第二章 物流运筹学——线性规划

合集下载

管理运筹学第二章 线性规划的图解法

管理运筹学第二章 线性规划的图解法

B、约束条件不是等式的问题:
若约束条件为 ai1 x1+ai2 x2+ … +ain xn ≤ bi 可以引进一个新的变量si ,使它等于约束右 边与左边之差 si=bi–(ai1 x1 + ai2 x2 + … + ain xn ) 显然,si 也具有非负约束,即si≥0, 这时新的约束条件成为 ai1 x1+ai2 x2+ … +ain xn+si = bi
第二章 线性规划 的图解法
一、线性规划的概念 二、线性规划问题的提出 三、线性规划的数学模型 四、线性规划的图解法 五、线性规划解的情况 六、LP图解法的灵敏度分析
一、线性规划的概念
线性规划Linear Programming 简称LP,是一 种解决在线性约束条件下追求最大或最小的 线性目标函数的方法。 线性规划的目标和约束条件都可以表示成线 性的式子。
max z 3 x1 2 x2
2 x1 x2 ≤ 10 设备B台时占用 s.t. x1 x2 ≤ 8 x , x ≥ 0 产量非负 1 2
决策变量 (decision variable) 目标函数 (objective function) 约束条件 (subject to)

-ai1
x1-ai2 x2- … -ain xn = -bi 。
例1.3:将以下线性规划问题转化为标准形式 Min f = 3.6 x1 - 5.2 x2 + 1.8 x3 s. t. 2.3 x1 + 5.2 x2 - 6.1 x3 ≤15.7 4.1 x1 + 3.3 x3 ≥8.9 x1 + x2 + x3 = 38 x 1 , x 2 , x3 ≥ 0

物流运筹学(第9节-影子价格)

物流运筹学(第9节-影子价格)

说明,在当前的情况下, 钢材是有剩余的,煤炭 和设备才是企业的瓶颈。
再增加一台时设备,利润会增加 6/7
Page 10
对偶问题的经济解释-影子价格
影子价格的经济意义
Page 11
2)根据对偶理论的互补松弛性定理: 生产过程中如果某种资源未得到充分利用时,该种资源 的子价格为零;又当资源的影子价格不为零时,表明该种 资源在生产中已耗费完毕。
若第i 种资源的单位市场价格为mi ,则有当yi* > mi 时,企业愿意 购进这种资源,单位纯利为yi*-mi ,则有利可图;如果yi* < mi , 则企业有偿转让这种资源,可获单位纯利mi-yi * ,否则,企业 无利可图,甚至亏损。 结论:若yi* > mi 则购进资源i,可获单位纯利yi*-mi 若yi* < mi则转让资源i ,可获单位纯利mi-yi
对偶性质
Page 26
性质2 弱对偶原理(弱对偶性):设 X 0 和 Y 0分别是问题(P)和 (D)的可行解,则必有 n m max Z=C X 0 0 CX Y b 即: c j x j yi bi s.t. AX≤b j 1 i 1
推论1: 原问题任一可行解的目标函数值是其对偶 问题目标函数值的下届;反之,对偶问题任意可 行解的目标函数值是其原问题目标函数值的上界。 推论2: 在一对对偶问题(P)和(D)中,若其中 一个问题可行但目标函数无界,则另一个问题无 可行解。这也是对偶问题的无界性。
对偶问题的经济解释-影子价格
3)影子价格是一种机会成本
Page 18
影子价格是在资源最优利用条件下对单位资源的估价, 这种估价不是资源实际的市场价格。因此,从另一个角度说, 它是一种机会成本。
若第i 种资源的单位市场价格为mi ,则有当yi* > mi 时,企业愿意 购进这种资源,单位纯利为yi*-mi ,则有利可图;如果yi* < mi , 则企业有偿转让这种资源,可获单位纯利mi-yi * ,否则,企业 无利可图,甚至亏损。 结论:若yi* > mi 则购进资源i,可获单位纯利yi*-mi 若yi* < mi则转让资源i ,可获单位纯利mi-yi

线性规划PPT课件

线性规划PPT课件

线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义

管理运筹学第二章线性规划的图解法

管理运筹学第二章线性规划的图解法

02
图解法的基本原理
图解法的概念
图解法是一种通过图形来直观展示线性规划问题解的方法。它通过在坐标系中绘 制可行域和目标函数,帮助我们理解问题的结构和最优解的位置。
图解法适用于线性规划问题中变量和约束条件较少的情况,能够直观地展示出最 优解的几何意义。
图解法的步骤
确定决策变量和目标函数
明确问题的决策变量和目标函数,以便在图 形中表示。
目标函数是要求最小化或最大化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是限制决策变量取值的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
LINDO是一款开源的线性规划求解器,用 户可以免费使用。
软件工具的使用方法
Excel
用户需要先在Excel中设置好线性规划模型,然后使 用“数据”菜单中的“规划求解”功能进行求解。
Gurobi/CPLEX/LINDO
这些软件通常需要用户先在软件界面中输入线性规划 模型,然后通过点击“求解”按钮进行求解。
实例三:分配问题
总结词
分配问题是指如何根据一定的分配原则 或目标,将有限的资源分配给不同的需 求方,以最大化整体效益。
VS
详细描述
分配问题在实际生活中广泛存在,如物资 分配、任务分配等。通过图解法,可以将 分配问题转化为线性规划模型,并利用图 形直观地展示最优解的资源分配方案。在 分配问题中,通常需要考虑不同需求方的 重要性和优先级,以及资源的有限性等因 素,以实现整体效益的最大化。

2 线性规划

2 线性规划

第一节 线性规划问题及其数学模型
可加性假定:每个决策变量对目标函数和约
束方程的影响是独立于其他变量的,目标函 数值是每个决策变量对目标函数贡献的总和 连续性假定:线性规划问题中的决策变量应 取连续值。 确定性假定:线性规划问题中的所有参数都 是确定的参数。线性规划问题不包含随机因 素。
约 束 方 程
约束条件
变量约束
第一节 线性规划问题及其数学模型
线性规划问题隐含的假定: 比例性假定 可加性假定 连续性假定 确定性假定
比例性假定:决策变量变化引起的目标函数
的改变量和决策变量的改变量成比例,同样, 每个决策变量的变化引起约束方程左端值的 改变量和该变量的改变量成比例
≥0
=
≥0
第一节 线性规划问题及其数学模型
标准型的简缩形式
max Z
c x
j j 1
n
j
s .t
n aij x j bi , i 1,2 , , m j 1 x j 0 , i 1,2 , , m

第一节 线性规划问题及其数学模型

松弛变量
a i 1 x 1 a i 2 x 2 a in x n bi
a i 1 x1 a i 2 x 2 a in x n x p bi , x p 0
剩余变量
练习
例:将下列线性规划问题划为标准形式: min Z = x1+3x2
s.t.
6x1+7x28 -x1+3x2-6 x1-x2=3 x10
可行域无界
x1+2x2 10 x2 0 x1
可行域无界
x2
x1 0

2线性规划的图解法

2线性规划的图解法

16
建模练习
P25,T7(1)建立线性规划模型
17
图解法
目标函数:max Z=50x1+100x2 满足约束条件:x1 +x2≤300
2 x1+x2≤400 x2≤250 x1≥0, x2≥0
18
问题1 ,即不等式组,由于只包含两个决策变量,
可以用图解法来求解。多于两个决策变量不能用图 解法解。 图解法.首先把每个约束条件(代表一个平面) 画在二维坐标轴上。
9
常见的线性规划问题
管理上有很多问题可建立线性规划模型来解决,如 合理利用线材问题。现有一批长度一定的钢管,由于 生产的需要,要求截出不同规格的钢管若干。试问应 如何下料,既满足了生产的需要,又使得使用的原材 料钢管的数量最少。 配料问题。用若干种不同价格不同成分含量的原料, 用不同的配比混合调配出一些不同价格不同规格的产 品,在原料供应量的限制和保证产品成分的含量的前 提下,如何获取最大的利润。
松弛变量和线性规划标准化
为了把一个线性规划标准化,需要有代表没使用的
资源或能力的变量,称之为松弛变量,记为Si。显 然这些松弛变量对目标函数不会产生影响,可以在 目标函数中把这些松弛变量的系数看成零,加了松 弛变量后我们得到如下的例1的数学模型: 目标函数: max Z=50x1+100x2+0s1+0s2+0s3, 约束条件: x1+x2+s1=300, 2x1+x2+s2=400, x2+s3=250, x1,x2,s1,s2,s3≥0
x1 X1+X2=300
100
300
x1 X1+X2=300
21
2,即线 性规划问 题,其解 与问题1 的解有什 么关系?

运筹学线性规划ppt课件

运筹学线性规划ppt课件

16
例3
化如下的线性规划问题模型
min z 3x1 2 x 2 x3 x1 2 x 2 3x3 2 2 x1 3x 2 2 x3 2 x 0, x 无约束, x 0 2 3 1
为标准形式。
(1 )变量 x1 是非正的,所以要将模型中的所有 x1 都用 x1 x1 0 代替,其中 x1
运筹学建模步骤:
识别问题
定义决策变量
建立约束条件
建立目标函数
6
2.2 线性规划模型的一般形式和标准形式
2.2.1 线性规划的一般模型
为了讨论一般的线性规划问题的求解。我们先给出线性规 划模型的一般形式如下: max( 或 min) z c1 x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn (或 ,或 )b1 a21x1 a22 x2 a2 n xn (或 ,或 )b2 s.t. a x a x a x (或 ,或 )b mn n m m 1 m2 2 x1 , x2 ,..., xn 0
(5)约束条件2是“”型的,因此需要在左边加上一个松弛变量
x5 使它化为等式: 2 x1 3x 2 2 x3 x5 2 也就是
3x2 3x2 2 x3 x5 2 2 x1
18
从而得到模型的标准形式为
2 x2 2 x2 x3 max z 3x1 2 x2 2 x 2 3x3 x 4 2 x1 3x2 3x2 2 x3 x5 2 2 x1 x , x , x , x , x , x 0 1 2 2 3 4 5

运筹学基础-线性规划(方法)

运筹学基础-线性规划(方法)
问题描述
线性规划问题通常由三个基本部分组成,即决策变量、约束条件 和目标函数。决策变量是问题中需要求解的未知数,约束条件是 限制决策变量取值的条件,目标函数是要求最大或最小的函数。
线性规划的应用领域
01
02
03
04
生产计划
在制造业中,线性规划可以用 于制定最优的生产计划,以最 大化利润或最小化成本。
02
线性规划的基本概念
线性方程组
线性方程组是由多个线性方程组成的数学模型,描 述了多个变量之间的线性关系。
线性方程组可以用矩阵和向量表示,通过矩阵运算 和代数方法求解。
线性方程组有多种解法,如高斯消元法、LU分解、 迭代法等。
约束条件与目标函数
02
01
03
约束条件是限制变量取值的条件,通常表示为变量的 上界、下界或等式约束。
目标函数是描述问题目标的数学表达式,通常是最小 化或最大化的线性或非线性函数。
约束条件和目标函数共同构成了线性规划问题的数学 模型。
线性规划的解
线性规划的解是指满足 所有约束条件并使目标 函数取得最优值的变量 取值。
线性规划问题可能有多 个解,也可能无解或无 界解。
最优解的性质包括最优 性、可行性和唯一性。
最优解可以通过求解线 性方程组或使用专门的 优化软件获得。
03
线性规划的求解方法
单纯形法
01
基本概念
单纯形法是一种求解线性规划问题的迭代算法,通过 不断迭代寻找最优解。
02 1. 初始化 选择一个初始可行解,并确定初始基可行解。
03
2. 迭代
根据目标函数系数和约束条件系数,计算出单纯形表 格,然后进行迭代更新。
运筹学基础-线性规划(方法)

运筹学课件 第二章线性规划

运筹学课件 第二章线性规划

2020/11/23
广东工业大学管理学院
10
配料问题:由若干种不同价格、不同成分含量的原料,用 不同的配比混合调配出一些不同规格的产品,在原料的供 应量限制和保证产品成分含量的前提下,如何进行配料来 获取最大利润或使总成本最低。
投资问题:如何从不同的投资项目中选出一个投资方案, 使得投资的回报达到最大。



A B C 加工费
x11 60%以上 x12 20%以下 x13 0.50
x21 15%以上 x22 60%以下 x23 0.40
x31 x32 50%以下 x33 0.30
售价
3.40
2.85
2.25
原料成本 2.00 1.50 1.00
限制用量 2000 2500 1200
设该厂每月生产甲品牌糖果(x11 x12 x13)千克,其中用原料A x11千克,用原料B x12千克,用原料C x13千克; 生产乙品牌糖果(x21 x22 x23)千克,其中用原料A x21千克,用原料B x22千克,用原料C x23千克; 生产丙品牌糖果(x31 x32 x33)千克,其中用原料A x31千克,用原料B x32千克,用原料C x33千克。
设一共植了y棵树,男生中有x1人挖坑, x2人栽树, x3人浇水; 女生中有x4人挖坑, x5人栽树, x6人浇水.
max z y
20x1 10x4 y 0 30x2 20x5 y 0
s.t.
25x3
x1
x2
15x6 x3
y 30
0
x4
x5
x6
20
x1, x2 , x3 , x4 , x5 , x6 , y 0
松弛变量
xs 2 (2x1 3x2 x3)

运筹学第二章

运筹学第二章

例2.4:将以下线性规划问题转化为 标准形式
Max s.t. Z = 3 x1 - 5 x2 + 8 x3 2x1 + 2x2 - x3 = 15.7
4 x1
+ 3x3 = 8.9
x1 + x2 + x3 = 38 x2 , x3 ≥ 0
4.右端项有负值的问题:
在标准形式中,要求右端项 必须每一个分量非负。当某一个 右端项系数为负时,如 bi<0,则 把该等式约束两端同时乘以-1, 得到:
产品甲 设备A 3 产品乙 2 设备能力 (h) 65
设备B
设备C 利润(元/件)
2
0 1500
1
3 2500
40
75
问:如何安排生产计划,才能使制药厂利润最大?
解:设变量 xi为第i种(甲、乙)产品的生 产件数(i=1,2)。根据前面分析,可 以建立如下的线性规划模型: Max
z = 1500 x1 + 2500 x2
MinZ=∑xi
i=1
X6 +
x1 x1 + x2 x2 + x3 x3 + x4 x4 + x5 x5 + x6
≥ 8 ≥ 12
≥ 10
≥ 8 ≥ 6 ≥ 4
二、线性规划模型的一般形式
目标函数 s.t.
产品对资源的 单位消耗量
利润系数
Max(Min)z=c1x1+c2x2+……+cnxn
a11x1+a12x2+……+a1nxn≥(=、≤)b1 a21x1+a22x2+……+a2nxn≥(=、≤)b2 …… am1x1+am2x2+……+amnxn≥(=、≤)bm

第二章物流运筹学线性规划

第二章物流运筹学线性规划

3x1 4x1 2
x2 x2
2x3 4 3x3 = 6
x1 0,x2 0,x3取值无约束
第二节 线性规划模型的求解
图解法 单纯形法
• 满足所有约束条件的向量称为线性规划问题的可行解 • 所有可行解构成的集合称为可行域。 • 在可行域中使得目标函数值最大(或最小)的可行解,
称为线性规划问题的最优解。 • 最优解的全体称为最优解集合。 • 最优解对应的目标函数值称为最优值。
应的 m 个分量称为基变量,其余变量为非基变量,令所有的非基
变量取值为 0,得到的解 X B1b, 0 T 称为相应于 B 的基解。
若 B1b 0 则称基解为基可行解,这时对应的基 B 为可行基。 如果 B1b 0 则称该基可行解为非退化的,如果一个线性
规划的所有基可行解都是非退化的则称该规划为非退化的。
该包装问题可用数学模型表示为:
max z 12x1 9x2
4x1 5x2 20
s.t.2x1 x2 8
x1
,
x2
0
【例 2-2】某物流公司要把若干单位的产品从两个仓库 Ai ( i 1, 2 ) 发送到零售点 B j ( j 1, 2,3, 4 ),仓库 Ai 供应的产品数量为 ai ,零 售点 B j 所需的产品的数量为 b j 。假设供给总量和需求总量相等, 且已知从仓库 Ai 运一个单位产品往 B j 的运价为 cij 。问应如何组织 运输才能使总运费最小?
表 2-2 单纯形表
c1

cm

cj

cn
x1

xm

xj

xn
1
0
a' 1j
a' 1n

运筹学第二章答案.

运筹学第二章答案.

2.1 用图解法求解下列线性规划问题,并指出各问题具有唯一最优解、无穷多最优解、无界解还是无可行解。

(1)⎪⎪⎩⎪⎪⎨⎧≥≤-≤+≤++=0,84821234..2max 2121212121x x x x x x x x t s x x z解:首先划出平面直角坐标系4 x 1 +3x 2X 1⎩⎨⎧=+=-1234842121x x x x 解:⎪⎩⎪⎨⎧=14921x x 所以:2111492max =+⨯=z 所以有唯一解(2)⎪⎪⎩⎪⎪⎨⎧≥≤-≤+≤+-+=0,414234223max 2121212121x x x x x x x x x x 解:2=41⎩⎨⎧=+=+-1423422121x x x x 解得:⎪⎪⎩⎪⎪⎨⎧==4132521x x 所以:144132253max =⨯+⨯=z 因为直线02321=+x x 与直线142321=+x x 平行, 所以有无穷多最优解,max z=14(3) ⎪⎩⎪⎨⎧≥≤+-≤-+=0,432..32max 21212121x x x x x x t s x x z 解:(4)⎪⎩⎪⎨⎧≥-≤-≥-+=0,330..max 21212121x x x x x x t s x x z解:2.2将下列线性规划问题化为标准形式(1) s.t.⎪⎩⎪⎨⎧≥≤≤-+-=++-+-=无约束321321321321,0,0624322min x x x x x x x x x x x x z (2)⎪⎪⎩⎪⎪⎨⎧≤≥-=-+-≤+-≥--+=0,0232132..23min 3213213132321x x x x x x x x x x t s x x x z 无约束, 解:(1)令011≥-=x x )0'','('''33333≥-=x x x x x则上述形式可化为:)'''(32'2m ax 3321x x x x z --+=⎪⎩⎪⎨⎧≥=+--+=-++0,'',',,'6)'''('24)'''('..43321433213321x x x x x x x x x x x x x x t s(2)⎪⎪⎩⎪⎪⎨⎧≤≥-=-+-≤+-≥--+=0,0232132..23min 3213213132321x x x x x x x x x x t s x x x z 无约束, 解:令33'x x -= )0','','(322≥x x x 则上述形式可化为:')'''(23m ax 3221x x x x z ----=⎪⎪⎩⎪⎪⎨⎧≥=---=+--=+---0,,','',',2')'''(321')'''(3')'''(2..543221322153224322x x x x x x x x x x x x x x x x x x t s 2.3. 在下列线性规划问题中,找出所有基解,指出哪些是基可行解并分别代入目标函数,比较找出最优解。

运筹学第2章-线性规划的对偶理论

运筹学第2章-线性规划的对偶理论
❖ 影子价格不是市场价格,而是在现有技术和管理条件下, 新增单位资源所能够创造的价值,是特定企业的一种边 际价格;不同企业或同一企业不同时期,同种资源的影 子价格可能不同;当市场价格高于影子价格,可以卖出; 相反,则应买进,以获取更大收益
Ma例x:Z ( 2第x一1 章3例x22)
2 x1 2 x2 12
当原问题和对偶问题都取得最优解时,这 一对线性规划对应的目标函数值是相等的:
Zmax=Wmin
二、原问题和对偶问题的关系
1、对称形式的对偶关系
(1)定义:若原问题是
MaxZ c1 x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn b1
s.t.a21
x1
a22
二、 手工进行灵敏度分析的基本原则 1、在最优表格的基础上进行; 2、尽量减少附加计算工作量;
5y3 3
,y
2
3
0
(用于生产第i种产 品的资源转让收益不 小于生产该种产品时 获得的利润)
对偶变量的经济意义可以解释为对工时及原材 料的单位定价 ;
若工厂自己不生产产品A、B和C,将现 有的工时及原材料转而接受外来加工时, 那么上述的价格系统能保证不亏本又最富 有竞争力(包工及原材料的总价格最低)
内,使得产品的总利润最大 。
MaxZ 2x1 3x 2
2x1 2x2 12
s.t.54xx12
16 15
x1, x 2 0
它的对偶问题就是一个价格系统,使在平衡了 劳动力和原材料的直接成本后,所确定的价格系统 最具有竞争力:
MinW 12y1 16y2 15y3
2y1 4y2
2
s.t.2y1y,1y
y1, y2, , ym 0

运筹学—线性规划第2章

运筹学—线性规划第2章

1 1
1 0
0 1
0 0
6 2 0 0 1
1 0 0

B 0
1
0
的列是线性无关的,即
1
0
0 0 1
p3 0, p4 1 0 0

0
p5 0 是线性无关,因此 1
x3
x4
x5
是, 0
p2
1 2
不在这个基中,所以x1,
x2为非基变量。
定义10:使目标函数达到最优值的基本可行解,称为基
本最优值。
• 例4:(SLP)如例3,试找一个基本可行解。
1 1 0
解:B1
1
0
0
是其一个基矩阵.p1,p3, p5是一个基。
6 0 1
则 x1 , x3, x5为基变量。X2, x4为非基变量。令 x2=x4=0. 得x1=2, x3=3, x5=9. 故 x1=(2,0,3,0,9)是原问题的一个基本 可行解,B1为基可行基。
•当 由0连续变动到1时,点z由y沿此直线连续的变动到x,且 因z-y平行x-y,则有:z y (x y) 于是有:
z x (1 ) y
•这说明当 0 1 时,x (1 ) y表示以x.y为端点的直线段
上的所有点,因而它代表以 x.y为端点的直线段。 一般地,如果x.y是n维欧氏空间Rn中的两点,则有如下定义:
• 定义14:设R是Rn中的一个点集,(即R Rn),对于任意 两点x R, y R 以及满足0 1 的实数 ,恒有
x (1 )y R
则称R为凸集。
• 根据以上定义12及13可以看到,凸集的几何意义是:连接凸 集中任意两点的直线段仍在此集合内。
其可行域如上图,可行解(3,1,0,0)T。用x1, x2 表示则为图上点(3,1)。由图可见这不是可行域的 顶点。而我们将证明基本可行解是可行域的顶点。而 在例4中p1,p3线性无关,所以B=(p1,p3)是一个基矩阵, 对应的基本解为(4,0,0,0)T。用坐标x1, x2表示则 为平面上的点(4,0),是上图可行域的顶点。

第二章运筹学

第二章运筹学

x3
30000
s.t. x1 x2 x3 3000
每天白坯纸 供应约束
工人数
x1
0
(i
1,2,3)
非负
Global optimal solution found at iteration: 2
Objective value:
5000.000
model: max=x1+2*x2+3*x3; (x1+4*x2+8*x3)*10/3<=30000; (x1+x2+x3)/30<=100; end
如白坯纸供应量不变,而工人数量不足时,可从市场上招收 临时工,临时工费用为每人每天15元,该厂是否招临时工及 招多少人为宜?
解:设决策变量为该厂每天生产量:
稿纸 x1 捆,日记本 x2 打,练习本 x3 箱。
数学模型为
max z x1 2 x2 3 x3
总利润最大
10 3
x1
40 3
x2
80 3
第 2 行约束中右端项(Right Hand Side,简写为RHS) 原来为 4,当它在 [2,∞]范围变化时,最优基保持不变。第3、 4 行可以类似解释。不过由于此时约束发生变化,最优基即 使不变,最优解、最优值也会发生变化。
多个费用系数同时变动分析
例如,门的单位利润涨到 450元,窗的利润降到 400元,是 否会导致最优解发生变化呢?
它的绝对值表示目标函数中决策变量的系数必须改进 多少,才能得到该决策变量的正数解。在最大化问题中, “改进”指增加,最小化问题中指减少。
“Slack or Surplus”(松弛系数)表示对应约束行在最优解下还 剩下多少资源。(第一行是目标函数行)

《运筹学》第二章 对偶问题

《运筹学》第二章 对偶问题


3 x1 2 x2
7x4 4
2 x1 3 x2 4 x3 x4 6
x1 0, x2 , x3 0, x4无 约 束
解:原问题的对偶问题为
mi nW 5 y1 4 y2 6 y3
4 y1 3 y2 2 y3 2

20
一组互为对偶的线性规划问题的解之间只有 下列三种情况:
(1)两个规划问题都有可行解(此时,两个规划问题都有最优 解,且最优值相等);
(2)两个规划问题都不可行; (3) 一个规划问题不可行,另一个规划问题有可行解,且具有
无界解。
21
(4)互补松弛性: 在线性规划问题的最优解中,
则 aij xj * = bi ;
bi , 则 y i* = 0 (4)’ 互补松弛性:
在线性规划问题的最优解中, 则 aij yi * = cj ;
>cj , 则 xj* = 0
n
若 y i * >0,
j=1 n
若 a ij xj * <
j=1
m
若 x j * >0,
i=1 m
若 a ij yi*
i=1 22
m
= 证b:i y∵i*
y1 3 y1

2 y2
3 y3 4 y3
3 5

2 y1 7 y2 y3 1
y1

0,
y2

0,
y

3


对偶问题的对 偶还是原问题
14
• 练习 写出下列线性规划问题的对偶问题.
max Z 4x1 3x2 2x3
4x1

运筹学--第二章 线性规划的对偶问题

运筹学--第二章 线性规划的对偶问题

习题二2.1 写出下列线性规划问题的对偶问题(1) max z =10x1+x2+2x3(2) max z =2x1+x2+3x3+x4st. x1+x2+2 x3≤10 st. x1+x2+x3 +x4≤54x1+x2+x3≤20 2x1-x2+3x3=-4x j≥0 (j=1,2,3)x1-x3+x4≥1x1,x3≥0,x2,x4无约束(3) min z =3x1+2 x2-3x3+4x4(4) min z =-5 x1-6x2-7x3st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3≥15x2+3x3+4x4≥-5 -5x1-6x2+10x3≤202x1-3x2-7x3 -4x4=2=x1-x2-x3=-5 x1≥0,x4≤0,x2,,x3无约束x1≤0,x2≥0,x3无约束2.2 已知线性规划问题max z=CX,AX=b,X≥0。

分别说明发生下列情况时,其对偶问题的解的变化:(1)问题的第k个约束条件乘上常数λ(λ≠0);(2)将第k个约束条件乘上常数λ(λ≠0)后加到第r个约束条件上;(3)目标函数改变为max z=λCX(λ≠0);'x代换。

(4)模型中全部x1用312.3 已知线性规划问题min z=8x1+6x2+3x3+6x4st. x1+2x2+x4≥33x1+x2+x3+x4≥6x3 +x4=2x1 +x3 ≥2x j≥0(j=1,2,3,4)(1) 写出其对偶问题;(2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对偶问题的最优解。

2.4 已知线性规划问题min z=2x1+x2+5x3+6x4 对偶变量st. 2x1 +x3+x4≤8 y12x1+2x2+x3+2x4≤12 y2x j≥0(j=1,2,3,4)对偶问题的最优解y1*=4;y2*=1,试对偶问题的性质,求出原问题的最优解。

2.5 考虑线性规划问题max z=2x1+4x2+3x3st. 3x1+4 x2+2x3≤602x1+x2+2x3≤40x1+3x2+2x3≤80x j≥0 (j=1,2,3)4748(1)写出其对偶问题(2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解;(3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶问题的解;(4)比较(2)和(3)计算结果。

运筹学_线性规划1

运筹学_线性规划1
min Z 2x1 3x2 x3
x1 x 2 x3 10 3 x 2 x x 8 1 2 3 s.t. x1 3 x 2 x3 1 x1 , x 2 0, x3 符号不受限制
Байду номын сангаас
标 准 化
maxZ 2x1 3x2 ( x3 x4 ) 0 x5 0 x6
I 设备A(h) 设备B(h) 调试工序(h) 利润(千元) 0 6 1 2
II 5 2 1 1
课堂练习
一家家电公司准备将一种新型电视机在三家商场进行销 售,每一个商场的批发价和推销费及产品的利润如表所示。 由于该电视机的性能良好,各商场都纷纷争购,但公司每 月的生产能力有限,只能生产1000台,故公司规定:商场 1至少经销100台,至多200台,商场2至少经销300台,商 场3至少经销200台。公司计划在一个月内的广告预算费为 8000元,推销人员最高可用工时数为1500。同时,公司只 根据经销数进行生产,试问公司下个月的市场对策?
④ 右端非负。
标准型的紧缩形式:
max Z c j x j
j 1 n
标 准 型
n aij x j bi s.t. j 1 x 0 j
i 1,2,, m j 1,2,, n
标准型的矩阵形式:
max Z CX
AX b s.t. X 0
例2-3 某饲料公司生产一种鸡饲料,每份饲料
问 题 的 导 出
为100公斤,饲料中的营养成份要求、配料及 其成本数据如下:
配料 营养成分 单位 蛋白质 配料 钙 含量 粗纤维 单位配料成本 大豆粉 玉米粉 石灰石 0.50 0.002 0.08 2.50 0.09 0.001 0.02 0.926 0 0.38 0 0.164 含量要求 ≥22% ≥0.8%且≤1.2% ≤5%
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

得到新的单纯形表
cj →
c1
c2 x2
0 1 0 0
c3 x3
0 0 1 0
c4 x4
2 1 -1 -1/2
c5 x5
0 0 0 -1/2
CB
0 1 -2

b
13/2 5/2 1/2
x1
1 0 0 0
x1 x2 x3
σ j = cj − zj
σ j ≤ 0, j = 1,L ,5 ,迭代终止
最优解: X = (13 / 2,5 / 2,1/ 2, 0, 0)T , 最优值: z = − x2 + 2 x3 = −3 / 2 。
对矩阵 ( A, b) 作初等变换:
a11 a12 … a21 a22 … ( A,b) = a a … m1 m 2 1 0 … 0 0 1 … 0 → 0 0 … 1 a1m a1,m +1 a2 m a2,m+1 …… amm am ,m +1 … amn a1n a2 n b1 b2 bm
−1 −1
(
−1
)
T
称为相应于 B 的基解。
若 B b ≥ 0 则称基解为基可行解,这时对应的基 B 为可行基。 如果 B b > 0 则称该基可行解为非退化的,如果一个线性 规划的所有基可行解都是非退化的则称该规划为非退化的。
单纯形法的基本原理: 寻找一种规则,从一个基可行解转移 到另一个基可行解,目标函数值是增大 的,即“顶点转换,目标上升”。
min w = Y T b ATY ≥ C T s.t. T Y ≥ 0 ,Y =(y1,y2,…,ym )
(1)对称性:对偶问题的对偶是原问题。 (2)弱对偶性:设 X 是原问题的可行解, Y 是对偶问题的可行解, 则C X ≤ Y b 。
T
(3)强对偶性:若原问题有最优解,那么对偶问题也有最优解,且 目标函数值相同。 (4) 互补松弛性: 在线性规划的最优解当中, X * 、 * 是问题 若 (2-5) Y 和问题(2-6)的可行解, X s 和 Ys 是它的松弛变量,则 X 、 Y 是 最优解当且仅当 Ys X = 0 和 Y X s = 0 。
1 0 M 0
0 0 M 1
a1' j
' a2 j
a1' n a '2 n M a 'mn
′ cn − ∑ cBi ain
i =1 m
M
' a mj
m
σ j = cj − zj
0
0
′ c j − ∑ cBi aij
i =1
单纯形法的计算步骤
步骤 1:求初始基可行解,列出它的单纯形表。 步骤 2:最优性检验。若 σ j ≤ 0, j = 1,L , n ,则最优解已找到, 计算终止;否则,令 σ k = max{σ j | σ j > 0} , xk 作为换入基变量。
2.紧缩形式
max(min) z = c1 x1 + L + cn xn n 2,…,m ∑ aij x j ≥ (=, ≤)bi ,i = 1, s.t. j =1 x ≥ 0 , j = 1, 2,…,n j
3.矩阵和向量的形式
max(min) z = CX ≥ AX ≤ (= , )b s.t. X ≥0
4 x1 + 5 x2 ≤ 20 s.t. 2 x1 + x2 ≤ 8 x , x ≥ 0 1 2பைடு நூலகம்
x2
z
2 x1 + x2 = 8
4 Q
4 x1 + 5 x 2 = 2 0
0
4
5
x1
线性规划解的可能情况
唯一最优解 无穷多最优解 无界解 无可行解
考虑线性规划的标准形式:
单 AX = b s.t. 纯 X ≥0 形 法 A = ( B, N ) , X = ( xB , xN )T ,由 AX = b 知 令
第二节 线性规划模型的求解
图解法 单纯形法
• 满足所有约束条件的向量称为线性规划问题的可行解 • 所有可行解构成的集合称为可行域。 • 在可行域中使得目标函数值最大(或最小)的可行解, 称为线性规划问题的最优解。 • 最优解的全体称为最优解集合。 • 最优解对应的目标函数值称为最优值。
图解法
【例 2-4】用图解法求解例 2-1。 max z = 12 x1 + 9 x2
上面两个例子的共同特征: (1)每一个问题都由一组决策变量来表示某一方案, 一般情况下这些变量的取值是非负且连续的。 (2)存在一定的约束条件,这些约束条件可以用一 组线性的等式或不等式来表示。 (3)都有一个要求达到的目标,它用决策变量的线 性函数(称为目标函数)来表示。按照具体问题的不 同,要求目标实现最小或最大。
一般称这个线性规划问题为例2-1线性规划 问题的对偶问题 对偶问题,例2-1称为原问题 原问题。 对偶问题 原问题
表2-6 原问题与对偶问题的对应关系
原问题(或对偶问题) 目标函数 max 对偶问题(或原问题) 目标函数 min
z
ω
n个 ≥ 0 变量 ≤ 0 无约束 m个 ≤ 约束条件 ≥ =
min z = − x2 + 2 x3 x1 − 2 x2 + x3 = 2 x − 3x + x = 1 2 3 4 s.t. x2 − x3 + x5 = 2 x j ≥ 0, = 1, j 2,…, 5
解 初始单纯形表
cj →
0 1 -2 0 0
CB
0 0 0

b
2 1 2
x1
1 0 0
x2
-2 1 1
x3
1 -3 1 -2
x4
0 1 0
x5
0 0 1
x1 x4 x5
σ j = cj − zj
0
1
0
0
σ 2 > 0 ,则 X = (2, 0, 0,1, 2)T 不是最优解, x2 作为换入基变量。
bi′ 1 2 ′2 > 0} = min{ , } = 1 ,因此选 x4 作为换出基变量。 θ = min{ | ai 1≤i ≤3 a′ 1 1 i2
* *
*
*
对偶问题最优解的经济解释:影子价格。 线性规划问题中,当某资源增加一个单位而其 他资源都不变时,所引起目标函数最优值的增量称 为资源的影子价格。影子价格是对资源在生产中作 i 出的贡献而做的估价。
i
灵敏度分析
• 目标函数的灵敏度分析 • 约束右端向量的灵敏度分析 • 约束方程系数的灵敏度分析 • 增加一个新变量的灵敏度分析 • 增加一个约束的灵敏度分析
解 设 x1 , x2 分别为Ⅰ、Ⅱ两种规格产品的包装件数, 该包装问题可用数学模型表示为:
max z = 12 x1 + 9 x2 4 x1 + 5 x2 ≤ 20 s.t. 2 x1 + x2 ≤ 8 x , x ≥ 0 1 2
【例 2-2】某物流公司要把若干单位的产品从两个仓库 Ai ( i = 1, 2 ) 发送到零售点 B j ( j = 1, 2, 3, 4 ) ,仓库 Ai 供应的产品数量为 ai ,零 售点 B j 所需的产品的数量为 b j 。假设供给总量和需求总量相等, 且已知从仓库 Ai 运一个单位产品往 B j 的运价为 cij 。问应如何组织 运输才能使总运费最小?
第二章
线性规划
线性规划问题及其数学模型 线性规划模型的求解 线性规划对偶问题与灵敏度分析 线性规划在物流管理中的应用
学习目标
知识目标
掌握线性规划的基本形式及标准形式; 掌握单纯形法计算过程; 理解对偶问题; 掌握对偶问题的求法及性质; 了解灵敏度分析。
技能目标
能够结合实际情况建立线性规划的模型,并可利用单 纯形法求解。
得到新的单纯形表
cj →
0 1 -2 0 0
CB
0 1 0

b
4 1 1
x1
1 0 0
x2
0 1 0
x3
-5 -3 2
x4
2 1 -1
x5
0 0 1
x1 x2 x5
σ j = cj − zj
0
0
1
-1
0
σ 3 > 0 ,则 X = (4,1, 0, 0,1)T 不是最优解, x3 作为换入基变量
bi′ 2 ′3 > 0} = min{ } = 1 ,因此选 x5 作为换出基变量 θ = min{ | ai 1≤ i ≤ 3 a ′ 2 i3
线性规划定义
求取一组变量,使之既满足线性约束条件, 又使具有线性表达式的目标函数取得极大值或极 小值的一类最优化问题称为线性规划问题,简称 线性规划(LP)。决策变量、约束条件和目标函 数是其三个基本要素。
1.线性规划问题模型的一般形式 max(min) z = c1 x1 + L + cn xn a11 x1 + L + a1n xn ≤ (= , )b1 ≥ ≥ a21 x1 + L + a2 n xn ≤ (= , )b2 s.t. …… a x + L + a x ≤ (= , )b ≥ n m1 1 mn n j 2,…,n x j ≥ 0, = 1,
约束条件右端项 目标函数变量的系数
n个 ≥ 约束条件 ≤ = ≥0 变量 ≤0 无约束 m个
目标函数变量的系数 约束条件右端项
对偶问题的基本性质
考虑下面的原问题和其对偶问题
原问题 对偶问题
max z = CX AX ≤ b s.t. X ≥ 0
相关文档
最新文档