抽屉原理专项练习150题(有答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽屉原理专项练习150题(有答案)
1.把红、黄、蓝三种颜色的球各5个放到一个袋子里,至少取多少个球可以保证取到两个颜色相同的球?请简要说明理由.
2.某校有201人参加数学竞赛,按百分制计分且得分均为整数,若总分为9999分,则至少有_________人的分数相同.
3.有99个单人间,有100个旅客入住,这100名旅客每次有99个人同时入住,管理员给每人配了一些钥匙,他想让每人都能入住,且不用找别人借钥匙,问他至少一共需要配多少把钥匙?
4.有13个箱子,现在往里面装苹果,要求每个箱子里装的苹果都是奇数个,无论这些苹果怎么放,总能找到4个箱子的苹果个数是一样的,问:最多有多少个苹果?
5.有红、黄、白三种颜色的小球各10个,每个人从中任意选择两个,那么至少需要几个人选择小球,才能保证必有两人或两人以上选择的小球的颜色完全相同?
6.五(一)班有56个学生,能否有2个人在同一周过生日?(请说明理由)
7.有红、黄、蓝、绿、白五种颜色的球各5个,至少取多少个球,可以保证有两个颜色相同的球?
8.在一只鱼缸里,放有很多条鱼,其中有红帽鱼,珍珠鱼,紫龙井鱼,绒球等四个品种;问至少捞出多少鱼才能保证有10条相同的?
9.有红、黄、绿、黑5种颜色的小球各若干个,一些同学从中取球,每个人可以任选2个,至少有多少人才能保证有2人选的小球完全相同?
10.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?
11.从1、2…100中最多可以取出多少个不同的数,使得每个数都不是另一个数的倍数?
12.在一个口袋中有10个黑球、6个白球、4个红球,至少从中取出多少个球才能保证其中有白球?
爸爸、哥哥、妹妹现在的年龄和是64岁.当爸爸的年龄是哥哥的3倍时,妹妹是9岁;当哥哥的年龄是妹妹的2倍时,爸爸34岁.现在爸爸的年龄是多少岁?
13.32只鸽子飞回7个鸽舍,至少有几只鸽子要飞进同一个鸽舍?
14.李明要把13本连环画放进2个抽屉至少要放进7本,为什么?
15.聪聪:袋里有红、白、蓝、黑四种颜色的单色球,从袋中任意取出若干个球.明明问:至少要取出多少个球,才能保证有三个球是同一颜色的?
16.布袋里有4支红铅笔和3支蓝铅笔,如果闭上眼睛摸,一次必须摸出_________支铅笔才能保证至少有一支蓝铅笔.
18.五年级有49名学生参加一次数学竞赛,成绩都是整数,满分是100分.已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间,问至少有多少名学生的成绩相同.
19.在如图所示的8行8列的方格表中,每个空格分别填上1,2,3这三个数字中的任一个,使得每行、每列及两条对角线上的各个数字的和互不相等,能不能做到?
20.纸箱中有同样的红、黄色圆锥体各5个,至少拿出几个,才能保证一定有2个圆锥体都是红色?
21.跳绳练习中,一分钟至少跳多少次才能保证某一秒钟内至少跳了两次?
22.有黑色、白色、黄色的小棒各8根,混放在一起,从这些小棒之中至少要取出才能保证有4根颜色相同的小棒子?
23.2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34.
24.红、黄、蓝三种颜色的球各6个,混合后放在一个布袋里,一次至少摸出几只,才能保证有两只是同色的?25.冀英学校五、六年级共有学生370人,在这些学生中,至少两个人在同一天过生日,为什么?
26.有红、黄、蓝、白四种颜色的小球各10个,混合后放到一个布袋里.问一次至少摸出多少个,才能保证有两个球是同色球?
27.一副扑克牌共54张,至少从中摸出多少张牌,才能保证有4张牌的花色情况是相同的?(大王、小王不算花色)
28.把280个桃子分给若干只猴子,每只猴子不超过10个,无论怎样分,至少有几只猴子得到的桃子一样多?29.从1、2、3、…、1998、1999这些自然数中,最多可以取多少个数,才能使其中每两个数的差不等于4?
30.学校开设了书法、舞蹈、棋类、乐器四个课外学习班,每个学生最多可以参加两个(可以不参加)学习班.某班有52名同学,至少有几名同学参加课外学习班的情况完全相同?
31.学校开设了书法、舞蹈、棋类、乐器四个课外学习班,每个学生最多可以参加两个(可以不参加)学习班.某班有52名同学,至少有几名同学参加课外学习班的情况完全相同?
32.某小学六年级师生去游玩,74人共租了4辆车,不管怎么坐,总有一辆车至少要坐多少人?
33.一个盒子里有9个蓝球、5个黑球、6个白球和3个红球,如果闭上眼睛,从盒子中摸球,每次只许摸一个球,至少要摸出多少个才能保证摸出的这几个球中至少有两个颜色相同?
34.箱子里放有红、黄、蓝三种颜色的小球各10只,要求闭着眼睛保证一次摸出不少于四只同色的小球,那么需要摸出的只数至少是多少只?
35.布袋里有4种不同颜色的球,每种都有10个.最少取出多少个球,才能保证其中一定有4个球的颜色一样?
36.26个小朋友乘6只小船游玩,至少要有一只小船里要坐6个小朋友._________.
37.一个不透明的盒子里装了红玻璃球3个、黑玻璃球4个、白玻璃球5个,要保证取出的玻璃球三种颜色都有,他应保证至少取出多少个?
38.周老师给六(2)班出了两道数学问题,规定做对第一题得3分,做对第二题得4分,没做或做错得0分.已知全班共有68个学生,至少有几个学生得分相同?
39.实验小学共有师生800人,至少有_________人在同一天过生日.
40.把7封信分放到3个信箱中,并且不能有空的信箱,至少有一个信箱中有3封信,这是为什么?(写出算式)
41.鱼池中有30条白鳞鱼,50条黑鳞鱼,50条金鳞鱼.至少在多少名钓鱼者中才可保证他们一次钓出的鱼中,必有金鳞鱼?
42.盒子里有3支红笔,6支蓝笔,10支黑笔.现在随意抓一把笔要确保其中至少有1支红笔,则一把必须不少于几支?
43.18个小朋友中,至少有几个小朋友在同一个月出生?
44.把9本书放进2个抽屉里,总有一个抽屉至少放进5本书,为什么?
45.希望小学有367人,请问有没有两个学生的生日是同一天?为什么?
46.某学校有30名学生是2月份出生的,那么,其中至少有两名学生的生日是在同一天.为什么?
47.小巧所在小组共有14名同学,至少有两个同学的出生月份是同一个月份的,这句话你认为对不对?为什么?
48.口袋里有同样大小的8个白球、5个黄球和l5个黑球.闭上眼睛从口袋中摸球,至少取出多少个球,才能保证摸出的这几个球中有黑球?
49.盒子里有大小相同的红、黄、蓝、白四种颜色的球各12个,要想摸出的球一定有2个是同色的,至少要摸出几个球?
50.一副扑克牌,取出两张王牌.
(1)一次至少要拿多少张,才能保证至少有2张是同颜色的?
(2)一次至少要拿多少张,才能保证四种花色都有?
51.今年暑假报名参加奥数培训的学生有242名,至少有几名学生是在同一个月份出生的?
52.教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业.试说明:这5名学生中,至少有两个人在做同一科作业.
53.一个袋子中有10只红袜子、8只蓝袜子、6只绿袜子和4只白袜子,闭着眼睛从袋子中摸袜子,每次只许摸一只,至少要摸多少只才能保证摸出的这几只袜子中至少有一双颜色一样?
54.17个小朋友乘6条船玩,至少要有几个小朋友坐在同一条船上?
55.给一个正方体木块的6个面分别涂上红、黄、蓝3种颜色.不管怎么涂至少有两个面涂的颜色相同.为什么?
56.一个口袋中装有500粒珠子,共有5种颜色,各100颗,如果你闭上眼睛在,至少取出多少粒珠子才能保证其中有5粒相同?为什么?
57.7个人住进5个房间,至少要有两个人住同一间房.为什么?(请你用图示的方法说明理由)
58.王老师借来了历史、文艺和科普三种书若干本.每个同学从中任意借一本或两本,那么至少要几个同学借阅才能保证一定有两人借的图书一样?
59.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?
60.有3个不同的自然数,至少有两个数的和是偶数,为什么?
61.储蓄罐里有同样大小的金币和铜币各5枚.要想摸出的钱币中一定有2枚相同,最小要摸出几枚钱币?
62.将400张卡片分给若干个同学,每人都能分到,但都不超过11张,试证明:至少有7名同学分到的卡片的张数相同.
63.幼儿园买来不少猪、狗、马塑料玩具,每个小朋友任意选择两件,那么至少要有几个小朋友才能保证有两人选的玩具相同?
想:三种玩具中任意拿两件,可以拿两个不一样的,也可以拿两个不同的.共有_________中不同的拿法.
64.篮球比赛规则中规定:在三分线外投篮命中可得3分,在三分线内投篮命中可得2分,罚球一次命中可得1分,姚明在一场NBA比赛中,投了10次,得21分,姚明至少有一次投篮得了3分.为什么?
65.一个盒子里装有黑白两种颜色的跳棋各10枚,从中最少摸出几枚才能保证有2枚颜色相同?从中至少摸出几枚,才能保证有3枚颜色相同?
66.有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出多少只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的.
67.光明小学六年级共有370名学生,其中六(2)班有49名学生.小明说:“六年级里一定有两人的生日是同一天.”小红说:“六(2)班中至少有5人是同一个月出生.”他们说的对吗?为什么?
68.盒子里有同样大小的4个红球和5个黄球.
(1)要想摸出的球一定有2个是同色的,最少要摸出几个球?
(2)要想摸出的球一定有3个是同色的,最少要摸出几个球?
(3)要想摸出的球一定有不同颜色的,最少要摸出几个球?
69.爱心幼儿园买来许多苹果、橘子和梨,每个小朋友任意选两个,那么,至少应有几个小朋友才能保证有两个或两个以上小朋友所选水果相同?
70.贝贝、晶晶、欢欢、迎迎、妮妮五种福娃个10个,至少买多少个福娃才可以保证一定有两个一样的福娃?
71.有11名学生到图书角借书.要保证至少有一名学生能借到3本书,这个图书角至少要有多少本书呢?
72.某校六年级有31名学生是在九月份出生的,那么其中至少有两个学生的生日是在同一天.为什么?
73.有45名学生,他们中至少有几名同学的属相是一样的呢?
74.把5枚棋子放入图中四个小三角形内,那么有一个小三角形内至少有_________枚棋子.
75.有红、黄、蓝、白四种颜色的小球各10个,放在一个布袋里,一次摸出5个,其中至少有几个小球的颜色是相的?如果一次摸出9个小球,至少有几个小球的颜色相同,?如果一次摸出13个呢?你发现其中的规律了吗?
76.箱子里装着6个苹果和8个梨.要保证一次能拿出两个同样的水果,至少要拿出多少个苹果?
77.学校开办了绘画、书法、舞蹈和小提琴四种课外学习班,每个学生最多可以参加两种(可以不参加).六(1)班有48名同学,问:每个学生共有几种选择?至少有几名同学参加课外学习班的情况完全相同?
78.抽屉里放着红、绿、黄三种颜色的球各3只.一次至少摸出多少只才能保证每种颜色至少有一只?
79.袋中有4枝笔和3枝蓝铅笔,如果闭着眼睛摸,一次必须摸出几枝铅笔才能保证至少有1枝蓝铅笔?
80.证明在任意的37人中,至少有4人的属相相同.
81.体育课上同学们正在进行投篮练习,一组8名同学共投进49个球.
82.黑色、白色、黄色的筷子各有8根,将这些筷子放进一个不透明的袋子里,要想从这些筷子中取出颜色相同的一双筷子,至少要取出多少根才能保证达到要求?
83.把21个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有6个玻璃球?
84.六(1)班有40名学生到图书角借书.
85.某次数学竞赛有6个学生参加,总分是547分,则至少有一个同学的得分不低于92分.为什么?
86.不透明的盒子里有同样大小的红球和白球各5个.要想摸出的球一定有2个不同色的,最少要摸出几个球?
87.有红、黄、蓝、黑四种颜色的同一规格的运动鞋各5双,杂乱地放在一个木箱中,如果闭着眼睛取鞋,至少取出多少只鞋才能保证有不同颜色的2双运动鞋?
88.布袋里有红、绿两种小木块各6块,形状大小都一样,如果要保证一次能从布袋里取出2块颜色不同的木块,至少必须取出几块小木块?
89.在边长为1的三角形中,任意放入5个点,证明其中至少有两个点之间的距离小于1/2.
90.学校举行开学典礼,要沿操场的400米跑道插40面彩旗,试证明不管怎样插至少有两面彩旗之间的距离不大于10米.
91.某游旅团一行50人,随意游览甲、乙、丙三地,问至少有多少人浏览的地方完全相同.
92.红光小学每周星期一、三、五、六各举办一种课外活动,问:至少要有多少学生报名参加,才能保证其中至少有3位学生所参加的课外活动完全一样?
93.10双不同尺码的鞋子堆在一起,若随意地取出鞋来,并使其至少有两只鞋可以配成一双,试问需取出多少双鞋就能保证成功?
94.夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目.规定每人必须参加一项或两项活动.那么至少有几名营员参加的活动项目完全相同?
95.果篮里有苹果、香蕉、梨、桔子、桃五种水果若干个,每个人可以从中任取两个,那么最少需要多少个人才能保证至少有2人选的水果是完全相同的?
96.某小学五(2)班选两名班长.投票时,每个同学只能从4名候选人中挑选2名.这个班至少应有多少个同学,才能保证有8个或8个以上的同学投了相同的2名候选人的票?
97.盒子中有黄、红、蓝三种颜色的木块(形状相同)若干块,每个小朋友任意摸2块,那么至少有多少个小朋友才能保证有两个或两个以上小朋友所摸的木块颜色相同?
98.口袋里有红色、绿色和蓝色棋子各15个,请你闭上眼睛往外拿,每次只能拿一个棋子,至少要拿几次才能保证拿出来的棋子中有3个是同一种颜色?
100.六个小朋友每人至少有一本书,一共有20本书,试证明至少有两个小朋友有相同数量的书.
101.口袋中有红、黄、蓝三种颜色的小球各20个,至少要摸出多少个球,才能摸出红球与黄球的和比蓝球多?黄球与蓝球的和比红球多?红球与蓝球的和比黄球多?
102.把一个长方形画成3行9列共27个小方格,然后用红、蓝铅笔任意将每个小方格涂上红色或蓝色.是否一定有两列小方格涂色的方式相同?
103.任意将若干个小朋友分为五组.证明:一定有这样的两组,两组中的男孩总数与女孩总数都是偶数.
104.在一副扑克牌中,最少要拿多少张,才能保证四种花色都有.
105.五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分.已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间.问:至少有几名学生的成绩相同?
106.在前10个自然数中,至少取多少个数,才能保证其中有两个数的和是10?
107.任意给定的七个不同的自然数,求证其中必有两个数,其和或差是10的倍数.
108.在边长为1的正方形内任取51个点,求证:一定可以从中找出3点,以它们为顶点的三角形的面积不大于1/50.
109.有100个苹果分给幼儿园某班的小朋友,已知其中有人至少分到了3个.那么,这个班的小朋友最少有多少人?
110.把1到10,这10个自然数摆成一个圆圈,证明一定存在相邻的三个数,它们的和大于17.
111.任意给定的五个整数中,必有三个数的和是3的倍数.
112.证明:在从1开始的前10个奇数中任取6个,一定有两个数的和为20.
113.某单位购进92箱桔子,每箱至少110个,至多138个,现将桔子数相同的作为一组,箱子数最多的一组至少有几箱?
114.我国人口已超过12亿,如果人均寿命不超过75岁,那么我国至少有两个人出生的时间相差不会超过2秒钟.这个结论是否正确?
115.某幼儿园有50个小朋友,现在拿出420本连环画分给他们,试证明:至少有4个小朋友分到连环画一样多(每个小朋友都要分到连环画).
116.学校开办了语文、数学、美术和音乐四个课外学习班,每个学生最多可以参加两个(可以不参加).至少在多少个学生中,才能保证有两个或两个以上的同学参加学习班的情况完全相同.
117..从1,3,5,7,…,47,49这25个奇数中至少任意取出多少个数,才能保证有两个数的和是52.
118.至少要给出多少个自然数(这些数可以随便写),就能保证其中必有两个数,它们的差是7的倍数.
120.证明:任意取12个自然数,至少有两个自然数被11除的余数相同.
121.有规格相同的5种颜色的手套各20只(不分左右手),混装在箱内,随意从箱内摸手套,至少要摸出_________只手套才能保证配成3双.
122.张老师在一次数学课上出了两道题,规定每道题做对得2分,没做得1分,做错得0分.张老师说:可以肯定全班同学中至少有6名学生各题的得分都相同.那么,这个班最少有多少人?
123.从1,2,3,…,100这100个自然数中,至少要取出多少个不同的数,才能保证其中一定有一个数是7的倍数?
124.体育室里有足球、排球和篮球,四年级(1)班57名同学来拿球,规定每人至少拿1个球,至多拿2个球.至少有多少名同学所拿的球的种类是完全一致的?
125.将10种不同的小球各100个放入同一个袋子里.从袋子中取出若干个小球,要想在取出的小球中必须有3种同样的球并有l 0个以上的话,最少要从袋中取出多少个小球?
126.新学期开始了,班级48人投票选举一名班长(每人只许投一票,而且也不能投弃权票),班长在小刚、小红、小华这三人中产生,计票中途统计结果如下:
候选人小刚小红小华
得票正正正正正正
(注:每个“正”代表5票)
规定得票最多的人当选,那么在后面的计票中,小刚至少还要得到多少张选票才能当选?
127.六年级课外活动安排了4个项目:唱歌、舞蹈、跳绳、乒乓球,规定每人从中任选一个或两个项目参加.问至少有_________个同学参加课外活动,才能保证至少有两人所选项目相同.
128.从一副牌中拿走两张王牌,还剩下52张牌.在52张牌中,至少抽出_________张,才能保证某一种花色的牌至少有5张.
129.在一只箱子里放着4种形状相同、颜色不同的小木块若干个,一次最少要取出_________块才能保证至少有10个小木块的颜色一样.
130.小虎的袜子盒里有10只红袜,6只黑袜,8只白袜,2只花袜.小虎随意从盒中取袜子,至少取出_________只袜子,才能保证取出2双袜子.
131.皮夹里有2元、3元、4元的邮票各10张,现在要寄一封12元邮资的信,不用眼睛看,从皮夹中抽出若干张邮票,为了保证从抽出的邮票中一定能凑出12元的邮票组合来,那么至少要抽出多少张邮票.
132.已知在a个人中,必定最少有两个人是同月同日出生的,求a的值.
133.八个学生8道问题.
(a)若每道题至少被5人解出,请说明可以找到两个学生,每道题至少被这两个学生中的一个解出.
(b)如果每道题只有4个学生解出,那么(a)的结论一般不成立.试构造一个例子说明这点.
134.笔筒里有3支红笔和2支黑笔,如果蒙上眼睛摸一次,至少拿出几支笔才能保证有1支红笔?
135.15张卡片,每张卡片上写有3个不同的汉字,任意2张上的汉字不完全相同;任意6张中,一定有2张,它们上面有共同的汉字.问:这15张卡片上最多有多少个不同的汉字?
136.买彩蛋
怀特夫人领着她的一对双胞胎女儿来到彩蛋出售机前.大女儿凯特说:“妈妈,我要彩蛋.”二女儿简妮说:“妈妈,我也要,我要和凯特拿一样颜色的.”彩蛋出售机里面只有4个红色和6个黄色的彩蛋,说不准下一个是什么颜色.红黄两种彩蛋均为一元钱一个,怀特夫人要想确保女儿得到两个同种颜色的彩蛋,至少需要花多少钱呢?
如果两个女儿都想得到黄色的彩蛋,预计怀特夫人要花多少钱?
将你的答案写下来,并简要说说自己的想法.
137.某班有36个学生,他们都订阅了《小朋友》《儿童时代》《少年报》三种报刊中的一种、两种或三种,其中至少有多少人订的报刊完全相同?(提示:想一想,一共有多少种不同的订法?)
138.现在50名司机和40辆汽车,每辆汽车上的锁都不相同.如果要使任意40名司机上班时40辆汽车都能工作,假设全部钥匙都在司机手中,那么至少需要钥匙_________把.
139.一次考试有10道题,每道题的评分标准是:回答完全正确得5分,回答不完全正确得3分;回答错误或不回答得0分.至少有多少人参加考试,才能保证至少有3人得分相同?试说明原因.
140.把61个桃分给若干只猴子,每只猴子最多可以得到5个桃,你能证明至少有5只猴子得到的桃子一样多吗?
141.一个班的同学进行视力检测,视力最好的是2.0,最差的是0.2,已知全班至少有3个人视力一样,这个班至少有多少名同学?
142.停车场有105辆客车,各种客车座位数不同,少则有25座,多则50座,那么在这些客车中至少有几辆座位数相同?
143.王平说他们班的同学至少有5个人属相相同,但不能保证6个人的属相相同,这个班最少有多少人?最多有多少人?
144.在边长3厘米的等边三角形内有10个点,试证明必定有2个点之间的距离不超过1厘米.
145.从1~100中至少取出多少个不同的数才能确保其中的一个数是7的倍数?
146.学校图书馆有4类图书,规定每个同学最多可以借2本书,在借书的85名同学中,可以保证至少几人所借书的类型完全一样?
147.把200本书分给若干名学生,要求每人都分到,但最多分6本,你能证明至少有10名同学得到书的本数相同吗?
148.如图,边长为5的正六边形被平行于其边的直线划分为一系列边长为1的正三角形.将所有这些三角形的顶点称为结点.现知多于一半的结点都被染为红色.证明,可以找到5个被染红的结点位于同一个圆周上.
149.在23×23的方格内将1﹣9这九个数填入每个小方格,并对所有形如“十”字的图形中的五个数字求和,对于小方格中的数字的任意一种填法,其中和数相等的“十”字图形至少有多少个?
150.用红白黑三种颜色给一个3×n的长方形中的每一个小长方形随意染上一种颜色,n至少为多少时,才能保证至少有两列染色方式完全一样?
参考答案:
1.解:3+1=4(个)
答:至少取4个球可以保证取到两个颜色相同的球
2.解:根据题干可知得分情况有101种,把这101种得分情况看做101个抽屉,
201÷2=100…1;
考虑最差情况:有100个抽屉都有有2个得分相同,剩下1个抽屉只有1个得分情况;
此时这201个人的得分总数最少是:0×2+1×2+2×2+…+99×2+100=10000>9999,
所以这与已知相矛盾,
答:至少有一个抽屉有3种得分情况才能满足已知条件,即至少有3人的得分相同.
故答案为:3
3.解:由于共有99个房间,却有100人住店,
想让每人都能入住,且不用找别人借钥匙,至少要保证每个房间有两把钥匙,
可以这样分配钥匙:1,2,3,…,99号人分别拿一把1,2,…,99号房间钥匙,假如第10人拿每个房间的钥匙.这样,假如10号不住,其他人就都可住进去.假如10号住店,1,2,…,9号中就有一个不住,10号就能进入这个房间进入.
所以,他至少要配99×2=198(把)钥匙.
答:他至少要配198把钥匙
4.解:(1+3+5+7)×3+7=55(个),
答:最多有55个苹果
5.解:本题类似于数线段,红、黄、白色三种球类似于线段上的点,不重复的线段数法有:3+2+1=6,
要想有相同的6+1=7(人),
答:至少需要7个人选择小球,才能保证必有两人或两人以上选择的小球的颜色完全相同
6.解:一年最多有:
366÷7≈53(周),
56÷53=1…3人,
1+1=2(人).
答:一定至少有两个人在同一周过生日的现象
7.解:5+1=6(个)
答:至少取6个球可以保证取到两个颜色相同的球
8.解:4×9+1=37(条),
答:至少捞出37条鱼才能保证有10条相同的
9.解:本题类似于数线段,小球类似于线段,苹5种颜色类似于线段上的点,不重复的线段数法有:4+3+2+1=10,即有10种不同的选取方法,
要想有相同的10+1=11,
故有11个人取就有重复的.
答:最少需要11个人才能保证至少有2人选的小球是完全相同的
10.解:建立抽屉:54张牌,根据点数特点可以分别看做15个抽屉,
考虑最差情况:每个抽屉都摸出了1张牌,共摸出15张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有两张牌在同一个抽屉,即两张牌点数相同,
15+1=16(张),
答:至少抽取16张扑克牌,方能使其中至少有两张牌有相同的点数
11.解:从51﹣100,或者从50﹣99,任意一个数都不可能是其余数的倍数;
故有100﹣51+1=50(个);
或:99﹣50+1=50(个);
答:至多选出50个数,使它们当中的每一个数都不是另一个数的倍数
12.解:(1)10+4+1=15(个),。

相关文档
最新文档