成考专科数学模拟试题一及答案
成人大专模拟考试数学试题
成人大专模拟考试数学试题
一、已知函数f在区间[0, 10]上单调递增,且f(3) = 5,f(7) = 9,则f(5)的值可能是:
A. 3
B. 6
C. 10
D. 12
(答案)B
二、某商店进行打折促销,原价为100元的商品打八折后,再使用满50减10的优惠券,最终需支付:
A. 80元
B. 70元
C. 60元
D. 50元
(答案)B
三、若集合A = {x | x是偶数且x < 10},则集合A中元素的个数为:
A. 3
B. 4
C. 5
D. 6
(答案)C
四、设等差数列的第一项为a1,公差为d,若a3 = 7,a7 = 15,则a10的值为:
A. 19
B. 21
C. 23
D. 25
(答案)C
五、一个直角三角形的两条直角边长度分别为3和4,则其斜边长度为:
A. 5
B. 6
C. 7
D. 8
(答案)A
六、某公司去年总销售额为1000万元,今年增长了20%,则今年总销售额为:
A. 1100万元
B. 1200万元
C. 1300万元
D. 1400万元
(答案)B
七、若圆的半径为r,则其面积A与r的关系是:
A. A = πr
B. A = 2πr
C. A = πr2
D. A = 2πr2
(答案)C
八、一组数据2, 4, 6, 8, 10的中位数是:
A. 4
B. 5
C. 6
D. 8
(答案)C。
成人大专数学试题及答案
成人大专数学试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:B2. 函数y = 2x + 3的反函数是?A. y = (x - 3) / 2B. y = (x + 3) / 2C. y = (2x - 3) / 3D. y = (2x + 3) / 2答案:A3. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B等于?A. {1, 2}B. {2, 3}C. {3, 4}D. {1, 4}答案:B4. 计算极限lim(x→0) (sin(x) / x)的值是?A. 0B. 1C. πD. 25. 已知向量a = (3, -1),向量b = (2, 4),则向量a与向量b的数量积为?A. 10B. -2C. 2D. -10答案:B6. 计算定积分∫(0 to 1) x^2 dx的值是?A. 1/3B. 1/2C. 2/3D. 1答案:A7. 已知矩阵A = [[1, 2], [3, 4]],矩阵B = [[5, 6], [7, 8]],则矩阵A与矩阵B的乘积AB的行列式为?A. 2B. -2C. 3D. -3答案:D8. 计算二阶导数y'' = 6x的原函数y(x),其中y(0) = 1,y'(0) = 0的解是?A. y(x) = 3x^2 + 1B. y(x) = x^3 + 1C. y(x) = 2x^3 + 1D. y(x) = x^3 - 19. 计算概率P(A),其中事件A是在标准正态分布中随机变量X小于0.5的概率?A. 0.3085B. 0.6915C. 0.5D. 0.8413答案:B10. 已知函数f(x) = x^2 - 4x + 3,求其在x = 2处的导数值?A. -4B. -2C. 0D. 2答案:C二、填空题(每题4分,共20分)11. 函数f(x) = x^2 - 6x + 8的最小值是________。
成考大专数学试题及答案
成考大专数学试题及答案一、选择题(每题4分,共40分)1. 下列函数中,哪一个是奇函数?A. \( y = x^2 \)B. \( y = x^3 \)C. \( y = \sin(x) \)D. \( y = \cos(x) \)答案:C2. 计算极限 \(\lim_{x \to 0} \frac{\sin(x)}{x}\) 的值是多少?A. 0B. 1C. \(\frac{1}{2}\)D. \(\infty\)答案:B3. 已知 \(\int_{0}^{1} x^2 dx = \frac{1}{3}\),则\(\int_{0}^{1} x dx\) 的值是多少?A. \(\frac{1}{2}\)B. \(\frac{1}{3}\)C. \(\frac{1}{4}\)D. \(\frac{1}{6}\)答案:A4. 求方程 \(2x^2 - 5x + 3 = 0\) 的根的个数。
A. 0B. 1C. 2D. 3答案:C5. 已知 \(\log_2 3 = 1.58496\),计算 \(\log_2 9\) 的值。
A. 3B. 2C. 1.58496D. 4答案:A6. 函数 \(y = \frac{1}{x}\) 的图像在第一象限的斜率是多少?A. 正B. 负C. 零D. 不存在答案:A7. 集合 \(A = \{1, 2, 3\}\) 和 \(B = \{2, 3, 4\}\) 的交集是什么?A. \(\{1, 2, 3\}\)B. \(\{2, 3\}\)C. \(\{1, 3, 4\}\)D. \(\{4\}\)答案:B8. 已知 \(\sin(\alpha) = \frac{1}{2}\),求 \(\cos(2\alpha)\) 的值。
A. \(\frac{1}{4}\)B. \(\frac{1}{2}\)C. \(\frac{3}{4}\)D. \(\frac{1}{8}\)答案:C9. 求 \(\sqrt{49}\) 的值。
成人高考高起专数学模拟试卷及答案(一)
成人高考高起专数学模拟试卷及答案(一)一、选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.1.函数⎪⎭⎫ ⎝⎛+=43sin πx y 的最小正周期是(C ). A.π2;B.3π;C.32π;D.23π.2.函数xy 8=的反函数是(C ). A.)0(log 32>=x x y ;B.xy -=8;C.)0(log 312>=x x y ;D.)0(8>-=x y x .3.设⎪⎩⎪⎨⎧=-,,10,17为偶数当为奇数,当n n nx n 则(D ) A.0lim =∞→n n x ;B.710lim -∞→=n n x ;C.⎩⎨⎧=-∞→.,10,0lim 7为偶数为奇数,n n x nn D.n n x ∞→lim 不存在.4.()=-→x f x x 0lim ()x f x x +→0lim 是()x f x x 0lim →存在的(C )A.充分条件但非必要条件;B.必要条件但非充分条件;C.充分必要条件;D.既不是充分条件也不是必要条件.5.若x 是无穷小,下面说法错误的是(C )A.2x 是无穷小; B.x 2是无穷小; C.000.0-x 是无穷小; D.x -是无穷小.6.下列极限中,值为1的是(C )A.x x x sin .2lim π∞→ B.x xx sin .2lim 0π→ C.xx x sin .2lim2ππ→ D.x x x sin .2lim ππ→7.=⎪⎭⎫⎝⎛-→x x x x x sin 11sin lim 0(A )A.1-B.1C.0D.不存在解:01sin lim 0=→x x x ;1sin .1lim 0=→x x x ,所以.110sin 11sin lim 0-=-=⎪⎭⎫ ⎝⎛-→x x x x x8.设函数()x f 具有2012阶导数,且()()x x f =2010,则()()=x f 2012(C ) A.x 21B.xC.24x x- D.2332x9.设()()x g x f =',则()=x f dx d2sin (D )A.()x x g sin 2()()x f x e e f .B.()x x g 2sinC.()x g 2sinD.()x x g 2sin .sin 2解:()=x f dx d 2sin ()()''x x f 22sin sin ()()⎥⎦⎤⎢⎣⎡''=x x x f sin .sin 2sin 2()[]x x x f cos .sin 2sin 2'=()x x f 2sin sin 2'=()x x g 2sin sin 2=.10.设xx y sin 21-=,则=dy dx (D )A.y cos 21-B.x cos 21-C.y cos 22-D.x cos 22-解:因为xdx dy cos 211-=,所以=dy dx .cos 22cos 21111x x dx dy -=-=11.曲线⎩⎨⎧==,cos ,2sin t x t y ,在4π=t 处的法线方程为(A ) A .22=x B .1=y C .1+=x y D .1-=x y 12.点()1,0是曲线c bx ax y ++=23的拐点,则有(B )A .1,3,1=-==c b aB .1,0,==c b a 为任意值C .1,=c b a 为任意值,D .为任c b a ,0,1==13.函数()22xe x xf -=的极值点的个数是(C )A .1B .2C .3D .414.若()x f 在点a x =的邻域内有定义,且除去点a x =外恒有()()()4>--a x a f x f ,则以下结论正确是(D )A .()x f 在点a 的邻域内单调增加B .()x f 在点a 的邻域内单调减少C .()a f 为函数()x f 的极大值D .()a f 为函数()x f 的极小值15.曲线()4ln 4>+=k k x y 与x x y 4ln 4+=的交点个数为(D )A .1B .2C .3D .4 解:设()k x x x x f --+=ln 4ln 44,()+∞∈,0x .① 则()()1ln 44ln 4433-+=-+='x x x x x x x f .②令()0='x f ,得驻点1=x .因为当()1,0∈x 时,()0<'x f ,故()x f 在(]1,0∈x 单调减少;而当()+∞∈,1x 时,()0>'x f 故()x f 在[)+∞∈,1x 单调增加.所以()k f -=41为最小值.又()()()[]+∞=-+-=++→→k x x x x f x x 44ln ln lim lim 3,()01144ln ln 1lim 1lim 43334=-+⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+∞→+∞→x k xx x x x x x x f x x ,故()()()[]+∞=-+-=+∞→+∞→k x x x x f x x 44ln ln lim lim 3.综合上述分析可画出()x f y =的草图,易知交点个数为2.16.设()t t f cos ln =,则()()='⎰dt t f t f t (A )A .C t t t +-sin cosB .C t t t +-cos sin C .()C t t t ++sin cosD .C t t +sin17.=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+∞→n n n n n n 22212111ln lim (B ) A .⎰212ln xdxB .⎰21ln 2xdxC.()⎰+211ln2dx x D .()⎰+2121ln dx x解:n n n n n n 22212111ln lim ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+∞→ n n n n n n 1.1ln )21ln()11ln(lim 2⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛++++++=∞→=+=∑=∞→n n i ni n 1.)1ln(lim 21()⎰+101ln 2dx x (令x t +=1)⎰=21ln 2tdt ⎰=21ln 2xdx18.已知()312x dt t f x =⎰,则()=⎰dx x f 12(C )A .1B .2 C.3 D .4 19.设dx e a x ⎰=102,()dxe b x ⎰-=112,则(C )A .b a >B .b a <C .b a =D .无法比较20.已知2sin 0π=⎰+∞dx x x ,则=⎰+∞02sin dx x x(B )A .0B .2πC .4πD .π解:========+∞=⎰x t dx x x 22sin 0⎰+∞021.2sin dt t t ==⎰+∞0sin dt t t 22sin 0π=⎰+∞dx x x .21.)ln(3y x e z xy ++=,则()=|2,1dz (B ) A .()()dy dx e ++12B .()()dy e dx e 11222+++ C .dx e 2 D .2e22.设21,y y 为一阶线性非齐次微分方程的()()x Q y x P y =+'的两个特解,若μλ,使21y y μλ+为该方程的解;21y y μλ-为该方程对应齐次方程的解,则通解为(A )A .21,21==μλ B .21,21-=-=μλ C .31,32==μλ D .32,32==μλ解:因为21,y y 为方程()()x Q y x P y =+'①的解,故有()()x Q y x P y =+'11②及()()x Q y x P y =+'22③由于21y y μλ+为①的解,所以将21y y μλ+代入①,得 ()()++'11y x P y λ()()()x Q y x P y =+'22μ④再将②、③代如④立得()()()x Q x Q =+μλ,于是有1=+μλ.⑤又因为21y y μλ-齐次方程()0=+'y x P y 的解,同理可得0=-μλ.⑥⑤、⑥联立可解得21,21==μλ.23.平面0623=+-+z y x 和直线⎪⎩⎪⎨⎧+=-=-=tz t y t x 21,33,1的位置关系是(C )A 平行B .直线在平面内C .垂直D .相交不垂直24.设函数()y x f z ,=的全微分为ydy xdx dz +=则点()0,0(D )A .不是()y x f ,的连续点B .不是()y x f ,的极值点C .是()y x f ,的极大值点D .是()y x f ,的极小值点解:由ydy xdx dz +=.可得yy zx x z =∂∂=∂∂,.令⎪⎪⎩⎪⎪⎨⎧==∂∂==∂∂,0,0y y zx x z可得唯一驻点()0,0.又122=∂∂=x z A ,02=∂∂∂=y x z B ,122=∂∂=y z C .则02>-=∆B AC ,且0>A ,所以()0,0是()y x f ,的极小值点.25.设区域(){}0,0,4|,22≥≥≤+=y x y x y x D ,()x f 为D 上的正值连续函数,b a ,为常数,则()()()()=++⎰⎰dxdy y f x f yf b x f a D(D )A .ab πB .ab π21C .()b a +πD .()b a +π21解:对于题设条件中含有抽象函数或备选项为抽象函数形式结果以及“数值型”结果的选者题,用赋值法求解往往能收到奇效,其思想是:一般情况下正确,那么特殊情况下也必然正确.重积分或曲线积分中含抽象函数时,通常利用对称性、轮换对称性等综合手段加以解决. 本题中,取()1=x f ,立得()()()()=++⎰⎰dxdy y f x f y f b x f a D =+=+⎰⎰π41.22b a dxdy b a D()b a +π2126.二元函数()()224,y x y x y x f ---=,则()2,2-(A )A . 是极大值点B .是极小值点C .是驻点但非极值点D .不是驻点27.设()y x f ,为连续函数,二次积分()dyy x f dx x⎰⎰2020,写成另外一种次序的二次积分是(B )A .()dxy x f dyxx⎰⎰202,B .()dxy x f dy yy ⎰⎰2022, C .()dx y x f dy y⎰⎰20,D .()dx y x f dy yy ⎰⎰0222,28.设(){}y y x y x D 2|,22≤+=,,()y x f ,在D 上连续,则()=⎰⎰dxdyxy f D( D )()()dy y x f dx A xx ⎰⎰----111122,;()()dyy x f dy B yy ⎰⎰-10202,2;()()d r r f d C ⎰⎰πθθθθ0si n202cos sin ;()()d r r rf d D ⎰⎰πθθθθ0si n 202cos sin .29.下列级数条件收敛的是(B )A .∑∞=14sin n n n α(α是常数) B .()∑∞=-1311n n n C .()∑∞=+-1311n n n nD .∑∞=++111n n n30.已知()()()x f y x Q y x P y =+'+''的三个特解:xx e y e y x y 2321,,===,则该方程的通解为().()()()x x e x C e x C A 221-+-;()xx e e C x C B 221++; ()()()x e x C x e C C x x +-+-221;()x x e C e C x D 221++.解:根据二阶常系数线性微分方程解的性质知,x e x -及xe x 2-均是对应的齐次方程的解,故齐次通解为()()x x e x C x e C Y 221-+-=;所以原非齐次方程的通解是()().221x e x C x e C y x x +-+-=选().C二、填空题(每空2分,共20分)31.极限=⎪⎭⎫ ⎝⎛-∞→x x x 1sin 2lim 22.2- 解:=⎪⎭⎫ ⎝⎛-∞→x x x 1sin 2lim 22211sin2lim22-=-∞→x x x .32.()[]40sin sin sin sin lim x x x x x-→=61. 解:()[]40sin sin sin sin lim x x x x x -→()[]40sin sin sin lim x x x x x -=→()30sin sin sin lim x x x x -=→()203cos .sin cos cos lim x x x x x -=→()203sin cos 1.cos lim x x x x -=→()203sin cos 1lim x xx -=→613sin 21lim 220==→x xx . 33.设23232-+-=x x x y ,则()()=18y .231!889⎪⎭⎫ ⎝⎛-解:()()()()1121221212112232323----+=--+=-+-=-+-=x x x x x x x x x x y .()[]()[]'--'+=--11122x x y ()()()()2.1212122-----+-=x x ;()()[]()()[]'---'+-=''--2.1212122x x y ()()()()()()2332.1221221------+--=x x ;归纳可得()()()()()()()()()88982.128212821-------+---=x x y所以()()()()()()()().231!82.8213.821189898⎪⎭⎫ ⎝⎛-=-------=- y34.设()x y y =是由12=-⎰+-dt e x yx t ①所确定的函数,则==|x dxdy1-e .解:①关于x 求导并注意到()x y y =,得()112=⎪⎭⎫ ⎝⎛+-+-dx dy e y x .②当0=x 时,由①式求得1=y .将0=x ,1=y 代入②可算得1|0-==e dx dyx .35.设()x y y =.如果11.-=⎰⎰dx y dx y ①,()10=y ,且当+∞→x 时,0→y ,则=y .x e -解:由①式得⎰⎰-=ydxdx y11②②关于x 求导并注意到()x y y =,得()yydx y.112⎰=即()22y dx y =⎰故y dx y ±=⎰,即dx dy y ±=③③分离变量,且两边积分得x Ce y =或xCe y -=④又根据条件()10=y 及+∞→x 时,0→y ,得.xe y -=36.=+⎰dx x x 811531.27029 解:=+⎰dx x x 8101531()dx x d x x 881083181+⎰(令8x t =)dt t t 318110+=⎰(令t u 31+=,即()1312-=u t )()27029353611361|21352212=⎥⎦⎤⎢⎣⎡-=-=⎰u u du u u .37.设()y x z z ,=是由方程2222=+++z y x zxy ①所确定的隐函数,则()='-|1,0,1y z 2-. 解法一:令().2,,222-+++=z y x zxy z y x F则222z y x xyzF x +++=';222z y x yxz F y +++=';.222z y x zxy F z +++='故222222z y x xy z y x yxz F F z z y y ++++++-=''-='.所以,().2|1,0,1='-y z解法二:①两边全微分,得()().022221222=+++++++zdz ydy xdx zy x xydz xzdy yzdx即()().0222=+++++++zdz ydy xdx xydz xzdy yzdx z y x ②将)1,0,1(-代入②得 ()().02=-+-dz dx dy即.2dy dx dz -=所以()1|1,0,1='-x z ,().2|1,0,1-='-y z38.设L 为从点()0,0O 到点()0,1A 再到点()1,1B 的折线,则()=--⎰ydx y x xdy L 221. 解:()=--⎰ydx y x xdy L22()+--⎰ydx y x xdy OA22()ydx y x xdy AB⎰--22()⎰⎰=+--=11221.10.0dy dx x .39.微分方程0=+'+''y y y 的通解为.23sin 23cos 212⎪⎪⎭⎫⎝⎛+=-x C x C e y x解:(一)0=+'+''y y y 对应的特征方程为:012=++r r ,其特征根为i r 2321±-= (二)通解为:.23sin 23cos 212⎪⎪⎭⎫⎝⎛+=-x C x C e y x40.幂级数()nn n x n 124202-+∑∞=①的收敛域为().2,2- 解:(一)记12-=x t ,则级数①化为nn n t n ∑∞=+0242.②记422+=n a nn , ,2,1=n().224412lim lim 2211=+⨯++==+∞→+∞→n n n nn n n n a a ρ所以,级数②的收敛半径是.211==ρR又当21-=t 时,级数②化为()∑∞=+-0241n nn 收敛;又当21=t 时,级数②化为∑∞=+0241n n 也收敛.所以级数②的收敛域是⎥⎦⎤⎢⎣⎡-∈21,21t . (二)由⎥⎦⎤⎢⎣⎡-∈-21,2112x 解得⎥⎦⎤⎢⎣⎡∈43,41x ,故原级数的收敛域为.43,41⎥⎦⎤⎢⎣⎡ (1)如果()122<=x x ρ,即2||<x 时,则∑∞=-1122n nn x 收敛; (2)(1)如果()122<=x x ρ,即2|>x 时,则∑∞=-1122n nn x 发散,所以,.2=R(3)又在端点2±=x 处∑∞=±⇒1121n 发散.所以,收敛域为()2,2-三、计算题(每小题5分,共45分)41.已知()5132sin 1ln lim 0=-⎪⎭⎫ ⎝⎛+→x x x x f ①,求()20lim x x f x →.解:由①式得()=-⎪⎭⎫ ⎝⎛+=→132sin 1ln lim 50x x x x f ()=-→12sinlim 3ln 0x x e x x f ()3ln 2lim 0x x x f x → ().lim 3ln 2120x x f x →=②由②式即可算得().3ln 10lim 20=→x xf x42.设函数()x y y =由参数方程()⎪⎩⎪⎨⎧+==⎰20)1ln(,t du u y t x x 确定,其中()t x x =是微分方程02=--xte dt dx 在初始条件0|0==t x 下的特解,求22dx y d .解:(一)微分方程02=--x te dt dx为可分离变量型,可转化为tdt dx e x 2=①①两边积分得C t e tdt dx e x x +=⇒=⎰⎰22②又将初始条件|==t x 代入②,得1=C ,因此()()21ln t t x +=③(二)()()22221ln 1122).1ln(tt t t t t dtdx dt dy dx dy ++=++==(三)dt dxdx dy dt d dx dy dx d dx y d 1.22⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛= ()()[]=+++=22211.1ln 1t dtt t d ()[])1ln(1122t t +++.43.设函数()2,sin ,222+-=x x y y x f x z ,其中f 具有二阶连续偏导数,求.;22y zx z ∂∂∂∂解: (一)[]x f x y f f x xf x z 2cos 2.23212'+'+'+=∂∂(二)[]x ff x y z sin 212'+'-=∂∂,所以()[]()[]{}x f f x x f f x y z sin 1sin sin 122211211222''+-''+''+-''-=∂∂44.计算反常积分()()⎰+∞++0321dxx x解:()()111112l n 2323233x d x d x d x d x c x x x x xx x +⎛⎫=-=-=+ ⎪+++++++⎝⎭⎰⎰⎰⎰所以()()002112222l n l i m l n l n l i m l n l n 32333331|x x x x x d x x x x x x +∞+∞→+∞→+∞+++==-=-+++++⎰23l n 1l n l n .32=-=45.求曲线..0,6:222⎩⎨⎧=++=++Γz y x z y x 在点()1,2,1-的切线. 解:方程组两边关于x 求导,得:..01,0222⎪⎪⎩⎪⎪⎨⎧=++=++dx dz dx dy dxdz z dx dy y x ①将点()1,2,1-代入(1),得:..01,0242||||1111⎪⎪⎩⎪⎪⎨⎧=++=+-====x x x x dx dz dx dy dx dz dx dy 解之,有:.1,0||11-====x x dx dz dx dy所以,切线向量为:{}1,0,1-= 故曲线在点()1,2,1-的切线为:.110211--=+=-z y x46.设函数()x f 在正半轴()0>x 上有连续导数()x f '且().21=f 若 在右半平面内沿任意闭合光滑曲线l ,都有()043=+⎰dy x xf ydx x l求函数().x f解:()y x y x P 34,=,()()x xf y x Q=,都是右半平面上的连续函数,由于在右半平面内沿任意闭合光滑曲线l ,都有()043=+⎰dy x xf ydx x l故有x Qy P ∂∂=∂∂即()()x f x x f x '+=34化简,得()()241xx f x x f =+'(1)(1)为一阶线性微分方程,其通解为()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c e x ex f dx xdx x1214[]()c dx x x c e x e xx +=+=⎰⎰-3ln 2ln 414 ().1134x c x c x x +=+=(2)代入条件()21=f ,得 .1=c故().13x x x f +=47.求幂级数()11!1-∞=∑+n n x n n的和函数.解:(一)记()!1+=n na n , ,2,1=n ,则21limlim 21=++==∞→+∞→nn n a an nn n ρ,故收敛半径为+∞=R .收敛域为()+∞∞-,. (二)记()(),!111-∞=∑+=n n x n n x s+∞<<∞-x .则()()11!1-∞=∑+=n n x n n x s ()()11!111-∞=∑+-+=n n x n n 11!1-∞=∑=n n x n ()11!11-∞=∑+-n n x nn n x n x ∑∞==1!11()112!111+∞=∑+-n n x n x n n x n x ∑∞==1!11nn x n x∑∞=-22!11⎥⎦⎤⎢⎣⎡-=∑∞=1!110n n x n x ⎥⎦⎤⎢⎣⎡---∑∞=x x n x n n 1!1102[]11-=xe x []()011122≠+-=---x x e xe x e x xx x .又()()2001lim lim 0x e xe x s s xx x x +-==→→212lim 0==→x x e . 所以⎪⎪⎩⎪⎪⎨⎧=≠--=0,210,1)(2x x x x xe x S x解法二:记()(),!111-∞=∑+=n n x n n x s+∞<<∞-x .()()n n xx n dx x s ∑⎰∞=+=10!11()=+=+∞=∑11!111n n x n x ∑∞=2!1n nn x x()x e x x--=11所以()()()2111x x e e x x x e x s xx x ----='⎪⎪⎭⎫ ⎝⎛--=21x e xe x x +-=.48.计算二重积分Ddxdy e I Dx ,2⎰⎰=是第一象限中由直线x y =和曲线3x y =所围成封闭区域.解:因为二重积分的被积函数()2,xe y xf =,它适宜于“先对y ,后对x ” ,故D 可用不等式表示为⎩⎨⎧≤≤≤≤.10,:3x x y x D 于是 ()dx ex x dy e dx dxdy e I xxx xD x23221310⎰⎰⎰⎰⎰-===dx e x x 21⎰=dx e x x 213⎰-()210221x d e x ⎰=()210221x e d x ⎰-()⎥⎦⎤⎢⎣⎡--=⎰21010210222||2121x d e e x e x x x ()()().121212112121121|102-=-+--=⎥⎦⎤⎢⎣⎡---=e e e e e e e x49.求方程0=-''y y ①的积分曲线,使其在点()0,0处与直线x y =相切.解:方程①的特征方程为012=-r ,解之得1,121=-=r r ,故方程①的通解为x x e C e C y 21+=-.② xx e C e C y 21+-='-③由题意知有()()10,00='=y y .将条件()()10,00='=y y 分别代入②、③有⎩⎨⎧=+-=+1,02121C C C C 解得⎪⎪⎩⎪⎪⎨⎧=-=21,2121C C所以2x x e e y --=.四、应用题(每小题8分,共16分)50.设三角形的边长分别为c b a ,,,其面积为S ,试求该三角形内一点到三边距离之乘积的最大值. 解:任取三角形内一点P ,设其距三边的距离分别为z y x ,,,则有.2212121S cz by ax S cz by ax =++⇒=++问题转化成求xyz V =在02=-++S cz by ax 下的最大值.令()()S cz by ax xyz z y x L 2,,,-+++=λλ,令⎪⎪⎩⎪⎪⎨⎧=-++='=+='=+='=+='.02,0,0,0S cz by ax L c xy L b xz L a yz L z y x λλλλ,解之得:.32,32,32c S z b S y a S x === 故.2783max abc S V =另解:[]().27827231..1333abc S abc S cz by ax abc cz by ax abc xyz V ==⎪⎭⎫ ⎝⎛++≤==上述等式成立当且仅当,cz by ax ==又02=-++S cz by ax ,所以,当且仅当.32,32,32c Sz b S y a S x ===时,等式成立.51.平面图形D 由抛物线x y 22=与该曲线在点⎪⎭⎫ ⎝⎛1,21处的法线围成.试求:(1)D 的面积;(2)D 绕x 轴旋转一周所形成的旋转体的体积.解:(1)方程x y 22=两边关于x 求导得 22='y y ①将1,21==y x 代入①式得1|21='=x y 。
2021年成考高起专数学模拟题及答案1
全国成人高考数学(文史类)考前模仿试题第Ⅰ卷(选取题,共85分)一、选取题:本大题共17小题;每小题5分,共85分。
在每小题给出四个选项中,只有一项是符合题目规定。
1.设集合A={a,b,c,d,e} B={a,b,e},则AUB= ( ) A. {a,b,e } B. {c,d} C. {a,b,c,d,e} D. 空集2. 函数y=1-│x+3│ 定义域是 ( ) A .R B.[0,+∞] C.[-4,-2] D.(-4,-2)3.设2,{|20},U R M x x x ==->,则UM =( )A .[0,2]B .()0,2C .()(),02,-∞⋃+∞D .(][),02,-∞⋃+∞4. 设甲:x=2; 乙: x2+x-6=0,则 ( ) A.甲是乙必要非充分条件 B.甲是乙充分非必要条件C.甲是乙充要条件D.甲不是乙充分条件也不是乙必要条件5.函数0)y x =≥反函数为( )A .2()4x y x R =∈B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥6. 两条平行直线z 1=3x+4y-5=0与z 2=6x+8y+5=0之间距离是 ( ) A .2 B.3 C. 12 D. 327.设tan α=1,且cos α<0,则sin α=( )A. 2-B. 12- C. 12 D. 28. 已知ABC ∆中,AB=AC=3,1cos 2A =,则BC 长为( )A. 3B. 4C. 5D. 69.已知向量a =(4,x),向量b=(5,-2),且a ⊥b,则x 值为( ) A.10 B.-10 C. 85 D. 85-10. 到两定点A (-1,1)和B (3,5)距离相等点轨迹方程为 ( ) A. x+y-4=0 B .x+y-5=0 C .x+y+5=0 D. x-y+2=011.以椭圆x 216 +y 29 =1上任意一点(长轴两端除外)和两个焦点为顶点三角形周长等于( ) A .12 B .8+27 C .13 D. 1812.抛物线y 2=-4x 上一点P 到焦点距离为3,则它横坐标是 ( ) A. -4 B. -3 C. -2 D. -113.过(1,-1)与直线3x+y-6=0平行直线方程是( )A. 3x-y+5=0B. 3x+y-2=0C. x+3y+5=0D. 3x+y-1=014.函数31y ax bx =++(a ,b 为常数),f (2)=3,则f (-2)值为( ) A.-3 B.-1 C.3 D.115.设n S 为等差数列{}n a 前n 项和,若11a =,公差为22,24k k d S S +=-=,则k=( ) A .8 B .7C .6D .516.掷两枚硬币,两枚币值面都朝上概率是 ( ) A. 12 B. 14 C. 13 D. 1817.若从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作,则选派方案共有( ) A .180种 B.360种 C .15种 D.30种第Ⅱ卷(非选取题,共65分)二、填空题:本大题共4小题;每小题4分,共16分。
成考高等数学(一)成人高考(专升本)试题及答案指导
成人高考成考高等数学(一)(专升本)自测试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、下列关于多元函数极值的论述中,正确的是:A. 若函数f(x, y)在点(a, b)的某一邻域内单调增加,则f(x, y)在点(a, b)处取得极小值。
B. 若函数f(x, y)在点(a, b)的某一邻域内单调减少,则f(x, y)在点(a, b)处取得极大值。
C. 若函数f(x, y)在点(a, b)的某一邻域内先增后减,则f(x, y)在点(a, b)处无极值。
D. 若函数f(x, y)在点(a, b)的某一邻域内先减后增,则f(x, y)在点(a, b)处取得极小值。
2、若函数 f(x) = 3x^2 - 4x + 1 在 x = a 上的导数为 4,则 a 的值是()A. 1/3B. 1C. -1/3D. -13.以下哪个函数是偶函数?A.f(x) = x² - 3xB.f(x) = x³ + 2xC.f(x) = |x|D.f(x) = sin x4、函数y=In(1+x^2)的单调递增区间是:A.(0,+∞)B.(-∞,0)C.(-∞,-1)和(1,+∞)D.(-1,1)5、设向量 u = (3, 4),向量 v = (4, -3),则 u 和 v 的点积是A. 0B. 25C. -25D. 56、设函数f(x)=mx3+nx2+(m+2n)x−1,其中m,n为实数。
若f(x)在x=1处取得极大值,求m+n的值。
A.-1B.0C.1D.27、已知等腰三角形的一条边长为2,另一边长为3,则它的周长等于(C)A. 9B. 10C. 7D. 88、判断下列方程的解集,其中正确的是()A、x2 + x - 6 = 0的解集是 {-3, 2}B、x2 - 4x + 4 = 0的解集是 {1}C、2x2 - 5x + 2 = 0的解集是 {2, 1}9、函数f(x)={1xx≠02x=0的导数f′(0)为:A. 0B. 1C. -1D. 不存在10、下列关于函数的单调性和一致性的说法中,正确的是( )A、单调性与一致性是一回事B、所有幂函数都是一致可微的C、函数在某个开区间上单调,则该函数在闭区间上也是单调的D、连续函数不一定有单调区间11、函数 y=sinx 的零点是 _____ 。
成考数学(文科)成人高考(高起专)试题及解答参考(2025年)
2025年成人高考成考数学(文科)(高起专)复习试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、若函数f(x)=x2−4x+5在x=2处取得极值,则该极值为:()A.−1B.0C.1D.32、若函数f(x) = x^3 - 3x^2 + 4x在区间[1,2]上连续,且f’(x) = 3x^2 - 6x + 4,则f(x)在区间[1,2]上的极值点为:A. 1B. 1.5C. 2D. 无极值点3、在下列各数中,既是质数又是合数的是()A、4B、6C、9D、154、在下列各数中,最小的负整数是()A、-1.5B、-3C、-2D、-2.35、若函数(f(x)=x2−4x+3)的图像与(x)轴交于点(A)和(B),则(AB)的长度是:A. 2B. 3C. 4D. 56、在下列各数中,绝对值最小的是:A、-2B、0C、2D、-37、下列函数中,在其定义域内连续的函数是())A.(f(x)=xxB.(g(x)=√x2)C.(ℎ(x)=|x|))D.(k(x)=1x8、在下列各数中,既是整数又是无理数的是()A、√4B、πC、0.25D、-1/29、下列各数中,有理数是:A、√2B、πC、−3√5D、3210、已知函数(f(x)=2x3−3x2+4),求函数的极值点。
A.(x=−1)B.(x=1)C.(x=0)D.(x=2)11、若函数f(x)=lnx的图像上一点A(x0,lnx0),那么该点的切线斜率为:A.1B.1x0C.1x0−1D.1x0+112、在下列各数中,哪个数是无限循环小数?A、0.333…B、0.444…C、0.666…D、0.777…二、填空题(本大题有3小题,每小题7分,共21分)1、若函数(f(x)=√2x+3−x)的定义域为(A),则(A)的取值范围是______ 。
2、若函数(f(x)=2x3−3x2+2)在(x=1)处的切线斜率为 4,则(f′(1))的值为______ 。
2024年成考高起专、高起本数学(理)-模拟押题卷
2024年成考高起专、高起本数学(理)模拟试卷一、选择题:1~12小题,每小题7分,共84分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合 , 则 ( ) A. B. C. D.2. 若 , 则下列式子中正确的是 ( ) A. B. C. D.3. 已知函数 为奇函数, 当 时, , 则 ( )A. -5B. -3C. 0D. 9 4. 函数 的定义域为 ( ) A. B. C. D. 5. 已知 是第一象限角, , 则 ( ) A. B. C. D. 6. 在等差数列 中, 已知 , 则 ( ) A. 4 B. 7 C. 11 D. 127. 已知直线a, b 和平面 , 若 且 , 则直线 与平面 A. 平行 B. 相交 C. 异面 D.平行或异面8. 棈圆 的离心率是 ( ) A. B. C. D. 29. 在 的展开式中, 的系数为 ( )A. 1B. 4C. 6D. 8{1,2,4,5},{0,2,5,7}A B ==A B ⋂={1,2}{2,4}{2,5}{0,7}20x ->32x x x >>23x x x >>32x x x >>23x x x >>()f x 0x >2()3f x x x =-+(2)f -=2()1f x x =-(,1)-∞(1,4](,1)(1,4]-∞⋃[4,)+∞αtan 1α=cos α=2-12-122{}n a 254,7a a ==10a =α,//a b a α⊂b α⊂/b α22149x y +=1323341x x ⎛⎫+ ⎪⎝⎭2x10.已知 为虚数单位), 则A. -1B. 1C. -3D. 311.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( ) A .-43B .-34C .3D .212.函数y=2cos (-x +π2)的最小正周期是 ( )A .π2 B .π4 C .2π D .π二、填空题:13~15小题,每小题7分,共21分 13. 若 , 则.14. 已知向量 , 若 , 则 15.若直线ax +2y +1=0与直线x +y -2=0互相垂直,则a 的值为 三、解答题:16~18小题,每小题15分,共45分.解答应写出文字说明、证明过程或演算步骤16. 关于 的不等式 在区间 内有解,求 的取值范围.17. 在 中, 已知 , 求 和 的面积.18. 已知椭圆 , 且经过点 , 且度心率为,(1) 求椭圆 的方程;(2) 设直线 与椭圆 相交于P, Q 两点, 事 的值,,(1i)i 3i(i a a ∈+=+R ()a =tan 3α=2sin 3cos 4sin 5cos αααα-=-(2,3),(1,1),(1,)m ==-=a b c //()+c a b m =x 2420x x a --->(1,3)a ABC 30,105,10A B a ︒︒===c ABC 2222:1(0)x y C a b a b+=>>(2,0)A C 1y x =-C AP AQ ⋅2024年成考高起专、高起本数学(理)模拟试卷(一)答案1.【答案】C【考点】本题主要考查了集合交集的运算.【解析】已知集合 ,根据"交集取公共", 可得.2.【答案】C【考点】本题主要考查了不等式的性质。
2024年成人高考成考(高起专)数学(文科)试题及答案指导
2024年成人高考成考数学(文科)(高起专)模拟试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、已知函数f(x)=2x2−3x+1,则该函数的导数f′(x)为:A.4x−3B.2x−3C.4x+1D.2x+12、在下列各数中,绝对值最小的是()A、-3/2B、-1/2C、3/2D、1/23、若一个正方形的边长增加其原长的25%,则新正方形的面积比原来增加了多少百分比?A、50%B、56.25%C、75%D、100%4、在下列各数中,不是有理数的是:A、-5.25B、√16C、πD、0.35、已知直线(l)的方程为(2x−3y+6=0),则直线(l)的斜率是多少?)A、(23)B、(32)C、(−23)D、(−326、下列函数中,定义域为全体实数的是()A、f(x) = √(x+1)B、f(x) = √(x^2 - 4)C、f(x) = 1 / (x-2)D、f(x) = 1 / (x^2 + 1)7、设函数f(x)=2x2−3x+1,则该函数的最小值为()。
A.−18B.18C.−1D.1),则下列说法正确的是:8、若函数(f(x)=3x2−2x+1)的图像的对称轴为(x=13A.(f (0)=f (1))B.(f (0)=f (−13))C.(f (13)=f (−13))D.(f (0)+f (1)=2f (13))9、若直线(l )的方向向量为((3,−4)),则直线(l )的斜率为:A.(34)B.(−34)C.(43)D.(−43)10、在下列各数中,有理数是( )A.√2B.πC.13D.ln211、一个等差数列的前三项分别是2、5、8,那么该数列的公差是多少?A 、3B 、4C 、5D 、612、已知函数f (x )=2x−1x 2−2x+1,下列说法正确的是:A. 函数的定义域为(−∞,1)∪(1,+∞)B. 函数的值域为(−∞,0)∪(0,+∞)C. 函数的增减性在x=1处发生改变D. 函数的图像关于直线x=1对称二、填空题(本大题有3小题,每小题7分,共21分)1、若函数f(x)=12x2−3x+4在x=1处取得极值,则该极值为_______ 。
成人高考大专试卷数学
1、已知直角三角形的两条直角边分别为3和4,则斜边的长为:A. 6B. 7C. 5D. 8解析:根据勾股定理,直角三角形的斜边c满足c² = a² + b²,其中a和b为直角边。
代入a=3,b=4,得c² = 3² + 4² = 9 + 16 = 25,所以c = √25 = 5。
(答案:C)2、下列哪个数不是质数?A. 2B. 3C. 4D. 5解析:质数是只有两个正因数(1和本身)的自然数。
2、3、5均只有两个正因数,而4除了1和4本身,还有2为其因数,因此4不是质数。
(答案:C)3、若一个长方形的长是宽的2倍,且面积为128平方厘米,则长方形的宽为:A. 8厘米B. 16厘米C. 64厘米D. 32厘米解析:设长方形的宽为x厘米,则长为2x厘米。
根据面积公式,长×宽=128,即2x ×x = 128,解得x² = 64,所以x = 8(厘米)。
(答案:A)4、一个圆的半径扩大为原来的2倍,其面积将变为原来的:A. 2倍B. 3倍C. 4倍D. 6倍解析:圆的面积公式为S = πr²。
当半径扩大为原来的2倍时,新的面积为S' = π(2r)² = 4πr²,即原面积的4倍。
(答案:C)5、下列哪个表达式表示的是“x的3倍与5的和”:A. 3(x + 5)B. 3x + 5C. (3 + x) × 5D. 3 + 5x解析:根据文字描述,“x的3倍”为3x,“与5的和”即将3x与5相加,得到3x + 5。
(答案:B)6、如果a > b,且c < 0,那么下列不等式中成立的是:A. ac > bcB. a - c > b - cC. a/c < b/cD. a + c > b + c解析:对于选项A,由于c < 0,乘以正数a和b后,不等号方向会反转,所以ac < bc;对于选项B,两边同时减去相同的数c,不等号方向不变,a - c > b - c成立;对于选项C,由于c < 0,除以c后不等号方向反转,a/c > b/c;对于选项D,两边同时加上相同的数c,不等号方向不变,但题目要求选择成立的,而D选项并非唯一正确,需对比其他选项。
成人高考大专数学试卷(2篇)
第1篇一、选择题(每题2分,共20分)1. 下列各数中,无理数是()A. √4B. √9C. √16D. √252. 已知a、b是方程x^2 - 5x + 6 = 0的两个根,则a+b的值为()A. 5B. 6C. 7D. 83. 若函数f(x) = 2x + 1,则f(-1)的值为()A. 1B. 0C. -1D. -24. 下列函数中,为奇函数的是()A. y = x^2B. y = x^3C. y = x^4D. y = x^55. 若|a| = 3,|b| = 5,则|a+b|的取值范围是()A. [2, 8]B. [4, 8]C. [2, 10]D. [4, 10]6. 在△ABC中,若a=3,b=4,c=5,则sinA的值为()A. 3/5B. 4/5C. 5/3D. 5/47. 若等差数列{an}的首项为2,公差为3,则第10项an的值为()A. 29B. 32C. 35D. 388. 下列命题中,正确的是()A. 若a > b,则a^2 > b^2B. 若a > b,则a^2 < b^2C. 若a > b,则a^3 > b^3D. 若a > b,则a^3 < b^39. 下列函数中,为反比例函数的是()A. y = x^2B. y = 2/xC. y = x^3D. y = 3x10. 已知等比数列{an}的首项为2,公比为1/2,则第5项an的值为()A. 2/32B. 2/16C. 2/8D. 2/4二、填空题(每题3分,共30分)11. 若x^2 - 3x + 2 = 0,则x的值为______。
12. 函数f(x) = x^2 - 4x + 4在区间[1, 3]上的最大值为______。
13. 若a、b、c是△ABC的三边,则a+b>c的充分必要条件是______。
14. 已知数列{an}的前n项和为Sn,若an = 2n - 1,则Sn的值为______。
成人教育数学考试及答案
成人高考高起点数学内部押题密卷(一)一、选择题(本大题共15小题, 每小题5分, 共75分。
在每小题给出的四个选项中, 只有一项是符合题目要求的)1.已知集合, 则下列关系中正确的是()A. B. C. D.2. 下列函数为偶函数的是()3. A. B. C. D.条件甲: , 条件乙: , 则条件甲是条件乙的()A. 充分但不必要条件B. 必要但不充分条件C. 充要条件D. 既不充分又不必要条件4. 复数的辐角主值是()A. B. C. D.5. 两条平行直线与之间的距离是()A. 2B. 3C.D.6. 函数的定义域是()A. RB.C.D.7. 为第二象限角, , 则的值为()A. B. C. D.8. 下列命题中, 正确的是()A. 空间中, 垂直于同一条直线的两直线平行B. 空间中, 垂直于同一平面的两直线平行C. 空间中, 垂直于同一平面的两平面平行D. 空间中, 与同一平面所成角相等的两直线平行9.下列等式中, 成立的是()A. B. C. D.10. 抛物线的准线方程为()A. B. C. D.11.由0, 1, 2, 3, 4五个数字组成没有重复数字的五位偶数的个数为()A. 120个B. 60个C. 36个D. 24个12. 参数方程表示的图形是()A. 垂直于轴的直线B. 平行于轴的直线C. 以原点为圆心的圆D. 过原点的圆13.若从一批有8件正品, 2件次品组成的产品中接连抽取2件产品(第一次抽出的产品不放回去), 则第一次取得次品且第二次取得正品的概率是()A. B. C. D.14. 已知在上是的减函数, 则的取值范围是()A. (0, 1)B. (1, 2)C. (0, 2)D. (2, )15.设是上的奇函数, , 当时, , 则的值为()A. 0.5B. -0.5C. 1.5D. -1.5二、填空题(本大题共4个小题, 每小题4分, 共16分。
把答案填在题中横线上)16.则ξ的期望值)(ξE = 。
成人高考成考(高起专)数学(理科)试卷及解答参考
成人高考成考数学(理科)(高起专)模拟试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、若函数(f(x)=x3−3x2+4)的导数(f′(x))等于0,则(f(x))的极值点为:A、(x=0)B、(x=1)C、(x=2)D、(x=−1)2、已知函数f(x)=x 2−4x−2,则函数的定义域为()A.x≠2B.x≠0C.x≠2且x≠0D.x≠0且x≠−23、若函数(f(x)=1x−2+√x+1)在区间([−1,2))上有定义,则函数(f(x))的定义域为:A.([−1,2))B.([−1,2])C.((−1,2))D.((−1,2])4、在下列各数中,正实数 a、b、c 的大小关系是:a = 2^(3/2),b = 3^(2/3),c = 5^(1/4)。
A、a < b < cB、b < a < cC、c < b < aD、a = b = c5、已知函数f(x)=2x3−9x2+12x+1,若函数的图像在(−∞,+∞)上恒过点(a,b),则a和b的值分别为:A.a=2,b=9B.a=3,b=10C.a=1,b=2D.a=0,b=1+2x)在(x=1)处有极值,则此极值点处的导数值为:6、若函数(f(x)=3xA. 1B. -1C. 0D. 3在点x=1处的导数等于多少?7、若函数f(x)=2x−3x+1A、2B、−1C、1D、08、已知函数f(x)=x 3−3x2+4xx2−2x+1,则f(x)的奇偶性为:A. 奇函数B. 偶函数C. 非奇非偶函数D. 无法确定9、在下列数列中,属于等差数列的是()A、1, 2, 3, 4, 5B、1, 3, 6, 10, 15C、2, 4, 8, 16, 32D、1, 3, 6, 9, 1210、已知函数(f(x)=1x+x2)在区间((−∞,+∞))上的定义域为(D),且函数的值域为(R),则(D)和(R)分别是:A.(D=(−∞,0)∪(0,+∞),R=(−∞,0)∪(0,+∞))B.(D=(−∞,0)∪(0,+∞),R=[0,+∞))C.(D=(−∞,+∞),R=(−∞,+∞))D.(D=(−∞,+∞),R=[0,+∞))11、若函数f(x)=x3−3x2+4x,则函数的对称中心为:A.(1,2)B.(1,1)C.(0,0)D.(−1,−1)12、若函数(f(x)=√x2−4)的定义域为(D f),则(D f)为:A.(x≥2)B.(x≤−2)或(x≥2)C.(x≤−2)或(x≥2)D.(x≥2)或(x≤−2)二、填空题(本大题有3小题,每小题7分,共21分)1、在△ABC中,若sinA=√55,cosB=−√1010,则sinC=____.2、已知直线(l)的方程为(3x−4y+10=0),求直线(l)在 y 轴上的截距。
成人高考高起专数学复习题库与答案(必过)
第一章 集合与简易逻辑
(一)集合
1.
(2006 年)设集合 M= 1,0,1,2 , N= 0,1,2,3 ,则 M N (
)
(B) 0,1,2 (C) 1,0,1 (D) 1,0,1,2,3
(A) 0,1
2.(2008 年)设集合 A= 2,4,6 , B= 1,2,3,则集合 A B (
(A)甲是乙的充分条件,但不是乙的必要条件
(B)甲是乙的必要条件,但不是乙的充分条件
(C)甲不是乙的充分条件,也不是乙的必要条件
1
)
)
(D)甲是乙的充分必要条件
11. (2007 年)若 x, y 为实数,设甲: x y 0 ;乙: x 0 且 y 0 ,则(
2
2
)
(A)甲是乙的必要条件,但不是乙的充分条件
(D)甲是乙的充分必要条件
16.(2013 年)设甲: x 1;乙: x 2 1,则 (
)
(A)甲是乙的必要条件,但不是乙的充分条件
(B)甲是乙的充分必要条件
(C)甲是乙的充分条件,但不是乙的必要条件
(D)甲既不是乙的充分条件,也不是乙的必要条件
17.
(2014 年)
如 a,b,c 为实数,
(C){x|x 1 或 x 5 } (D) x 1 x 5
5.(2011 年)不等式│x-2│<3 的解集包含的整数共有 (
(A)8 个 (B)7 个
(A)甲是乙的充分必要条件
2
)
)
(B)甲是乙的必要条件,但不是乙的充分条件
(C)甲是乙的充分条件,但不是乙的必要条件
成人高考成考(高起专)数学(理科)试题及解答参考
成人高考成考数学(理科)(高起专)模拟试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1.()下列哪个数是有理数?A. √2B. πC. -3/4D. e2.已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 413、设 a,b,c 均为实数,且满足 a > b,则下列不等式正确的是 ( )。
A. c + a > b + cB. c^a > c^b (其中 c > 0)C. loga(a - b) < 0D. √a > √b(其中 a ≥ b ≥ 0)4.已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 415.已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 416、设集合 A = { x | x 是小于 5 的正整数},集合 B = { 1, 3 },则集合 A 和集合 B 的关系是()。
A. A 属于 BB. B 属于 AC. A 与 B 有交集D. A 与 B 无交集且不相等7、已知函数 f(x) = ax^3 + bx^2 + cx 在 x=0 处可导,且f’(x) 为 f(x) 的导函数。
若f’(x) 在 x=1 处取得极值点,则 a 和 b 的关系是()A. a > bB. a < bC. a = bD. 无法确定8、设函数 f(x) = sin x + cos x,则f’(x) 为多少?A. √2sin(x+π/4)B. √2cos(x+π/4)C. √2cos xD. √2sin x9、下列不等式组中无实数解的是()A. { x + 3 > 0 ,x + 4 > 3x - 2 }B. { x + 1 ≤ 3 ,x ≥ 2 }C. { x ≥ 5 ,x + 1 < 3 }D. { x < 4 ,x ≥ 4 }10.在数列中,如果一个数是前一项与后一项的差,那么这个数是:A. 等差数列的公差B. 等比数列的公比C. 等差数列的公差D. 等比数列的公比11.已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 4112.在下列选项中,哪个数的平方根是整数?A. 4B. -4C. 0D. 3二、填空题(本大题有3小题,每小题7分,共21分)1、不等式组{x +y ≤2x −y ≤1y ≥0表示的平面区域的面积为 ____. 2. 已知函数f (x )=x 3−3x +1,则f (x )在区间[−2,2]上的最大值是 ______ ,最小值是 ______.3. 已知函数f (x )={x 2+1,x ≥0−x 2−1,x <0,则f(f (−1))=,f (x )的最小值为 _______ 。
成人高考成考(高起专)数学(理科)试题及解答参考
成人高考成考数学(理科)(高起专)复习试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、下列函数中,是奇函数的是()。
A.y=x2B.y=arctanxC.y=e xD.y=x 3−1x−1,x≠12、若分子是正数的分数与负数相乘,则结果一定()A、是正数B、是负数C、可能为正数,也可能为负数D、不确定3.已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 414、已知向量a⃗=(2,−3),b⃗⃗=(5,1), 则2a⃗−b⃗⃗的大小为A.√29B.√13C.√37D.√265.题目:已知圆的方程为 x^2 + y^2 = 9,点 A(-3, 0),则点 A 与圆的位置关系是()A. 在圆内B. 在圆上C. 在圆外D. 无法确定6、若函数f(x)=x2−4x+3,则不等式f(x)<0的解集为A.(1,3)B.(−∞,1)∪(3,+∞)C.(−∞,1]∪[3,+∞)D.(1,+∞)7、若函数y=x^2的图像向上平移2个单位,向右平移1个单位,则平移后的函数解析式为()A、y=x^2+2x+3B、y=x^2+2x+1C、y=x^2+2D、y=(x-1)^2+28、在甲、乙两队拔河比赛中,甲队最大能拉动横绳中间的白带的水平距离为6米。
已知绳的轻质、不可伸长,横绳的重量忽略不计,两队发力使对方过界并保持不动撤力后,白带即回到恰好在界线的不动平衡位置。
问两队发力过界时,白带向哪边过界?最多能拉动白带的最大水平距离是多少米?已知甲队最大拉力为F1=600N,乙队最大拉力F2=320N。
A. 乙队方向,12米B. 甲队方向,5米C. 乙队方向,5米D. 甲队方向,12米9、若一元二次方程ax² + bx + c = 0 的两个根互为倒数,则下列式子一定成立的是()A. a + b + c = 0B. b² = 4acC. a = bD. c = 010、一个正整数,它的各位数字之和为9,这个数可能是( )。
成人高考专升本高等数学(一)全真模拟试题及答案解析②
成人高考专升本高等数学(一)------------------全真模拟试题及答案解析②一、单选10题,每题4分,共40分:1(单选题)()(本题4分)A 0B 1C ∞D 不存在但不是∞标准答案: D解析:【考情点拨】本题考查了函数的极限的知识点.2(单选题)设则等于()(本题4分)A -1B 0C 1/2D 1标准答案: C解析:【考情点拨】本题考查了利用导数定义求极限的.3(单选题)下列函数中,在x=0处可导的是()(本题4分)A y=|x|BC y=x^3D y=lnx标准答案: C解析:【考情点拨】本题考查了函数在一点处可导的知识点.=lnx在x=0处不可导(事实上,在x=0点就没定义).4(单选题)函数在区间[―1,1]上()(本题4分)A 单调减少B 单调增加C 无最大值D 无最小值标准答案: B解析:【考情点拨】本题考查了函数的单调性的知识点.因处处成立,于是函数在(-∞,+∞)内都是单调增加的,故在[-1,1]上单调增加.5(单选题)曲线的水平渐近线的方程是_____(本题4分)A y=2B y=-2C y=1D y=-1标准答案: D解析:【考情点拨】本题考查了曲线的水平渐近线的知识点.【应试指导】所以水平渐近线为y=-1.注:若是水平渐远线是铅直渐近线6(单选题)设y=cosx,则y"=________(本题4分)A sinxB -cosxC cosxD -sinx标准答案: C解析:【考情点拨】本题考查了函数的二阶导数的知识点。
7(单选题)设函数则等于_______(本题4分)A 0B 1C 2D -1标准答案: C解析:【考情点拨】本题考查了函数在一点处的一阶偏导数的知识点.8(单选题)二元函数z=x3-y3+3x2+3y2-9x的极小值点为_________(本题4分)A (1,0)B (1,2)C (-3,0)D (-3,2)标准答案: A解析:【考情点拨】本题考查了二元函数的极值的知识点.9(单选题)设则积分区域D可以表示为______(本题4分)ABCD标准答案: C解析:【考情点拨】本题考查了二重积分的积分区域的表示的知识点.【应试指导】据右端的二次积分可得积分区域D项中显然没有这个结果,于是须将该区域D用另一种不等式(X—型)表示.故D又可表示为10(单选题)下列级数中发散的是( )(本题4分)ABCD标准答案: D解析:【考情点拨】本题考查了级数的敛散性的知识点.【应试指导】故选项A收敛,选项B 是交错级数,单调递减,且故选项B收敛;选项C,所以选项C收敛;用排除法故知选项D 正确,其实从收敛的必要条件而故选项D发散.二、填空题10题,每题4分,共40分:11(填空题)_________(本题4分)标准答案: 1/2解析:【考情点拨】本题考查了函数的极限的知识点.【应试指导】令1/x=t,则12(填空题)________(本题4分)标准答案: 1/2解析:【考情点拨】本题考查了对∞-∞型未定式极限的知识点.【应试指导】这是∞-∞型,应合并成一个整体,再求极限.13(填空题)若则____(本题4分) 标准答案:解析:【考情点拨】本题考查了对由参数方程确定的函数求导的知识点.【应试指导】参数方程为14(填空题)=________(本题4分)标准答案:解析:【考情点拨】本题考查了不定积分的知识点.【应试指导】15(填空题)设在x=0处连续,则α=___(本题4分) 标准答案: 1解析:【考情点拨】本题考查了函数在一点处的连续性的知识点. 又f(0)=1,所以f(x)在x=0连续应有a=1.注:(无穷小量X有界量=无穷小量)这是常用极限应记牢.16(填空题)__________(本题4分)标准答案:解析:【考情点拨】本题考查了利用换元法求定积分的知识点.17(填空题)设函数,则全微分dz=__________(本题4分)标准答案:解析:则18(填空题)设可知,则_______(本题4分)标准答案:解析:【考情点拨】本题考查了复合函数的一阶偏导数的知识点.19(填空题)微分方程的通解为_______(本题4分) 标准答案:解析:微分方程的特征方程20(填空题)设D为________(本题4分)标准答案: 4π解析:本题考查了二重积分的知识点. 【应试指导】因积分区域为圆x2+y2=22的上半圆,则三、问答题8题,前5题每题8分,后3题每题10分,共70分:21(问答题)设求的值(本题8分)标准答案:在sin.( t•s)+ ln(s-t)=t两边对t求导,视s为t的函数,有22(问答题)设求f(x)在[1,2]上的最大值(本题8分)标准答案:在[1,2]上单调递减23(问答题)如果试求(本题8分)标准答案:两端对x求导,得24(问答题)求(本题8分)标准答案: 2/5解析:25(问答题)计算其中D为圆域x2+y2≤9. (本题8分)标准答案:用极坐标系进行计算.26(问答题)设z是x,y的函数,且证明:(本题10分)标准答案:在已知等式两边对x求导,y视为常数,有27(问答题)设求f(x)(本题10分)标准答案:28(问答题)求幂级函数的收敛区间(本题10分)标准答案:这是交错级数,由莱布尼茨判别法知级数收敛.级数在[0,2]上收敛.注:本题另解如下,所以当丨x-1| <1时级数收敛,即0<x< 2时级数收效,同上知x=0或x=2时级数收敛,故级数的收敛区间为[0,2].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成考专科数学模拟试题一及答案
成考专科数学模拟试题一及答案
一、 选择题(每小题5分,共85分)
1.设集合M={-1,0,1},集合N={0,1,2},则集合M ⋃N 为( D )。
A. {0,1}
B. {0,1,2}
C. {-1,0,0,1,1,2}
D.{-1,0,1,2}
2. 不等式12x -≥的解集为( B )。
A. {13}x x -≤≤ B. {31}x x x ≥≤-或 C. {33}x x -≤≤ D. {3,3}x x x ≥≤-
3. 设 甲:ABC ∆是等腰三角形。
乙:ABC ∆是等边三角形。
则以下说法正确的是( B )
A. 甲是乙的充分条件,但不是必要条件
B. 甲是乙的必要条件,但不是充分条件
C. 甲是乙的充要条件
D. 甲不是乙的充分条件也不是乙的必要条件
4.设命题 甲:k=1.
命题 乙:直线y=kx 与直线y=x+1.
则( C )
A. 甲是乙的充分条件,但不是必要条件
B. 甲是乙的必要条件,但不是充分条件
C. 甲是乙的充要条件
D. 甲不是乙的充分条件也不是乙的必要条件
5.设tan α=1,且cos α<0,则sin α=( A ) A. 2
2- B. 12- C. 12 D. 22
6.下列各函数中,为偶函数的是( D )
A. 2x y =
B. 2x y -=
C. cos y x x =+
D. 2
2x y = 7. 函数32y x =-的定义域是( B )
A.{2}x x ≤
B. {2}x x <
C. {2}x x ≠
D. {2}x x >
8. 下列函数在区间(0,)+∞上为增函数的是( B ) A. cos y x = B. 2x y = C. 22y x =- D. 13
log y x =
9.设a=(2,1),b=(-1,0),则3a -2b 为( A )
A.( 8,3)
B.( -8,-3)
C.( 4,6)
D.( 14,-4)
10.已知曲线kx=xy+4k 过点P(2,1),则k 的值为( C )
A. 1
B. 2
C. -1
D. -2
11. 过(1,-1)与直线3x+y-6=0平行的直线方程是( B )
A. 3x-y+5=0
B. 3x+y-2=0
C. x+3y+5=0
D. 3x+y-1=0
12.已知ABC ∆中,AB=AC=3,1
cos 2
A =,则BC 长为( A ) A. 3 B. 4 C. 5 D. 6
13.双曲线221169
x y -=的渐近线方程为( D ) A. 169y x =±
B. 916y x =±
C. 034x y ±=
D.
043x y ±= 14.椭圆221169
x y +=的焦距为( A ) A. 10 B. 8 C. 9 D. 11
15. 袋子里有3个黑球和5个白球。
任意从袋子中取出一个小球,
那么取出黑球的概率等于( D )
A.
13 B. 15 C. 58 D. 3
8
16.设,a b R ∈,且a b <,则下列各式成立的是( D ) A. 22a b < B. ac bc < C. 11a b < D. 0a b -<
17.已知P 为曲线32y x =上一点,且P 点的横坐标为1,则该曲线在点
P 处的切线方程是( A )
A. 6x+y-4=0
B. 6x+y-2=0
C. 6x-y-2=0
D. 6x-y-4=0
二、 选择题(每小题4分,共16分)
18.函数y=2sin2x 的最小正周期是________。
19.1
22log 1616--=____________。
20.函数y=2x(x+1)在x=2处的导数值为_________。
21.某灯泡厂从当天生产的一批100瓦灯泡中抽取10只做寿命试验,
得到样本的数据(单位:h)如下:
1050 1100 1080 1120 1200
1250 1040 1130 1300 1200
则该样本的方差为______。
三、 解答题(本大题共小题4,共49分)
22.(本小题满分12分)
已知等差数列{}n a 的第四项是10,第八项是22。
(1): 求此数列的通项公式。
(2):求它的第十项。