人教版高中数学《导数》全部教案
高中数学《导数》教案
高中数学《导数》教案第一章:导数的基本概念1.1 引入导数的概念解释导数的定义强调导数表示函数在某一点的瞬时变化率1.2 导数的计算法则介绍导数的四则运算法则举例说明导数的计算过程1.3 导数的应用解释导数在实际问题中的应用,如速度、加速度等给出实际问题,让学生应用导数进行解答第二章:导数的性质与单调性2.1 导数的性质介绍导数的单调性、连续性、可导性等基本性质证明导数的性质2.2 函数的单调性解释函数的单调性及单调区间利用导数判断函数的单调性2.3 单调性的应用给出实际问题,让学生利用单调性进行解答解释单调性在实际问题中的应用,如最大值、最小值等第三章:导数与曲线的切线3.1 导数与切线的关系解释导数在某一点的含义,即函数在该点的切线斜率给出切线方程的求法3.2 利用导数求曲线的切线举例说明如何利用导数求曲线的切线方程给出实际问题,让学生求曲线的切线方程3.3 切线的应用解释切线在实际问题中的应用,如求解函数零点、不等式等给出实际问题,让学生利用切线进行解答第四章:导数与函数的极值4.1 函数的极值概念解释函数的极值及极值点强调极值与导数的关系4.2 利用导数求函数的极值介绍求函数极值的方法,即导数为零和不存在的点举例说明如何利用导数求函数的极值4.3 极值的判断与应用解释极值在实际问题中的应用,如最大值、最小值等给出实际问题,让学生利用极值进行解答第五章:导数与其他数学概念的联系5.1 导数与积分的关系解释导数与积分的联系,即导数是积分的逆运算举例说明导数与积分的应用5.2 导数与极限的关系解释导数与极限的联系,即导数的极限是函数在该点的值举例说明导数与极限的应用5.3 导数与其他数学概念的联系强调导数与微分方程、泰勒展开等数学概念的联系给出实际问题,让学生利用导数与其他数学概念进行解答第六章:利用导数解决实际问题6.1 应用导数解决线性增长和减少问题解释如何利用导数解决线性函数的增长和减少问题给出实际问题,让学生应用导数解决6.2 应用导数解决曲线的凹凸问题解释如何利用导数解决曲线的凹凸问题给出实际问题,让学生应用导数解决6.3 应用导数解决实际问题案例分析分析实际问题,让学生理解导数在解决实际问题中的应用第七章:利用导数进行优化7.1 解释优化问题的概念解释优化问题及目标函数强调利用导数解决优化问题的方法7.2 利用导数解决线性优化问题解释如何利用导数解决线性优化问题给出实际问题,让学生应用导数解决7.3 利用导数解决非线性优化问题解释如何利用导数解决非线性优化问题给出实际问题,让学生应用导数解决第八章:利用导数解决不等式问题8.1 解释不等式问题的概念解释不等式问题及解集强调利用导数解决不等式问题的方法8.2 利用导数解决单变量不等式问题解释如何利用导数解决单变量不等式问题给出实际问题,让学生应用导数解决8.3 利用导数解决多变量不等式问题解释如何利用导数解决多变量不等式问题给出实际问题,让学生应用导数解决第九章:利用导数解决函数图像问题9.1 解释函数图像问题的概念解释函数图像问题及解决方法强调利用导数解决函数图像问题的方法9.2 利用导数解决函数单调性问题解释如何利用导数解决函数单调性问题给出实际问题,让学生应用导数解决9.3 利用导数解决函数极值性问题解释如何利用导数解决函数极值性问题给出实际问题,让学生应用导数解决第十章:利用导数解决实际应用问题案例分析10.1 分析实际应用问题分析实际应用问题,让学生理解导数在解决实际问题中的应用强调导数在实际问题中的重要性10.2 让学生进行实际问题案例分析让学生分组讨论,分析实际应用问题让学生汇报他们的分析和解决方法10.3 总结总结本节课的重点内容强调导数在解决实际问题中的重要性鼓励学生在日常生活中发现并解决实际问题重点和难点解析一、导数的基本概念难点解析:理解导数的几何意义,即函数图像在某一点的切线斜率。
高中数学导数教案模板范文
高中数学导数教案模板范文一、教学目标1. 理解导数的概念和定义。
2. 掌握导数的计算方法。
3. 能够应用导数解决实际问题。
二、教学重点1. 导数的概念和定义。
2. 导数的计算方法。
三、教学难点1. 导数的概念理解。
2. 导数的计算方法掌握。
四、教学资源1. 教材《高中数学》。
2. 多媒体教学辅助。
五、教学过程1. 导入:通过引导学生分析函数变化趋势,引出导数的概念和意义。
2. 讲解:讲解导数的定义和计算方法,引导学生掌握导数的基本性质。
3. 案例分析:结合具体例题,进行导数的计算和应用练习。
4. 引申拓展:引导学生思考导数与函数的关系,进一步探讨导数在实际问题中的应用。
5. 总结反思:对本节课的教学内容进行总结,帮助学生巩固所学知识。
六、教学方法1. 任务驱动教学法:通过案例分析和实际问题引导学生学习导数的概念和计算方法。
2. 合作学习法:让学生在小组内讨论导数计算和应用方法,促进彼此之间的互动和合作。
七、教学评估1. 完成课堂练习题,检查学生对导数的理解和掌握程度。
2. 答疑解惑,及时纠正学生可能存在的错误。
八、拓展延伸1. 邀请数学专家进行导数的深入讲解,拓展学生对导数的认识。
2. 鼓励学生自主进行导数相关问题的探究研究。
九、教学反思1. 对教学过程进行反思和总结,及时调整教学方法和策略。
2. 收集学生的意见建议,不断完善教学内容和方式。
十、作业布置1. 完成课后练习题,巩固导数的相关知识。
2. 独立撰写导数的应用题,提高解决问题的能力。
十一、教学资源1. 《高中数学》教材。
2. 多媒体教学辅助。
十二、教学总结通过本节课的教学,学生对导数的概念和计算方法有了初步了解和认识,为进一步学习和探索数学知识奠定了基础。
高中全套数学导数教案模板
一、教学目标1. 知识与技能:(1)掌握导数的概念、性质及运算;(2)学会求导数的方法,包括基本初等函数的导数和复合函数的导数;(3)能够运用导数解决实际问题,如极值、最值、切线方程等。
2. 过程与方法:(1)通过观察、分析、归纳等方法,培养学生的逻辑思维能力;(2)通过实例讲解、练习巩固,提高学生的解题能力;(3)通过小组讨论、合作探究,培养学生的团队协作能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣,提高学生学习的积极性;(2)培养学生严谨、求实的科学态度;(3)培养学生面对困难勇于探索、敢于创新的精神。
二、教学重难点1. 教学重点:(1)导数的概念及性质;(2)求导数的方法,特别是复合函数的求导;(3)导数在实际问题中的应用。
2. 教学难点:(1)导数的概念理解;(2)复合函数求导的技巧;(3)导数在实际问题中的应用。
三、教学准备1. 教师准备:(1)多媒体课件;(2)教学辅助工具,如实物教具、模型等;(3)相关习题。
2. 学生准备:(1)预习导数的概念、性质及运算;(2)复习基本初等函数和复合函数;(3)准备好笔记本和笔。
四、教学过程(一)导入新课1. 复习函数、极限等相关知识;2. 提出问题:如何研究函数在某一点的变化趋势?3. 引入导数的概念,阐述导数的意义。
(二)新授课程1. 导数的概念及性质:(1)讲解导数的定义,通过实例让学生理解导数的含义;(2)介绍导数的性质,如可导性的判断、导数的运算等;(3)通过实例讲解导数的应用。
2. 求导数的方法:(1)基本初等函数的导数;(2)复合函数的求导,包括链式法则、乘积法则、商法则等;(3)通过实例讲解求导数的技巧。
(三)练习巩固1. 基本练习:让学生独立完成基本初等函数和复合函数的求导;2. 应用练习:让学生运用导数解决实际问题,如求极值、最值、切线方程等;3. 小组讨论:让学生分组讨论,互相交流求导的技巧和方法。
(四)课堂小结1. 回顾本节课所学内容,强调重点、难点;2. 布置课后作业,巩固所学知识。
高中数学人教版《导数》教案2023版
高中数学人教版《导数》教案2023版一、教学目标通过本节课的学习,学生应能够达到以下目标:1. 了解导数的概念和基本性质;2. 理解导数的几何意义,并能够应用到实际问题中;3. 学会计算常见函数的导数;4. 掌握导数的基本计算法则;5. 运用导数求函数的极值点和函数图像的变化情况。
二、教学重点1. 导数的概念和性质;2. 导数的几何意义;3. 常见函数的导数计算;4. 导数的基本计算法则。
三、教学难点1. 导数的几何意义;2. 导数计算的基本法则。
四、教学过程1. 导入(5分钟)通过提问的方式,引导学生回顾上节课所学内容,激发学生对导数的兴趣。
2. 概念讲解(15分钟)首先,向学生介绍导数的定义,并举例说明,如常见函数的导数计算和几何意义。
然后,引导学生思考导数与函数图像的关系,并进行讲解。
3. 计算实例(25分钟)通过一些常见函数的导数计算实例,帮助学生掌握导数的计算方法和技巧。
同时,通过这些实例,让学生理解导数的几何意义。
4. 计算法则(15分钟)介绍导数的基本计算法则,如和差法则、常数法则和乘法法则,帮助学生简化导数的计算过程。
5. 应用实例(25分钟)通过一些实际问题,引导学生运用导数求函数的极值点和函数图像的变化情况。
让学生将导数与实际问题相结合,提高他们的应用能力。
6. 总结(10分钟)对本节课的内容进行总结,帮助学生回顾所学知识点,并对学生的学习进行反馈。
五、教学辅助材料1. PowerPoint课件,用于呈现导数的概念、计算实例和应用实例;2. 教学实例,用于进行实际问题的讲解和练习。
六、教学评估通过课堂练习和作业,对学生的掌握情况进行评估。
同时,观察学生在课堂上的参与度和表现,对学生的学习态度进行评估。
七、教学延伸为了帮助学生更好地掌握导数的知识,建议学生根据教材自主学习,完成相关的习题和练习。
并鼓励学生在日常生活中积极应用导数的概念和方法,以加深对导数的理解。
高中数学:导数教案 新人教A版选修1-1 教案
导数教案导数是近代数学中微积分的核心概念之一,是一种思想方法,这种思想方法是人类智慧的骄傲.一、教材分析导数的概念是高中新教材人教A版选修1-1第三章3的内容,是在学生学习了平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础。
新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的“逼近”方法定义导数。
问题1气球平均膨胀率--→瞬时膨胀率问题2高台跳水的平均速度--→瞬时速度根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点二、教学目标1、知识与技能:通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数。
2、过程与方法:①通过动手计算培养学生观察、分析、比较和归纳能力②通过问题的探究体会逼近、类比、以已知探求未知、从非凡到一般的数学思想方法3、情感、态度与价值观:通过运动的观点体会导数的内涵,使学生把握导数的概念不再困难,从而激发学生学习数学的爱好.三、重点、难点重点:导数概念的形成,导数内涵的理解难点:在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵通过逼近的方法,引导学生观察来突破难点四、教学设想(具体如下表)教学环节教学内容师生互动设计思路创设情境引入新课幻灯片这段时间里的平均速度,并思考下面的问题:(1)运动员在这段时间里是静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?首先回顾上节课留下的思考题:在学生相互讨论,交流结果的基础上,提出:大家得到运动员在这段时间内的平均速度为“0”,但我们知道运动员在这段时间内并没有“静止”。
为什么会产生这样的情况呢?引起学生的好奇,意识到平均速度只能粗略地描述物体在某段时间内的运动状态,为了能更精确地刻画物体运动,我们有必要研究某个时刻的速度即瞬时速度。
人教版高中数学全套教案导学案3.1.2导数的概念教案
导数的概念 课前预习学案预习目标:什么是瞬时速度,瞬时变化率。
怎样求瞬时变化率。
预习内容:1:气球的体积V 与半径r 之间的关系是33()4Vr V π=,求当空气容量V 从0增加到1时,气球的平均膨胀率.2:高台跳水运动中,运动员相对于水面的高度h 与起跳后的时间t 的关系为:2() 4.9 6.510h t t t =-++. 求在12t ≤≤这段时间里,运动员的平均速度. 3:求2中当t=1时的瞬时速度。
提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标1、会用极限给瞬时速度下精确的定义;并能说出导数的概念。
2. 会运用瞬时速度的定义,求物体在某一时刻的瞬时速度.学习重难点: 1、导数概念的理解;2、导数的求解方法和过程;3、导数符的灵活运用 二、学习过程 合作探究探究任务一:瞬时速度问题1:在高台跳水运动中,运动员有不同时刻的速度是 新知:1. 瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度. 探究任务二:导数问题2: 瞬时速度是平均速度ts∆∆当t ∆趋近于0时的 得导数的定义:函数()y f x =在0x x =处的瞬时变化率是0000()()limlimx x f x x f x fxx ∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y ='即000()()()limx f x x f x f x x∆→+∆-'=∆注意:(1)函数应在点0x 的附近有定义,否则导数不存在 (2)在定义导数的极限式中,x ∆趋近于0可正、可负、但不为0,而y ∆可以为0(3)xy∆∆是函数)(x f y =对自变量x 在x ∆范围内的平均变化率,它的几何意义是过曲线)(x f y =上点()(,00x f x )及点)(,(00x x f x x ∆+∆+)的割线斜率(4)导数xx f x x f x f x ∆-∆+=→∆)()(lim )(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处变化的快慢程度.小结:由导数定义,高度h 关于时间t 的导数就是运动员的瞬时速度,气球半径关于体积V 的导数就是气球的瞬时膨胀率. 典型例题例1 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热. 如果在第xh 时,原油的温度(单位:0c )为2()715(08)f x x x x =-+≤≤. 计算第2h 和第6h 时,原油温度的瞬时变化率,并说明它们的意义.总结:函数平均变化率的符刻画的是函数值的增减;它的绝对值反映函数值变化的快慢. 例2 已知质点M 按规律s =2t 2+3做直线运动(位移单位:cm ,时间单位:s),(1)当t =2,Δt =0.01时,求t s ∆∆. (2)当t =2,Δt =0.001时,求ts∆∆.(3)求质点M 在t =2时的瞬时速度 小结:利用导数的定义求导,步骤为:第一步,求函数的增量00()()y f x x f x ∆=+∆-;第二步:求平均变化率0()f x x y x x+∆∆=∆∆; 第三步:取极限得导数00()lim x yf x x∆→∆'=∆.有效训练练1. 在例1中,计算第3h 和第5h 时原油温度的瞬时变化率,并说明它们的意义.练2. 一球沿一斜面自由滚下,其运动方程是2()s t t =(位移单位:m ,时间单位:s),求小球在5t =时的瞬时速度 反思总结:这节课主要学习了物体运动的瞬时速度的概念,它是用平均速度的极限来定义的,主要记住公式:瞬时速度v =tt s t t s t ∆-∆+→∆)()(lim 0当堂检测1. 一直线运动的物体,从时间t 到t t +∆时,物体的位移为s ∆,那么0lim t s t∆→∆∆为( )A.从时间t 到t t +∆时,物体的平均速度; B.在t 时刻时该物体的瞬时速度;C.当时间为t ∆时物体的速度; D.从时间t 到t t +∆时物体的平均速度 2. 2y x =在 x =1处的导数为( ) A .2x B .2 C .2x +∆ D .13. 在0000()()()limx f x x f x f x x∆→+∆-'=∆中,x ∆不可能( )A .大于0B .小于0C .等于0D .大于0或小于04.如果质点A 按规律23s t =运动,则在3t =时的瞬时速度为5. 若0()2f x '=-,则0001[]()2lim k f x k f x k→--等于课后练习与提高1. 高台跳水运动中,ts 时运动员相对于水面的高度是:2() 4.9 6.510h t t t =-++(单位: m),求运动员在1t s =时的瞬时速度,并解释此时的运动状况.2. 一质量为3kg 的物体作直线运动,设运动距离s(单位:cm)与时间(单位:s )的关系可用函数2()1s t t =+表示,并且物体的动能212U mv =. 求物体开始运动后第5s 时的动能.3.1.2导数的概念教案【教学目标】:1、会用极限给瞬时速度下精确的定义;并能说出导数的概念。
高中数学教案新人教版选修
高中数学全套教案新人教版选修一、第一章:导数及其应用1.1 导数的定义与计算学习目标:理解导数的定义,掌握基本的导数计算方法。
教学内容:引入导数的定义,讲解导数的计算规则,举例说明。
教学活动:讲解导数的定义,通过数学软件或板书演示导数的计算过程,学生跟随练习。
1.2 导数在函数中的应用学习目标:理解导数在函数中的应用,学会求函数的极值和单调性。
教学内容:讲解导数与函数的极值、单调性的关系,举例分析。
教学活动:通过例题讲解导数在函数中的应用,学生跟随练习,讨论解题方法。
二、第二章:积分及其应用2.1 积分的定义与计算学习目标:理解积分的定义,掌握基本的积分计算方法。
教学内容:引入积分的定义,讲解基本的积分计算规则,举例说明。
教学活动:讲解积分的定义,通过数学软件或板书演示积分的计算过程,学生跟随练习。
2.2 积分在几何中的应用学习目标:理解积分在几何中的应用,学会计算几何图形的面积和体积。
教学内容:讲解积分在几何中的应用,举例说明计算面积和体积的方法。
教学活动:通过例题讲解积分在几何中的应用,学生跟随练习,讨论解题方法。
三、第三章:概率与统计学习目标:理解概率的基本概念,学会计算事件的概率。
教学内容:讲解概率的基本定义,举例说明如何计算事件的概率。
教学活动:通过实例讲解概率的基本概念,学生跟随练习,讨论解题方法。
3.2 统计的基本概念学习目标:理解统计的基本概念,学会计算数据的均值、方差等统计量。
教学内容:讲解统计的基本定义,举例说明如何计算均值、方差等统计量。
教学活动:通过实例讲解统计的基本概念,学生跟随练习,讨论解题方法。
四、第四章:数列与级数4.1 数列的基本概念学习目标:理解数列的基本概念,学会计算数列的通项公式和求和公式。
教学内容:讲解数列的定义,举例说明如何求解数列的通项公式和求和公式。
教学活动:通过实例讲解数列的基本概念,学生跟随练习,讨论解题方法。
4.2 级数的基本概念学习目标:理解级数的基本概念,学会判断级数的收敛性。
高中数学导数全章教案
高中数学导数全章教案第一节:导数定义
1.1 导数的概念
- 导数的定义
- 导数的几何意义
- 导数的物理意义
1.2 导数的计算
- 导数的基本概念
- 导数的四则运算法则
- 特殊函数的导数计算
1.3 导数的应用
- 切线方程
- 切线与曲线的位置关系
- 凹凸性与极值点
第二节:导数的性质
2.1 导数的代数性质
- 导数的恒等式
- 导数的积分法则
- 导数的链式法则
2.2 函数的单调性与极值
- 函数的单调性
- 函数的极值判定
- 函数的最值求解
2.3 函数的凹凸性
- 函数的凹凸性定义
- 凹凸性的判定
- 凹凸性与极值点的关系
第三节:高级导数
3.1 高阶导数
- 高阶导数的概念
- 高阶导数的计算方法
- 高阶导数的应用
3.2 隐函数与参数方程的导数
- 隐函数的导数计算
- 参数方程的导数计算
- 隐函数与参数方程的应用
3.3 微分与导数
- 微分的概念
- 微分的计算方法
- 微分与导数的关系
结语:在学习导数的过程中,要始终注重理论与实践的结合,只有通过不断的练习和实践,才能真正掌握导数的知识,提升数学能力。
希望同学们能够认真学习,勤奋练习,取得优
异的成绩。
高中数学导数的概念教案
高中数学导数的概念教案
一、教学目标:
1. 理解导数的定义及其物理意义;
2. 掌握导数计算的方法和规则;
3. 能够应用导数解决实际问题;
4. 培养学生的数学思维和解决问题的能力。
二、教学重点和难点:
1. 理解导数的定义及其物理意义;
2. 导数计算的方法和规则;
3. 实际问题应用。
三、教学内容与安排:
第一课时:导数的基本概念
1. 定义:导数是函数在某一点处的瞬时变化率;
2. 物理意义:导数表示了函数的变化速率,可以用来解释速度、加速度等物理现象;
3. 讨论导数存在的必备条件。
第二课时:导数的计算方法
1. 导数的计算法则:和、差、积、商、复合函数的导数;
2. 高阶导数的计算方法;
3. 计算导数的基本技巧。
第三课时:导数的应用
1. 利用导数求函数的极值;
2. 利用导数解决优化问题;
3. 利用导数解决曲线的切线问题。
四、教学方法:
1. 讲授相结合,引导学生主动探究;
2. 注重示范和实例讲解,提高学生的问题解决能力;
3. 课堂小组讨论,促进学生之间的合作与交流。
五、教学评价:
1. 课堂练习与作业;
2. 实际问题解决能力的考核;
3. 学生的课堂表现和参与度。
六、教学反思:
1. 根据学生的理解情况调整教学内容和节奏;
2. 激发学生的学习兴趣,增强学生的主动学习意识;
3. 关注学生的学习过程,及时给予反馈和帮助。
新人教A版高中数学(选修22)1.2《导数的计算》word教案4篇
§1.2.2基本初等函数的导数公式及导数的运算法则教学目标:1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
教学重点:基本初等函数的导数公式、导数的四则运算法则教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用 教学过程: 一.创设情景四种常见函数y c =、y x =、2y x =、1y x=的导数公式及应用二.新课讲授(一)基本初等函数的导数公式表)(2)推论:[]''()()cf x cf x =(常数与函数的积的导数,等于常数乘函数的导数)三.典例分析例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t =所以'10(10) 1.05ln1.050.08p =≈(元/年)因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+ (2)y =xx --+1111; (3)y =x · sin x · ln x ;(4)y =xx 4; (5)y =xxln 1ln 1+-.(6)y =(2 x 2-5 x +1)e x(7) y =xx x xx x sin cos cos sin +-【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为5284()(80100)100c x x x=<<-求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98% 解:净化费用的瞬时变化率就是净化费用函数的导数.''''252845284(100)5284(100)()()100(100)x x c x x x ⨯--⨯-==-- 20(100)5284(1)(100)x x ⨯--⨯-=-25284(100)x =-(1)因为'25284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨.(2)因为'25284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨.函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.四.课堂练习 1.课本P 92练习2.已知曲线C :y =3 x 4-2 x 3-9 x 2+4,求曲线C 上横坐标为1的点的切线方程;(y =-12 x +8)五.回顾总结(1)基本初等函数的导数公式表 (2)导数的运算法则六.布置作业§1.1.2 导数的概念学习目标1.掌握用极限给瞬时速度下的精确的定义;2.会运用瞬时速度的定义,求物体在某一时刻的瞬时速度. 一、预习与反馈(预习教材P 4~ P 6,找出疑惑之处)探究任务一:瞬时速度问题1:在高台跳水运动中,运动员有不同时刻的速度是 新知:1. 瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度.探究任务二:导数问题2: 瞬时速度是平均速度ts∆∆当t ∆趋近于0时的 导数的定义:函数()y f x =在0x x =处的瞬时变化率是0000()()limlimx x f x x f x fx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或 即000()()()limx f x x f x f x x∆→+∆-'=∆注意:(1)。
数学高中导数整理教案人教版
数学高中导数整理教案人教版【教学目标】1. 熟悉导数的定义和性质。
2. 掌握导数的计算方法。
3. 能够运用导数解决实际问题。
【教学重点】1. 导数的定义和性质。
2. 导数的计算方法。
【教学难点】1. 对导数的概念和性质进行整理和梳理。
2. 解决实际问题时如何运用导数的知识。
【教学过程】一、导数的定义1. 导数的概念:如果函数f(x)在点x处存在极限,那么称导数f'(x)在点x处存在。
2. 导数的定义公式:f'(x) = lim(h->0) [f(x+h) - f(x)] / h。
二、导数的性质1. 导数存在的条件:函数f(x)在某点处导数存在的条件是函数在该点处可导。
2. 导数的性质:(1)导数的线性性:[f(x) ± g(x)]' = f'(x) ± g'(x),[cf(x)]' = cf'(x)。
(2)导数的乘法法则:[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)。
(3)导数的除法法则:[f(x)/g(x)]' = [f'(x)g(x) - f(x)g'(x)] / [g(x)]^2。
三、导数的计算方法1. 基本函数的导数:(1)常数函数导数:(c)' = 0。
(2)幂函数导数:(x^n)' = nx^(n-1)。
(3)指数函数导数:(a^x)' = a^xln(a)。
(4)对数函数导数:(log_a(x))' = 1/(xln(a))。
2. 四则运算法则:根据导数的性质和计算规则,可以求得各种函数的导数。
四、实例探究1. 实例一:求函数f(x) = 3x^2 - 2x + 5在点x=1处的导数。
解:f'(x) = d/dx [3x^2 - 2x + 5] = 6x - 2。
f'(1) = 6*1 - 2 = 4。
高中数学导数教案
高中数学导数教案教案标题:高中数学导数教案教学目标:1. 理解导数的概念和意义;2. 掌握导数的计算方法和基本性质;3. 运用导数解决实际问题。
教学重点:1. 导数的定义和计算方法;2. 导数的基本性质;3. 导数在实际问题中的应用。
教学难点:1. 导数的应用问题的转化和解决;2. 导数的基本性质的理解和运用。
教学准备:1. 教学课件和教学素材;2. 高中数学教材和参考书籍;3. 演示工具和实例题目。
教学过程:一、导入(5分钟)1. 利用一个有趣的问题或实例引起学生对导数的兴趣;2. 复习前置知识,如函数的概念和基本性质。
二、导数的定义和计算方法(15分钟)1. 介绍导数的定义和符号表示;2. 详细讲解导数的计算方法,包括用极限和差商的方法;3. 给出一些简单的导数计算例题,引导学生进行实际操作。
三、导数的基本性质(20分钟)1. 介绍导数的基本性质,如导数的四则运算法则和复合函数的导数;2. 讲解导数的乘法法则和除法法则;3. 给出一些练习题,巩固学生对导数的基本性质的理解。
四、导数在实际问题中的应用(20分钟)1. 介绍导数在实际问题中的应用,如切线和法线、最值问题等;2. 给出一些实际问题,引导学生将问题转化为导数的计算和应用;3. 引导学生进行实际问题的解答和讨论。
五、总结与拓展(10分钟)1. 对本节课的内容进行总结,强调导数的重要性和应用;2. 提供一些拓展问题,鼓励学生进一步思考和探索。
六、作业布置(5分钟)1. 布置一些练习题,巩固学生对导数的计算和应用;2. 鼓励学生自主学习,查阅相关参考资料,提升对导数的理解和应用能力。
教学反思:本节课通过引入有趣的问题和实例,激发了学生对导数的兴趣和学习的积极性。
在导数的定义和计算方法、基本性质以及应用方面,采用了示范讲解和学生参与互动的方式,使学生能够更好地理解和掌握导数的相关知识。
通过实际问题的解答和讨论,培养了学生的问题解决能力和思维能力。
高中全套数学导数教案模板
高中全套数学导数教案模板一、教学目标1. 理解导数的概念和基本性质2. 掌握导数的计算方法和应用3. 能够解决实际问题,运用导数概念进行分析和计算二、教学重点1. 导数的定义和基本概念2. 导数的计算方法3. 导数的应用三、教学难点1. 熟练掌握导数的计算方法2. 能够灵活运用导数概念解决实际问题四、教学准备1. 教材《高中数学》相关章节2. 教具:黑板、彩笔、教科书、练习册等3. 备课:制定教学计划、准备课堂讲义五、教学过程第一课时:导数的定义和基本概念1. 导入:通过举例说明导数的概念和意义2. 讲解:导数的定义、导数的意义、导数的表示方法3. 练习:针对导数的计算方法进行练习4. 总结:总结导数的定义和基本概念第二课时:导数的计算方法1. 复习:对导数的定义和基本概念进行复习2. 讲解:导数的计算方法包括函数导数、导数的性质等3. 练习:练习导数的计算方法和相关题目4. 总结:总结导数的计算方法及其应用第三课时:导数的应用1. 复习:对导数的计算方法进行复习2. 讲解:导数在实际问题中的应用,如最优化问题等3. 练习:练习导数在实际问题中的应用4. 总结:总结导数的应用及其重要性六、教学反馈1. 对学生进行小测验,检测他们对导数概念和计算方法的掌握程度2. 收集学生提出的问题和意见,及时调整教学内容和进度3. 鼓励学生积极参与课堂讨论,提高他们的学习兴趣和能力七、课后作业1. 完成相关练习册上的练习题2. 研究相关导数应用问题,自行解答并总结八、教学反思1. 总结本节课教学中存在的问题和不足之处2. 改进教学方法和内容,提高教学效果3. 继续努力,为学生提供更好的教育教学服务以上是关于高中数学导数教学案的范本,可根据实际情况进行调整和补充。
希望对你有所帮助,谢谢!。
(完整word版)人教版高中数学《导数》全部教案
导数的背景(5月4日)教学目标 理解函数的增量与自变量的增量的比的极限的具体意义 教学重点 瞬时速度、切线的斜率、边际成本 教学难点 极限思想 教学过程 一、导入新课 1. 瞬时速度问题1:一个小球自由下落,它在下落3秒时的速度是多少? 析:大家知道,自由落体的运动公式是221gt s =(其中g 是重力加速度). 当时间增量t ∆很小时,从3秒到(3+t ∆)秒这段时间内,小球下落的快慢变化不大. 因此,可以用这段时间内的平均速度近似地反映小球在下落3秒时的速度.从3秒到(3+t ∆)秒这段时间内位移的增量:222)(9.44.2939.4)3(9.4)3()3(t t t s t s s ∆+∆=⨯-∆+=-∆+=∆从而,t tsv ∆+=∆∆=--9.44.29. 从上式可以看出,t ∆越小,t s ∆∆越接近29.4米/秒;当t ∆无限趋近于0时,ts∆∆无限趋近于29.4米/秒. 此时我们说,当t ∆趋向于0时,ts∆∆的极限是29.4.当t ∆趋向于0时,平均速度ts∆∆的极限就是小球下降3秒时的速度,也叫做瞬时速度.一般地,设物体的运动规律是s =s (t ),则物体在t 到(t +t ∆)这段时间内的平均速度为t t s t t s t s ∆-∆+=∆∆)()(. 如果t ∆无限趋近于0时,ts∆∆无限趋近于某个常数a ,就说当t ∆趋向于0时,t s∆∆的极限为a ,这时a 就是物体在时刻t的瞬时速度. 2. 切线的斜率问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况.析:设点Q 的横坐标为1+x ∆,则点Q 的纵坐标为(1+x ∆)2,点Q 对于点P的纵坐标的增量(即函数的增量)22)(21)1(x x x y ∆+∆=-∆+=∆, 所以,割线PQ 的斜率x xx x x y k PQ∆+=∆∆+∆=∆∆=2)(22. 由此可知,当点Q 沿曲线逐渐向点P 接近时,x ∆变得越来越小,PQ k 越来越接近2;当点Q 无限接近于点P 时,即x ∆无限趋近于0时,PQ k 无限趋近于2. 这表明,割线PQ 无限趋近于过点P 且斜率为2的直线. 我们把这条直线叫做曲线在点P 处的切线. 由点斜式,这条切线的方程为:12-=x y .一般地,已知函数)(x f y =的图象是曲线C ,P (00,y x ),Q (y y x x ∆+∆+00,)是曲线C 上的两点,当点Q 沿曲线逐渐向点P 接近时,割线PQ 绕着点P 转动. 当点Q 沿着曲线无限接近点P ,即x ∆趋向于0时,如果割线PQ 无限趋近于一个极限位置PT ,那么直线PT 叫做曲线在点P 处的切线. 此时,割线PQ 的斜率xyk PQ ∆∆=无限趋近于切线PT 的斜率k ,也就是说,当x ∆趋向于0时,割线PQ 的斜率xyk PQ ∆∆=的极限为k.3. 边际成本 问题3:设成本为C ,产量为q ,成本与产量的函数关系式为103)(2+=q q C ,我们来研究当q =50时,产量变化q ∆对成本的影响.在本问题中,成本的增量为:222)(3300)10503(10)50(3)50()50(q q q C q C C ∆+∆=+⨯-+∆+=-∆+=∆.产量变化q ∆对成本的影响可用:q q C ∆+=∆∆3300来刻划,q ∆越小,qC∆∆越接近300;当q ∆无限趋近于0时,qC∆∆无限趋近于300,我们就说当q ∆趋向于0时,qC∆∆的极限是300. 我们把qC∆∆的极限300叫做当q =50时103)(2+=q q C 的边际成本.一般地,设C 是成本,q 是产量,成本与产量的函数关系式为C =C (q ),当产量为0q 时,产量变化q ∆对成本的影响可用增量比qq C q q C q C ∆-∆+=∆∆)()(00刻划. 如果q ∆无限趋近于0时,qC∆∆无限趋近于常数A ,经济学上称A 为边际成本. 它表明当产量为0q 时,增加单位产量需付出成本A (这是实际付出成本的一个近似值). 二、小结瞬时速度是平均速度ts∆∆当t ∆趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率xy∆∆当x ∆趋近于0时的极限;边际成本是平均成本q C ∆∆当q ∆趋近于0时的极限.三、练习与作业:1. 某物体的运动方程为25)(t t s =(位移单位:m ,时间单位:s )求它在t =2s 时的速度.2. 判断曲线22x y =在点P (1,2)处是否有切线,如果有,求出切线的方程.3. 已知成本C 与产量q 的函数关系式为522+=q C ,求当产量q =80时的边际成本.4. 一球沿某一斜面自由滚下,测得滚下的垂直距离h (单位:m )与时间t (单位:s )之间的函数关系为2t h =,求t =4s 时此球在垂直方向的瞬时速度.5. 判断曲线221x y =在(1,21)处是否有切线,如果有,求出切线的方程.6. 已知成本C 与产量q 的函数关系为742+=q C ,求当产量q =30时的边际成本.导数的概念(5月4日)教学目标与要求:理解导数的概念并会运用概念求导数。
高三数学网课导数教案人教版
高三数学网课导数教案人教版教案标题:高三数学网课导数教案(人教版)教学目标:1. 理解导数的定义及其几何意义。
2. 掌握导数的基本运算法则。
3. 能够应用导数求函数的极值、最值以及函数的单调性。
4. 能够应用导数解决相关率问题。
教学重点:1. 导数的定义及其几何意义。
2. 导数的基本运算法则。
3. 导数在函数极值、最值以及函数单调性问题中的应用。
4. 导数在相关率问题中的应用。
教学难点:1. 导数的几何意义的理解。
2. 导数在相关率问题中的应用。
教学准备:1. 电脑、投影仪等教学设备。
2. 人教版高中数学教材。
3. 相关练习题、习题解析及答案。
教学过程:一、导入(5分钟)1. 利用投影仪展示一道与导数相关的实际问题,引起学生的兴趣。
2. 引导学生回顾高二数学中的导数概念和基本运算法则。
二、知识讲解与示范(20分钟)1. 导数的定义及几何意义:a. 通过展示导数的定义公式,引导学生理解导数的含义。
b. 通过几何图形的示例,讲解导数的几何意义。
2. 导数的基本运算法则:a. 介绍导数的基本运算法则,包括常数倍法则、和差法则、乘积法则和商法则。
b. 通过示例演示基本运算法则的应用。
三、练习与讨论(25分钟)1. 给出若干导数计算的练习题,让学生在课堂上完成。
2. 学生互相讨论解题思路,教师及时给予指导和解答。
四、应用拓展(15分钟)1. 导数在函数极值、最值以及函数单调性问题中的应用:a. 通过实例引导学生理解导数与函数极值、最值以及函数单调性的关系。
b. 给出相关练习题,让学生在课堂上进行解答。
2. 导数在相关率问题中的应用:a. 通过实际问题引导学生理解导数在相关率问题中的应用。
b. 给出相关练习题,让学生在课堂上进行解答。
五、小结与反思(5分钟)1. 简要总结导数的定义、几何意义以及基本运算法则。
2. 引导学生思考导数在解决实际问题中的应用。
教学延伸:1. 提供更多导数的应用题,让学生进一步巩固和拓展所学知识。
高中数学导数全章详细教案
高中数学导数全章详细教案一、导数的概念与意义1.1 导数的定义导数表示一个函数在某一点处的变化率,定义如下:$$f'(x)=\lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$1.2 导数的物理意义导数可以表示函数在某一点的切线斜率,也可以表示函数在某一点的速度、加速度等物理量。
1.3 导数的几何意义导数表示函数曲线在某一点的切线斜率,也可以用来描述函数曲线的凹凸性等几何特性。
二、导数的计算方法2.1 导数的基本计算法则- 常数函数的导数为零- 幂函数的导数- 指数函数的导数- 对数函数的导数- 三角函数的导数- 反三角函数的导数2.2 导数的运算法则- 和、差、积函数的导数法则- 商函数的导数法则- 复合函数的导数法则2.3 隐函数求导对含有隐函数的方程两边同时求导,然后解出导数。
2.4 参数方程求导将参数方程表示的函数关系化简为常规函数后再求导。
三、导数的应用3.1 函数的单调性与极值通过导数的符号变化可以判断函数的单调性和极值。
3.2 函数的凹凸性与拐点通过导数的变化可以判断函数的凹凸性和拐点。
3.3 弧长与曲率通过导数可以求解函数曲线的弧长和曲率。
3.4 泰勒公式用导数的信息来近似表示函数的值,通过泰勒公式可以得到较好的近似结果。
四、导数的图像4.1 函数的导数图像通过函数的导数图像可以观察函数的单调性、凹凸性、极值等性质。
4.2 函数曲线的特性通过导数的信息可以画出函数曲线的切线、凹凸性、拐点等特性。
以上是高中数学导数章节的详细教案,希望对学习导数的同学有所帮助。
高中人教版数学求导教案
高中人教版数学求导教案
目标:通过本节课的学习,学生能够掌握常见函数的求导方法,并能够解决与求导相关的问题。
教学内容:
1. 导数的概念和定义
2. 常见函数的求导法则(幂函数、指数函数、对数函数)
3. 高阶导数的概念和计算方法
教学过程:
一、导入(5分钟)
教师通过举例向学生解释导数的概念和定义,并引出求导的重要性和应用。
二、讲解常见函数的求导法则(20分钟)
1. 幂函数的求导法则:$f(x) = x^n$,$f'(x) = nx^{n-1}$
2. 指数函数的求导法则:$f(x) = a^x$,$f'(x) = a^x\ln a$
3. 对数函数的求导法则:$f(x) = \log_a x$,$f'(x) = \frac{1}{x\ln a}$
教师通过示例演示以上函数的求导过程,并带领学生一起练习。
三、解答问题和讨论(15分钟)
学生可以提出他们在求导过程中遇到的问题,教师进行解答并引导学生进行讨论,帮助学生更好地理解求导的概念和方法。
四、练习与巩固(15分钟)
教师让学生进行一些练习题的完成,巩固所学的求导方法和技巧。
五、作业布置(5分钟)
布置相关作业,让学生在家里继续巩固求导的知识,并保持对数学的兴趣。
总结:通过本节课的学习,学生掌握了常见函数的求导方法,并能够熟练地应用到实际问题中去。
希望学生能够在以后的学习中,继续深化对求导的理解,并灵活运用到不同的数学问题中。
人教版高中数学导数教案
人教版高中数学导数教案主题:导数
教学目标:
1. 了解导数的定义和性质;
2.掌握一元函数的导数计算方法;
3.能够应用导数解决实际问题。
教学重点:
1.导数的定义和性质;
2.一元函数的导数计算方法。
教学难点:
1.导数的基本概念理解;
2.导数计算方法的灵活运用。
教学过程:
一、导数的定义和性质
1. 引入:导数的概念及意义
2. 定义:导数的定义和符号表示
3. 性质:导数存在的条件和导数的性质
二、一元函数的导数计算方法
1. 基本导数公式
2. 导数的四则运算法则
3. 高阶导数的计算
三、应用导数解决实际问题
1. 最值问题
2. 切线与法线问题
3. 函数图像的优化问题
四、综合练习
1. 理论练习
2. 计算练习
3. 应用题练习
五、作业布置
1. 完成课堂练习
2. 完成作业练习
3. 思考课外拓展问题
六、教学反思与评价
1. 教学反思:教学方法是否得当,学生学习情况如何
2. 教学评价:学生的学习效果评价,课程目标的完成情况
【教学资料】
1. 课件资料
2. 教学习题
3. 作业
【教学反思】
本节课主要介绍了导数的基本概念和计算方法,希望通过本节课的教学,学生能够掌握导
数的基本知识,并能够灵活运用导数解决实际问题。
在教学过程中,老师需要注重启发式
教学,激发学生的学习兴趣,增强学生的解决问题的能力。
同时,老师需要及时总结反思,调整教学方法,以提高教学效果。
高中数学人教版导数教案
高中数学人教版导数教案教学目标:
1. 了解导数的概念和意义;
2. 能够计算常数函数、幂函数和指数函数的导数;
3. 理解导数在几何上的意义。
教学重点:
1. 导数的定义和计算方法;
2. 常数函数、幂函数和指数函数的导数计算;
3. 导数在几何中的应用。
教学难点:
1. 正确理解导数的概念和计算方法;
2. 理解导数在几何中的应用;
3. 解决导数计算的实际问题。
教学过程:
一、导入导数的概念(10分钟)
1. 引导学生思考:什么是导数?导数有什么作用?
2. 通过简单的例子引导学生理解导数的概念。
二、常数函数的导数(15分钟)
1. 讲解常数函数的导数计算方法;
2. 给出例题让学生练习计算。
三、幂函数的导数(15分钟)
1. 讲解幂函数的导数计算方法;
2. 给出例题让学生练习计算。
四、指数函数的导数(15分钟)
1. 讲解指数函数的导数计算方法;
2. 给出例题让学生练习计算。
五、导数在几何中的应用(15分钟)
1. 介绍导数在几何中的应用;
2. 通过求切线和法线斜率的例题让学生理解导数在几何中的意义。
六、课堂练习(10分钟)
1. 综合练习导数的计算方法和应用。
七、作业布置(5分钟)
1. 布置相关习题,巩固所学内容。
教学反思:
本节课主要介绍了导数的概念和计算方法,通过讲解常数函数、幂函数和指数函数的导数计算,让学生掌握了导数的基本应用。
同时,通过导数在几何中的应用,使学生更好地理解导数的意义。
需要继续引导学生多做练习,加强对导数概念的理解和运用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学《导数》全部教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN导数的背景(5月4日)教学目标 理解函数的增量与自变量的增量的比的极限的具体意义 教学重点 瞬时速度、切线的斜率、边际成本 教学难点 极限思想 教学过程 一、导入新课 1. 瞬时速度问题1:一个小球自由下落,它在下落3秒时的速度是多少? 析:大家知道,自由落体的运动公式是221gt s =(其中g 是重力加速度). 当时间增量t ∆很小时,从3秒到(3+t ∆)秒这段时间内,小球下落的快慢变化不大. 因此,可以用这段时间内的平均速度近似地反映小球在下落3秒时的速度.从3秒到(3+t ∆)秒这段时间内位移的增量:222)(9.44.2939.4)3(9.4)3()3(t t t s t s s ∆+∆=⨯-∆+=-∆+=∆从而,t tsv ∆+=∆∆=--9.44.29. 从上式可以看出,t ∆越小,ts∆∆越接近29.4米/秒;当t ∆无限趋近于0时,t s ∆∆无限趋近于29.4米/秒. 此时我们说,当t ∆趋向于0时,t s ∆∆的极限是29.4.当t ∆趋向于0时,平均速度ts∆∆的极限就是小球下降3秒时的速度,也叫做瞬时速度.一般地,设物体的运动规律是s =s (t ),则物体在t 到(t +t ∆)这段时间内的平均速度为t t s t t s t s ∆-∆+=∆∆)()(. 如果t ∆无限趋近于0时,ts ∆∆无限趋近于某个常数a ,就说当t ∆趋向于0时,t s∆∆的极限为a ,这时a 就是物体在时刻t 的瞬时速度. 2. 切线的斜率问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况.析:设点Q 的横坐标为1+x ∆,则点Q 的纵坐标为(1+x ∆)2,点Q 对于点P 的纵坐标的增量(即函数的增量)22)(21)1(x x x y ∆+∆=-∆+=∆, 所以,割线PQ 的斜率x xx x x y k PQ∆+=∆∆+∆=∆∆=2)(22. 由此可知,当点Q 沿曲线逐渐向点P 接近时,x ∆变得越来越小,PQ k 越来越接近2;当点Q 无限接近于点P 时,即x ∆无限趋近于0时,PQ k 无限趋近于2. 这表明,割线PQ 无限趋近于过点P 且斜率为2的直线. 我们把这条直线叫做曲线在点P 处的切线. 由点斜式,这条切线的方程为:12-=x y .一般地,已知函数)(x f y =的图象是曲线C ,P (00,y x ),Q(y y x x ∆+∆+00,)是曲线C 上的两点,当点Q 沿曲线逐渐向点P 接近时,割线PQ 绕着点P 转动. 当点Q 沿着曲线无限接近点P ,即x ∆趋向于0时,如果割线PQ 无限趋近于一个极限位置PT ,那么直线PT 叫做曲线在点P 处的切线.此时,割线PQ 的斜率xyk PQ ∆∆=无限趋近于切线PT 的斜率k ,也就是说,当x ∆趋向于0时,割线PQ 的斜率xyk PQ ∆∆=的极限为k. 3. 边际成本问题3:设成本为C ,产量为q ,成本与产量的函数关系式为103)(2+=q q C ,我们来研究当q =50时,产量变化q ∆对成本的影响.在本问题中,成本的增量为:222)(3300)10503(10)50(3)50()50(q q q C q C C ∆+∆=+⨯-+∆+=-∆+=∆. 产量变化q ∆对成本的影响可用:q q C ∆+=∆∆3300来刻划,q ∆越小,qC∆∆越接近300;当q ∆无限趋近于0时,qC∆∆无限趋近于300,我们就说当q ∆趋向于0时,qC∆∆的极限是300.我们把qC∆∆的极限300叫做当q =50时103)(2+=q q C 的边际成本. 一般地,设C 是成本,q 是产量,成本与产量的函数关系式为C =C (q ),当产量为0q 时,产量变化q ∆对成本的影响可用增量比q q C q q C q C ∆-∆+=∆∆)()(00刻划. 如果q ∆无限趋近于0时,qC∆∆无限趋近于常数A ,经济学上称A 为边际成本. 它表明当产量为0q 时,增加单位产量需付出成本A (这是实际付出成本的一个近似值). 二、小结瞬时速度是平均速度t s∆∆当t ∆趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率x y∆∆当x ∆趋近于0时的极限;边际成本是平均成本qC∆∆当q ∆趋近于0时的极限. 三、练习与作业:1. 某物体的运动方程为25)(t t s =(位移单位:m ,时间单位:s )求它在t =2s 时的速度.2. 判断曲线22x y =在点P (1,2)处是否有切线,如果有,求出切线的方程.3. 已知成本C 与产量q 的函数关系式为522+=q C ,求当产量q =80时的边际成本.4. 一球沿某一斜面自由滚下,测得滚下的垂直距离h (单位:m )与时间t (单位:s )之间的函数关系为2t h =,求t =4s 时此球在垂直方向的瞬时速度.5. 判断曲线221x y =在(1,21)处是否有切线,如果有,求出切线的方程.6. 已知成本C 与产量q 的函数关系为742+=q C ,求当产量q =30时的边际成本.导数的概念(5月4日)教学目标与要求:理解导数的概念并会运用概念求导数。
教学重点:导数的概念以及求导数 教学难点:导数的概念 教学过程: 一、导入新课:上节我们讨论了瞬时速度、切线的斜率和边际成本。
虽然它们的实际意义不同,但从函数角度来看,却是相同的,都是研究函数的增量与自变量的增量的比的极限。
由此我们引出下面导数的概念。
二、新授课:1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数)(x f Y =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比x y ∆∆(也叫函数的平均变化率)有极限即xy ∆∆无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/注:1.函数应在点0x 的附近有定义,否则导数不存在。
2.在定义导数的极限式中,x ∆趋近于0可正、可负、但不为0,而y ∆可能为0。
3.xy∆∆是函数)(x f y =对自变量x 在x ∆范围内的平均变化率,它的几何意义是过曲线)(x f y =上点()(,00x f x )及点)(,(00x x f x x ∆+∆+)的割线斜率。
4.导数xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处变化的快慢程度,它的几何意义是曲线)(x f y =上点()(,00x f x )处的切线的斜率。
因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为))(()(00/0x x x f x f y -=-。
5.导数是一个局部概念,它只与函数)(x f y =在0x 及其附近的函数值有关,与x ∆无关。
6.在定义式中,设x x x ∆+=0,则0x x x -=∆,当x ∆趋近于0时,x 趋近于0x ,因此,导数的定义式可写成0000/)()(lim )()(lim)(0x x x f x f x x f x x f x f x x ox --=∆-∆+=→→∆。
7.若极限xx f x x f x ∆-∆+→∆)()(lim000不存在,则称函数)(x f y =在点0x 处不可导。
8.若)(x f 在0x 可导,则曲线)(x f y =在点()(,00x f x )有切线存在。
反之不然,若曲线)(x f y =在点()(,00x f x )有切线,函数)(x f y =在0x 不一定可导,并且,若函数)(x f y =在0x 不可导,曲线在点()(,00x f x )也可能有切线。
一般地,a xb a x =∆+→∆)(lim 0,其中b a ,为常数。
特别地,a a x =→∆0lim 。
如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f 。
称这个函数)(/x f 为函数)(x f y =在开区间内的导函数,简称导数,也可记作/y ,即 )(/x f =/y =xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(limlim00 函数)(x f y =在0x 处的导数0/x x y =就是函数)(x f y =在开区间),(b a )),((b a x ∈上导数)(/x f 在0x 处的函数值,即0/x x y ==)(0/x f 。
所以函数)(x f y =在0x 处的导数也记作)(0/x f 。
注:1.如果函数)(x f y =在开区间),(b a 内每一点都有导数,则称函数)(x f y =在开区间),(b a 内可导。
2.导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值。
它们之间的关系是函数)(x f y =在点0x 处的导数就是导函数)(/x f 在点0x 的函数值。
3.求导函数时,只需将求导数式中的0x 换成x 就可,即)(/x f =xx f x x f x ∆-∆+→∆)()(lim4.由导数的定义可知,求函数)(x f y =的导数的一般方法是: (1).求函数的改变量)()(x f x x f y -∆+=∆。
(2).求平均变化率xx f x x f x y ∆-∆+=∆∆)()(。
(3).取极限,得导数/y =x yx ∆∆→∆0lim 。
例1.求122-=x y 在x =-3处的导数。
例2.已知函数x x y +=2 (1)求/y 。
(2)求函数x x y +=2在x =2处的导数。
小结:理解导数的概念并会运用概念求导数。
练习与作业: 1.求下列函数的导数:(1)43-=x y ; (2)x y 21-=(3)x x y 1232-= (3)35x y -=2.求函数12+=x y 在-1,0,1处导数。
3.求下列函数在指定点处的导数:(1)2,02==x x y ; (2)0,3102==x x y ;(3)1,)2(02=-=x x y (4)1,02-=-=x x x y .4.求下列函数的导数:(1);14+=x y (2)210x y -=;(3);323x x y -= (4)722+=x y 。