 2,直线l 1交x 轴于点M ,直线l 2交y 轴于点N ,且OM ⋅ON =23(O 是坐标原点)(1)求双曲线C 的方程;(2)设A 1、A 2分别是双曲线C 的左、右顶点,过右焦点F 的直线交双曲线C 于P 、Q 两个不同点,直线A 1P 与A 2Q 相交于点G ,证明:点G 在定直线上.5已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率为2,过点E 1,0 的直线l 与C 左右两支分别交于M ,N 两个不同的点(异于顶点).(1)若点P 为线段MN 的中点,求直线OP 与直线MN 斜率之积(O 为坐标原点);(2)若A ,B 为双曲线的左右顶点,且AB =4,试判断直线AN 与直线BM 的交点G 是否在定直线上,若是,求出该定直线,若不是,请说明理由九、抛物线定直线问题1过抛物线x 2=2py (p >0)内部一点P m ,n 作任意两条直线AB ,CD ,如图所示,连接AC ,BD 延长交于点Q ,当P 为焦点并且AB ⊥CD 时,四边形ACBD 面积的最小值为32(1)求抛物线的方程;(2)若点P 1,1 ,证明Q 在定直线上运动,并求出定直线方程.2已知抛物线E :y 2=2px p >0 ,过点-1,0 的两条直线l 1、l 2分别交E 于A 、B 两点和C 、D 两点.当l 1的斜率为12时,AB =210.(1)求E 的标准方程;(2)设G 为直线AD 与BC 的交点,证明:点G 在定直线上.3已知抛物线C 1:x 2=2py (p >0)和圆C 2:x +1 2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切.(1)求p 的值:(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN =MA +MB,求证:点N 在定直线上,并求该定直线的方程.4已知拋物线x 2=4y ,P 为拋物线外一点,过P 点作抛物线的切线交抛物线于A ,B 两点,交x 轴于M ,N 两点.(1)若P -1,-2 ,设△OAB 的面积为S 1,△PMN 的面积为S 2,求S 1S 2的值;(2)若P x 0,y 0 ,求证:△PMN 的垂心H 在定直线上.5已知F为抛物线C:x2=2py(p>0)的焦点,直线l:y=2x+1与C交于A,B两点且|AF|+|BF|= 20.(1)求C的方程.(2)若直线m:y=2x+t(t≠1)与C交于M,N两点,且AM与BN相交于点T,证明:点T在定直线上.圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.【答案】(1)x 24+y 23=1(2)经过定点,定点坐标为1,0 【分析】(1)利用椭圆的定义即可求出动点H 的轨迹Γ的方程;(2)设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为:x =my +n ,与椭圆方程联立,根据韦达定理列出x 1,y 1,x 2,y 2之间的关系,再利用两点式写出直线MA 的方程,求出点P 4,2y 1x 1-2 ,Q 4,2y 2x 2-2,再写出以PQ 为直径的圆的方程,根据圆的方程经过点T 7,0 ,得到关系式,进而求得n 为定值,从而得到直线MN 过定点.【详解】(1)如图所示,∵HE +HF =HE +HG =4,且EF =2<4,∴点H 的轨迹是以E ,F 为焦点的椭圆,设椭圆方程x 2a 2+y 2b2=1,则2a =4,c =1,∴a =2,b =a 2-c 2= 3.所以点H 的轨迹方程为:x 24+y 23=1.(2)设直线MN 的方程为:x =my +n ,由x 24+y 23=1x =my +n ,得3m 2+4 y 2+6mny +3n 2-12=0设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=-6mn 3m 2+4,y 1y 2=3n 2-123m 2+4.所以,x 1+x 2=m y 1+y 2 +2n =8n 3m 2+4,x 1x 2=my 1+n my 2+n =-12m 2+4n 23m 2+4因为直线MA 的方程为:y =y 1x 1-2x -2 ,令x =4,得y P =2y 1x 1-2,所以,P 4,2y 1x1-2 ,同理可得Q 4,2y 2x 2-2,以PQ 为直径的圆的方程为:x -4 2+y -2y 1x 1-2 y -2y 2x 2-2=0,即x -4 2+y 2-2y 1x 1-2+2y 2x 2-2y +2y 1x 1-2×2y 2x 2-2=0,因为圆过点7,0 ,所以,9+2y 1x 1-2×2y 2x 2-2=0,得9+4y 1y 2x 1x 2-2x 1+x 2 +4=0,代入得9+12n 2-483m 2+4-12m 2+4n 23m 2+4-16n3m 2+4+4=0,化简得,9+12n 2-484n 2-16n +16=04n 2-16n +16≠0,n ≠2 ,解得n =1或n =2(舍去),所以直线MN 经过定点1,0 ,当直线MN 的斜率为0时,此时直线MN 与x 轴重合,直线MN 经过点1,0 ,综上所述,直线MN 经过定点1,0 .2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.【答案】(1)x 24+y 2=1(2)证明见解析【分析】(1)根据椭圆所经过的点列方程求出其方程;(2)设出CD 方程,结合韦达定理和P 是CQ 中点的条件,找到直线CD 中两个参数的关系,从而求出定点.【详解】(1)由题知a =2,又椭圆经过B -65,-45 ,代入可得14-652+1b2-452=1,解得b 2=1,故椭圆的方程为:x 24+y 2=1(2)由题意知,当l ⊥x 轴时,不符合题意,故l 的斜率存在,设l 的方程为y =kx +m ,联立y =kx +m x 24+y 2=1消去y 得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=64k 2m 2-16m 2-1 4k 2+1 =164k 2-m 2+1 >0,即4k 2+1>m 2设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1AB 的方程为y =14(x -2),令x =x 1得P x 1,x 1-24 ,AD 的方程为y =y 2x 2-2(x -2),令x =x 1得Q x 1,x 1-2x 2-2y 2,由P 是CQ 中点,得x 1-22=y 1+x 1-2x 2-2⋅y 2,即y 1x 1-2+y 2x 2-2=12,即kx 1+m x 2-2 +kx 2+m x 1-2 =12x 1x 2-2x 1+x 2 +4 ,即(1-4k )x 1x 2+(4k -2m -2)x 1+x 2 +4+8m =0,即4m 2+(16k +8)m +16k 2+16k =0,所以(m +2k )(m +2k +2)=0,得m =-2k -2或m =-2k ,当m =-2k -2,此时由Δ>0,得k <-38,符合题意;当m =-2k ,此时直线l 经过点A ,与题意不符,舍去.所以l 的方程为y =kx -2k -2,即y =k (x -2)-2,所以l 过定点(2,-2).3如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.【答案】(1)C :x 24+y 22=1;(2)存在定点T 23,0 使TH 为定值,理由见解析.【分析】(1)根据离心率,椭圆上点及参数关系列方程组求a ,b ,c ,即可得椭圆方程;(2)根据题意设BQ :y =k (x -2),AP :y =2k (x +2),联立椭圆方程求P ,Q 坐标,判断直线PQ 过定点,结合BH ⊥PQ 于H 确定H 轨迹,进而可得定点使得TH 为定值.【详解】(1)由题意c a =222a 2+1b 2=1a 2=b 2+c 2,可得a 2=4b 2=c 2=2 ,则椭圆方程为C :x 24+y 22=1;(2)若直线BQ 斜率为k ,则直线AP 斜率为2k ,而A (-2,0),B (2,0),所以BQ :y =k (x -2),AP :y =2k (x +2),联立BQ 与椭圆C ,则x 2+2k 2(x -2)2=4,整理得(1+2k 2)x 2-8k 2x +8k 2-4=0,所以2x Q =8k 2-41+2k 2,则x Q =4k 2-21+2k 2,故y Q =-4k1+2k 2,联立AP 与椭圆C ,则x 2+8k 2(x +2)2=4,整理得(1+8k 2)x 2+32k 2x +32k 2-4=0,所以-2x P =32k 2-41+8k 2,则x P =2-16k 21+8k 2,故y P=8k 1+8k 2,综上,x Q -x P =4k 2-21+2k 2-2-16k 21+8k 2=64k 4-4(1+8k 2)(1+2k 2),y Q -y P =-4k 1+2k 2-8k 1+8k 2=-12k +48k 31+8k 2 1+2k 2,当64k 4-4≠0,即k ≠±12时,k PQ =12k (1+4k 2)4(1-16k 4)=3k1-4k 2,此时PQ :y +4k 1+2k 2=3k 1-4k 2x +2-4k 21+2k 2=3k 1-4k 2x +6k -12k 3(1+2k 2)(1-4k 2),所以PQ :y =3k 1-4k 2x +2k 1-4k 2=k 1-4k 2(3x +2),即直线PQ 过定点-23,0 ;当64k 4-4=0,即k =±12时,若k =12,则x Q =-23且y Q =-43,x P =-23且y P =43,故直线PQ 过定点-23,0 ;若k =-12,则x Q =-23且y Q =43,x P =-23且y P =-43,故直线PQ 过定点-23,0 ;综上,直线PQ 过定点M -23,0 ,又BH ⊥PQ 于H ,易知H 轨迹是以BM 为直径的圆上,故BM 的中点23,0 到H 的距离为定值,所以,所求定点T 为23,0 .【点睛】关键点点睛:第二问,设直线BQ ,AP 联立椭圆,结合韦达定理求点P ,Q 坐标,再写出直线PQ 方程判断其过定点是关键.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.【答案】(1)x 24+y 23=1;(2)证明见解析.【分析】(1)根据椭圆的定义结合三角形不等式求解即可;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,联立直线与椭圆的方程,根据过两点圆的方程,结合图形的对称性可得定点在x 轴上,代入韦达定理求解即可.【详解】(1)依题意,a 2+b 2=7,△BF 2D 周长DB +DF 2 +a =DB +2a -DF 1 +a ≤BF 1 +3a =4a ,当且仅当B ,F 1,D 三点共线时等号成立,故4a =8,所以a 2=4,b 2=3,所以C 的方程x 24+y 23=1;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,代入x 24+y 23=1,整理得3m 2+4 y 2-6my -9=0,Δ=36m 2+363m 2+4 >0,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,易知AD :y =y 1x 1-2x -2 ,令x =-4,得N -4,-6y 1x 1-2 ,同得M -4,-6y 2x 2-2,从而中点P -4,-3y 1x 1-2+y 2x 2-2,以PD 为直径的圆为x +4 x -x 1 +y +3y 1x 1-2+y 2x 2-2y -y 1 =0,由对称性可知,定点必在x 轴上,令y =0得,x +4 x -x 1 -3y 1y 1x 1-2+y 2x 2-2=0,y 1x 1-2+y 2x 2-2=y 1my 1-3+y 2my 2-3=2my 1y 2-3y 1+y 2 m 2y 1y 2-3m y 1+y 2 +9=-18m3m 2+4-18m 3m 2+4-9m 23m 2+4-18m 23m 2+4+9=-36m36=-m ,所以x +4 x -x 1 +3my 1=0,即x 2+4-x 1 x -4x 1+3my 1=0,因为x 1=my 1-1,所以x 2+5-my 1 x -my 1+4=0,即x +1 x -my 1+4 =0,解得x =-1,所以圆过定点-1,0 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)的形式;(5)代入韦达定理求解.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN若存在,求出该定点坐标,若不存在,请说明理由.【答案】(1)7-354,0 (2)存在定点D (4,0)【分析】(1)由题意,根据椭圆的定义以及a 2=b 2+c 2,列出等式即可求出椭圆C 的方程,判断△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于点T ,此时T 为△APQ 的内心,进行求解即可;(2)设直线l 方程为y =k (x -t ),M (x 1,y 1),N (x 2,y 2),将直线l 的方程与椭圆方程联立,得到根的判别式大于零,由点M 、R 、N 、D 均在直线l 上,得到MR ⋅ND =MD ⋅RN,此时2t -(1+t )(x 1+x 2)+2x 1x 2=0,结合韦达定理求出t =4,可得存在定点D (4,0)满足题意.【详解】(1)∵a 2=b 2+c 2,2b 2a=a +c =3∴a =2,b =3,c =1∴椭圆C 的标准方程为x 24+y 23=1,不妨取P 1,32 ,Q 1,-32 ,A (-2,0),则AP =352,PF =32;因为△APQ 中,AP =AQ ,所以△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于T ,则T 为△APQ 的内心,且AT TF =AP PF =5=AT 3-AT ,所以AT =355+1,则T 7-354,0 ;(2)∵椭圆和弦PQ 均关于x 轴上下对称.若存在定点D ,则点D 必在x 轴上∴设D (t ,0)当直线l 斜率存在时,设方程为y =k (x -t ),M x 1,y 1 ,N x 2,y 2 ,直线方程与椭圆方程联立y =k (x -t )x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2tx +4k 2t 2-3 =0,则Δ=48k 2+3-k 2t 2>0,x 1+x 2=8k 2t4k 2+3,x 1x 2=4k 2t 2-3 4k 2+3①∵点R 的横坐标为1,M 、R 、N 、D 均在直线l 上,MR ⋅ND =MD ⋅RN∴1+k 2 1-x 1 t -x 2 =1+k 2 t -x 1 x 2-1∴2t -(1+t )x 1+x 2 +2x 1x 2=0∴2t -(1+t )8k 2t 4k 2+3+2×4k 2t 2-3 4k 2+3=0,整理得t =4,因为点D 在椭圆外,则直线l 的斜率必存在.∴存在定点D (4,0)满足题意【点睛】解决曲线过定点问题一般有两种方法:①探索曲线过定点时,可设出曲线方程,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.②从特殊情况入手,先探求定点,再证明与变量无关.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.【答案】(1)x 24-y 23=1(2)证明见解析,定点为(-2,3).【分析】(1)由点到直线的距离公式求出b =3,再将点P 4,3 代入双曲线方程求出a 2=4,可得双曲线E 的标准方程;(2)联立直线与双曲线方程,利用韦达定理得x 1+x 2、x 1x 2,再根据斜率和为1列式,推出t =2k +3,从而可得直线y =kx +t 过定点(-2,3).【详解】(1)设F 1(-c ,0)(c >0)到渐近线y =bax ,即bx -ay =0的距离为3,则3=|-bc |b 2+a2,结合a 2+b 2=c 2得b =3,又P (4,3)在双曲线x 2a 2-y 23=1上,所以16a2-93=1,得a 2=4,所以双曲线E 的标准方程为x 24-y 23=1.(2)联立y =kx +tx 24-y 23=1,消去y 并整理得3-4k 2 x 2-8ktx -4t 2-12=0,则3-4k 2≠0,Δ=64k 2t 2+4(3-4k 2)(4t 2+12)>0,即t 2+3>4k 2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8kt 3-4k 2,x 1x 2=-4t 2+123-4k 2,则k PA +k PB =y 1-3x 1-4+y 2-3x 2-4=kx 1+t -3x 1-4+kx 2+t -3x 2-4=kx 1+t -3 x 2-4 +kx 2+t -3 x 1-4 x 1-4 x 2-4=2kx 1x 2+t -4k -3 x 1+x 2 -8t +24x 1x 2-4(x 1+x 2)+16=1,所以2kx 1x 2+t -4k -3 x 1+x 2 -8t +24=x 1x 2-4(x 1+x 2)+16,所以2k -1 x 1x 2+t -4k +1 x 1+x 2 -8t +8=0,所以-2k -1 4t2+123-4k 2+t -4k +1 ⋅8kt3-4k2-8t +8=0,整理得t 2-6k +2kt -6t -8k 2+9=0,所以(t -3)2+2k (t -3)-8k 2=0,所以t -3-2k t -3+4k =0,因为直线y =kx +t 不过P (4,3),即3≠4k +t ,t -3+4k ≠0,所以t -3-2k =0,即t =2k +3,所以直线y =kx +t =kx +2k +3,即y -3=k (x +2)过定点(-2,3).【点睛】关键点点睛:利用韦达定理和斜率公式推出t =2k +3是解题关键.2双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,焦距为4,过右焦点F 作垂直于实轴的直线交C 于B 、D 两点,且△ABD 是直角三角形.(1)求双曲线C 的方程;(2)已知M ,N 是C 上不同的两点,MN 中点的横坐标为2,且MN 的中垂线为直线l ,是否存在半径为1的定圆E ,使得l 被圆E 截得的弦长为定值,若存在,求出圆E 的方程;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E :(x -8)2+y 2=1【分析】(1)根据双曲线的性质,结合△ABD 是等腰直角三角形的性质,列出关系式即可求解双曲线方程;(2)首先利用点差法求出直线l 所过的定点,即可求出定圆的方程.【详解】(1)依题意,∠BAD =90°,焦半径c =2,当x =c 时,c 2a 2-y 2b 2=1,得y 2=b 2c 2a 2-1=b 4a2,即y =±b 2a ,所以BF =b 2a ,由AF =BF ,得a +c =b 2a,得a 2+2a =22-a 2,解得:a =1(其中a =-2<0舍去),所以b 2=c 2-a 2=4-1=3,故双曲线C 的方程为x 2-y 23=1;(2)设M x 1,y 1 ,N x 2,y 2 ,MN 的中点为Q x 0,y 0 因为M ,N 是C 上不同的两点,MN 中点的横坐标为2.所以x 21-y 213=1,①x 22-y 223=1,②x 0=x 1+x 22=2,③y 0=y 1+y 22,④.①-②得x 1+x 2 x 1-x 2 -y 1+y 2 y 1-y 23=0,当k MN 存在时,k MN =y 1-y2x 1-x 2=3x 1+x 2 y 1+y 2=3×42y 0=6y 0,因为MN 的中垂线为直线l ,所以y -y 0=-y 06x -2 ,即l :y =-y 06x -8 ,所以l 过定点T 8,0 .当k MN 不存在时,M ,N 关于x 轴对称,MN 的中垂线l 为x 轴,此时l 也过T 8,0 ,所以存在以8,0 为圆心的定圆E :(x -8)2+y 2=1,使得l 被圆E 截得的弦长为定值2.【点睛】关键点点睛:本题考查直线与双曲线相交的综合应用,本题的关键是求得直线所过的定点,因为半径为1,所以定圆圆心为定点,弦长就是直径.3已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点,右顶点分别为F ,A ,B 0,b ,AF =1,点M 在线段AB 上,且满足BM =3MA ,直线OM 的斜率为1,O 为坐标原点.(1)求双曲线C 的方程.(2)过点F 的直线l 与双曲线C 的右支相交于P ,Q 两点,在x 轴上是否存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E 12,0 【分析】(1)由AF =1,BM =3MA ,直线OM 的斜率为1,求得a ,b ,c 之间的关系式,解得a ,b 的值,进而求出双曲线的方程;(2)设直线PQ 的方程,与双曲线的方程联立,可得两根之和及两根之积,由等式成立,可得EF 为∠PEQ 的角平分线,可得直线EP ,EQ 的斜率之和为0,整理可得参数的值,即求出E 的坐标.【详解】(1)设c 2=a 2+b 2c >0 ,所以F c ,0 ,A a ,0 ,B 0,b ,因为点M 在线段AB 上,且满足BM =3MA ,所以点M 33+1a ,13+1b,因为直线OM 的斜率为1,所以13+1b 33+1a =1,所以ba=3,因为AF =1,所以c -a =1,解得a =1,b =3,c =2.所以双曲线C 的方程为x 2-y 23=1.(2)假设在x 轴上存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,当直线l 的斜率不存在时,E 在x 轴上任意位置,都有EP ⋅FQ =EQ ⋅FP ;当直线l 的斜率存在且不为0时,设E t ,0 ,直线l 的方程为x =ky +2,直线l 与双曲线C 的右支相交于P ,Q 两点,则-33<k <33且k ≠0,设P x 1,y 1 ,Q x 2,y 2 ,由x 2-y 23=1x =ky +2 ,得3k 2-1 y 2+12ky +9=0,3k 2-1≠0,Δ=36k 2+36>0,所以y 1+y 2=-12k 3k 2-1,y 1y 2=93k 2-1,因为EP ⋅FQ =EQ ⋅FP ,即EP EQ=FP FQ,所以EF 平分∠PEQ ,k EP +k EQ =0,有y 1x 1-t +y 2x 2-t =0,即y 1ky 1+2-t +y 2ky 2+2-t=0,得2ky 1y 2+2-t y 1+y 2 =0,所以2k93k 2-1+2-t -12k 3k 2-1=0,由k ≠0,解得t =12.综上所述,存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,且E 12,0.【点睛】方法点睛:解答直线与双曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,要强化有关直线与双曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF=0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.【答案】(1)x 24-y 2=1;(2)证明见解析.【分析】(1)根据给定条件,设出双曲线C 的方程,再将点A 的坐标代入求解作答.(2)当直线EF 斜率存在时,设出其方程并与双曲线C 的方程联立,由给定的数量积关系结合韦达定理求得直线EF 过定点,再验证斜率不存在的情况,进而推理判断作答.【详解】(1)依题意,设双曲线C 的方程为x 212-y 23=λ(λ≠0),而点A (22,-1)在双曲线C 上,于是λ=(22)212-(-1)23=13,双曲线C 的方程为x 212-y 23=13,即x 24-y 2=1,所以双曲线C 的标准方程为x24-y 2=1.(2)当直线EF 斜率存在时,设直线EF 的方程为:y =kx +m ,设E x 1,y 1 ,F x 2,y 2 ,由y =kx +mx 2-4y 2=4消去y 并整理得4k 2-1 x 2+8kmx +4m 2+1 =0,有4k 2-1≠0,且Δ=(8km )2-16(m 2+1)(4k 2-1)>0,即4k 2-1≠0且4k 2-m 2-1<0,有x 1+x 2=-8km 4k 2-1,x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,DE =(x 1-2,y 1),DF =(x 2-2,y 2),由DE ·DF =0,得x 1-2 x 2-2 +y 1y 2=0,整理得k 2+1 ⋅x 1x 2+(km -2)⋅x 1+x 2 +m 2+4=0,于是k 2+1 ⋅4m 2+44k 2-1+(km -2)⋅-8km 4k 2-1+m 2+4=0,化简得3m 2+16km +20k 2=0,即(3m +10k )(m +2k )=0,解得m =-2k 或m =-103k ,均满足条件,当m =-2k 时,直线EF 的方程为y =k (x -2),直线EF 过定点(2,0),与已知矛盾,当m =-103k 时,直线EF 的方程为y =k x -103 ,直线EF 过定点M 103,0 ;当直线EF 的斜率不存在时,由对称性不妨设直线DE 的方程为:y =x -2,。

2021版新高考数学:圆锥曲线中的定点、定值问题含答案

2021版新高考数学:圆锥曲线中的定点、定值问题含答案

第八节圆锥曲线中的定点、定值问题
[考点要求]会证明与曲线上动点有关的定值问题、会处理动曲线(含直线)过定点的问题.
(对应学生用书第164页)
考点1定点问题
直线过定点
在平面直角坐标系xOy 中、动点
E 到定点(1、0)的距离与它到直线x =-1的距离相等.
(1)求动点E 的轨迹C 的方程;
(2)设动直线l :y =kx +b 与曲线C 相切于点P 、与直线x =-1相交于点Q 、证明:以PQ 为直径的圆恒过x 轴上某定点.
[解] (1)设动点E 的坐标为(x 、y )、由抛物线的定义知、动点E 的轨迹是以(1、0)为焦点、x =-1为准线的抛物线、所以动点E 的轨迹C 的方程为y 2=4x .
(2)证明:易知k ≠0.由⎩⎨⎧y =kx +b y2=4x
、消去x 、得ky 2-4y +4b =0.因为直线l 与抛物线相切、所以Δ=16-16kb =0、即b =1k 、所以直线l 的方程为y =kx +1k 、令
x =-1、得y =-k +1k 、所以Q (-1、-k +1k ).设切点P (x 0、y 0)、则ky 20-4y 0+4k =
0、解得P (1k2、2k )、设M (m 、0)、则MQ →·MP →=(1k2-m )·(-1-m )+2k (-k +1k )=m 2
+m -2-m -1k2、所以当⎩⎨⎧m2+m -2=0,m -1=0,
即m =1时、MQ →·MP →=0、即MQ ⊥MP . 所以、以PQ 为直径的圆恒过x 轴上的定点M (1、0).
考点2 定值问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线中的定点定值问题的四种模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。

直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。

技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。

如果能够熟识这些常见的结论,那么解题必然会事半功倍。

下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。

求证:直线l 过定点,并求出该定点的坐标。

解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +-> 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++, 整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220ba b a y b a b a x +-+-。

(参考百度文库文章:“圆锥曲线的弦对定点张直角的一组性质”)◆模型拓展:本题还可以拓展为“手电筒”模型:只要任意一个限定AP 与BP 条件(如=∙BP AP k k 定值,=+BP AP k k 定值),直线AB 依然会过定点(因为三条直线形似手电筒,固名曰手电筒模型)。

此模型解题步骤:Step1:设AB 直线m kx y +=,联立曲线方程得根与系数关系,∆求出参数范围; Step2:由AP 与BP 关系(如1-=∙BP AP k k ),得一次函数)()(k f m m f k ==或者; Step3:将)()(k f m m f k ==或者代入m kx y +=,得定定y x x k y +-=)(。

◆类型题训练练习1:过抛物线M:px y 22=上一点P (1,2)作倾斜角互补的直线PA 与PB ,交M 于A 、B 两点,求证:直线AB 过定点。

(注:本题结论也适用于抛物线与双曲线)练习2:过抛物线M:x y 42=的顶点任意作两条互相垂直的弦OA 、OB ,求证:直线AB 过定点。

练习3:过1222=-y x 上的点作动弦AB 、AC 且3=∙AC AB k k ,证明BC 恒过定点。

练习:4:设A 、B 是轨迹C :22(0)y px P =>上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当,αβ变化且4παβ+=时,证明直线AB 恒过定点,并求出该定点的坐标。

练习5:已知动圆过定点A (4,0), 且在y 轴上截得的弦MN 的长为8. (Ⅰ)求动圆圆心的轨迹C 的方程;(Ⅱ)已知点B (-1,0), 设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P , Q , 若x 轴是PBQ ∠的角平分线, 证明直线l 过定点.练习6:已知点()()1,0,1,0,BC P -是平面上一动点,且满足||||PC BC PB CB ⋅=⋅(1)求点P 的轨迹C 对应的方程;(2)已知点(,2)A m 在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD AE ⊥,判断:直线DE 是否过定点?试证明你的结论.【解】(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入 (5分))不满足题意,定点((过定点直线21).2,5(-∴DE )练习7:已知点A (-1,0),B (1,-1)和抛物线.x y C 4:2=,O 为坐标原点,过点A 的动直线l交抛物线C 于M 、P ,直线MB 交抛物线C 于另一点Q ,如图.(I )证明: OM OP ⋅为定值; (II )若△POM 的面积为25,求向量OM 与的夹角; (Ⅲ)证明直线PQ 恒过一个定点.解:(I )设点P y y P y y M ),,4(),,4(222121、M 、A 三点共线,(II)设∠POM =α,则.5cos ||||=⋅⋅α.5sin ||||,25=⋅⋅∴=∆αS ROM 由此可得tan α=1. 又.45,45),,0(︒︒=∴∈的夹角为与故向量OP OM απα(Ⅲ)设点M y y Q ),,4(323、B 、Q 三点共线,,QM BQ k k =∴ 即.(*)04)(43232=+++y y y y 即.4)(,4))((323222322x y y y y y y x y y y y =-+-=+-即由(*)式,,4)(43232++=-y y y y 代入上式,得).1(4))(4(32-=++x y y y 由此可知直线PQ 过定点E (1,-4).模型二:切点弦恒过定点例题:有如下结论:“圆222r y x =+上一点),(00y x P 处的切线方程为200r y y y x =+”,类比也有结论:“椭圆),()0(1002222y x P b a by a x 上一点>>=+处的切线方程为12020=+b y y a x x ”,过椭圆C :1422=+y x 的右准线l 上任意一点M 引椭圆C 的两条切线,切点为 A 、B. (1)求证:直线AB 恒过一定点;(2)当点M 在的纵坐标为1时,求△ABM 的面积。

【解】(1)设M 14),,(),(),)(,334(11221,1=+∈y y x x MA y x B y x A R t t 的方程为则 ∵点M 在MA 上∴13311=+ty x ① 同理可得13322=+ty x ② 由①②知AB 的方程为)1(3,133ty x ty x -==+即 易知右焦点F (0,3)满足③式,故AB 恒过椭圆C 的右焦点F (0,3)第22题(2)把AB 的方程0167,14)1(322=--=+-=y y y x y x 化简得代入 ∴7167283631||=+⋅+=AB 又M 到AB 的距离33231|334|=+=d ∴△ABM 的面积21316||21=⋅⋅=d AB S◆方法点评:切点弦的性质虽然可以当结论用,但是在正式的考试过程中直接不能直接引用,可以用本题的书写步骤替换之,大家注意过程。

◆方法总结:什么是切点弦?解题步骤有哪些? 参考:PPT 圆锥曲线的切线及切点弦方程,百度文库 参考:“尼尔森数学第一季_3下”,优酷视频拓展:相交弦的蝴蝶特征——蝴蝶定理,资料练习1:(2013年广东省数学(理)卷)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点.(Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,Px y 为直线l 上的定点时,求直线AB 的方程;(Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅的最小值.【答案】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,2=结合0c >,解得1c =.所以抛物线C 的方程为24x y =.(Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==), 则切线,PA PB 的斜率分别为112x ,212x ,所以切线PA :()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --=同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --=所以()()1122,,,x y x y 为方程00220x x y y --=的两组解.所以直线AB 的方程为00220x x y y --=. (Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+,所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,Px y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92.练习2:(2013年辽宁数学(理))如图,抛物线()2212:4,:20C x y C x py p ==->,点()00,M x y 在抛物线2C 上,过M 作1C 的切线,切点为,A B (M 为原点O 时,,A B 重合于O)01x =,切线.MA 的斜率为12-. (I)求p 的值;(II)当M 在2C 上运动时,求线段AB 中点N 的轨迹方.(),,.A B O O 重合于时中点为【答案】模型三:相交弦过定点相交弦性质实质是切点弦过定点性质的拓展,结论同样适用。

参考尼尔森数学第一季_3下,优酷视频。

但是具体解题而言,相交弦过定点涉及坐标较多,计算量相对较大,解题过程一定要注意思路,同时注意总结这类题的通法。

相关文档
最新文档