整数线性规划问题
整数线性规划
分枝定界法的理论基础:
1 2 k , i j (1) max cx max (max cx, max cx, , max cx)
x x1 x 2 x k
(2) 若 i j ,则 max cx max cx
xi xi x
分 枝
给定整数规划问题IP max z C T X
若x 的某个分量 xi 不是整数,
0
0
则将 IP分解为两个子问题
max z C X AX b X 0 X为整数向量 xi [ xi0 ]
T max z C X AX b X 0 X为整数向量 xi [ xi0 ] 1
记 z0 z
x1 4, x1 5
将问题B0分解为两个子问题B1和B2(分枝), 分别解B1,B2得 B1: x1=4, x2=2.10, z1=349 B2: x1=5, x2=1.57, z2=341
max z 40 x1 90 x2 max z 40 x1 90 x2 9 x1 7 x2 56 7 x 20 x 70 1 2 x1 4 B1 x1 , x2 0 9 x1 7 x2 56 7 x 20 x 70 1 2 x1 5 B2 x1 , x2 0
4、几点说明 (1)、如果要求目标的最大值
max z cij xij
令
bij M cij
i
j
其中
M max{ cij }
效率矩阵可变为B,将分配问题转换为一个极 小化问题
min z
'
b x
ij i j
ij
(2)、如果分配问题中,人员数 m 不等于工作数 n 时,可以类似于不平衡运输问题建立模型的 方法,增加虚拟人员或虚拟工作。
运筹学中的整数规划问题分析
运筹学中的整数规划问题分析运筹学是运用数学和定量分析方法,通过对系统的建模和优化,来解决实际问题的学科。
其中整数规划是运筹学中的一个重要分支,它在许多实际情况中得到广泛应用。
本文将对整数规划问题进行分析,并探讨其解决方法与应用领域。
一、整数规划问题定义及特点整数规划是一类线性规划问题的扩展,其目标函数和约束条件中的变量取值限定为整数。
通常,整数规划问题可以形式化表示为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t.a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + a₂₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z为目标函数值,x₁, x₂, ..., xₙ为待求解的整数变量,c₁, c₂, ..., cₙ为目标函数的系数,aᵢₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右端常数。
整数规划问题的特点在于整数约束条件的引入,使其解空间变得有限,增加了问题的复杂性。
与线性规划问题相比,整数规划问题更接近实际情况,能够更准确地描述和解决很多实际问题。
二、整数规划问题的解决方法解决整数规划问题的方法主要有以下几种:穷举法、剪枝法、分支定界法、动态规划法等。
具体使用哪种方法需要根据问题的规模和特点来确定。
1. 穷举法是最简单直观的方法,通过枚举搜索整数解空间中的每一个可能解来寻找最优解。
然而,由于整数解空间往往非常大,这种方法在实际问题中往往是不可行的。
2. 剪枝法是一种通过对解空间进行剪枝操作,减少搜索空间的方法。
通过合理选择剪枝条件,可以避免对明显无解的解空间进行搜索,从而提高求解效率。
3. 分支定界法是一种将整数规划问题不断分解为子问题,并对子问题进行界定的方法。
通过不断缩小问题规模,并计算上下界确定最优解的位置,可以有效地求解整数规划问题。
Matlab求解线性规划和整数规划问题
Matlab求解线性规划和整数规划问题标题:Matlab求解线性规划和整数规划问题引言概述:Matlab是一种功能强大的数值计算软件,广泛应用于各个领域的数学建模和优化问题求解。
本文将介绍如何使用Matlab求解线性规划和整数规划问题,并结合实例详细阐述求解过程。
一、线性规划问题的求解1.1 定义线性规划问题:线性规划是一种优化问题,目标函数和约束条件均为线性函数。
通常包括最大化或最小化目标函数,并满足一系列约束条件。
1.2 确定决策变量和约束条件:根据问题的实际情况,确定需要优化的决策变量和约束条件。
决策变量表示问题中需要求解的未知量,约束条件限制了决策变量的取值范围。
1.3 使用Matlab求解线性规划问题:利用Matlab提供的优化工具箱,使用线性规划函数linprog()进行求解。
通过设置目标函数系数、约束条件和边界条件,调用linprog()函数得到最优解。
二、整数规划问题的求解2.1 定义整数规划问题:整数规划是在线性规划的基础上,决策变量限制为整数值。
整数规划问题在实际应用中更具有实际意义,例如资源分配、路径选择等。
2.2 确定整数规划问题的特点:整数规划问题通常具有离散性和复杂性,需要根据实际情况确定整数规划问题的特点,如整数变量的范围、约束条件等。
2.3 使用Matlab求解整数规划问题:Matlab提供了整数规划函数intlinprog(),通过设置目标函数系数、约束条件和整数变量的范围,调用intlinprog()函数进行求解。
三、线性规划问题实例分析3.1 实例背景介绍:以某公司的生产计划为例,介绍线性规划问题的具体应用场景。
3.2 定义决策变量和约束条件:确定决策变量,如产品的生产数量,以及约束条件,如生产能力、市场需求等。
3.3 使用Matlab求解线性规划问题:根据实例中的目标函数系数、约束条件和边界条件,调用linprog()函数进行求解,并分析最优解的意义和解释。
整数线性规划及0-1规划 图文
例3 选课策略
课号
课名
学分
所属类别
先修课要求
1
微积分
5
数学
2
线性代数
4
数学
3
最优化方法
4
数学;运筹学 微积分;线性代数
4
数据结构
3
数学;计算机
计算机编程
5
应用统计
4
数学;运筹学 微积分;线性代数
6
计算机模拟
3
计算机;运筹学
计算机编程
7
计算机编程
2
计算机
8
预测理论
2
运筹学
应用统计
9
数学实验
3
运筹学;计算机 微积分;线性代数
7 计算机编程
计算机
8
预测理论
运筹学
9
数学实验 运筹学;计算机
约束条件
最少2门数学课, 3门运筹学课, 2门计算机课。
xi=1 ~选修课号i 的 课程(xi=0 ~不选)
目标函数 选修课程总数最少
9
Min Z xi i1
x 1x2x3x4x52
x3x5x6x8x93 x4x6x7x92
小型 中型 大型
现有量
钢材(吨)
1.5
3
5
600
劳动时间(小时) 280
250
400
60000
利润(万元)
2
3
4
• 制订月生产计划,使工厂的利润最大。
• 如果生产某一类型汽车,则至少要生产80辆,
那么最优的生产计划应作何改变?
汽车厂生产计划
模型建立
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
典型的整数线性规划问题
小型 中型 大型
现有量
钢材(吨)
1.5
3
5
600
劳动时间(小时) 280
250
400
60000
利润(万元)
2
3
4
• 制订月生产计划,使工厂的利润最大。
• 如果生产某一类型汽车,则至少要生产80辆,
那么最优的生产计划应作何改变?
汽车厂生产计划
模型建立
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
模型建立
令xj表示对第j个发展项目的投资数量
n
Max z cj x j j 1 n
s. t. a j xj b j 1
xj 0或1(j=1,2, ,n)
整数 线性 规划 0-1 模型
(IP)
整数线性规划及0-1规划
例1 汽车厂生产计划
汽车厂生产三种类型的汽车,已知各类型每辆车对钢 材、劳动时间的需求,利润及工厂每月的现有量。
方法3:化为非线性规划
x1=0 或 80
x1(x1 80) 0
x2=0 或 80
x2 (x2 80) 0
x3=0 或 80
x3 (x3 80) 0
非线性规划(Non- Linear Programming,简记NLP)
NLP 虽 然 可 用 现 成 的 数 学 软 件 求 解 ( 如 LINGO, MATLAB),但是其结果常依赖于初值的选择。
丙 1’18” 1’07”8 1’24”6 59”4
丁 1’10” 1’14”2 1’09”6 57”2
戊 1’07”4 1’11” 1’23”8 1’02”4
讨论 丁蛙泳c43 =69.675.2,戊自由泳c54=62.4
Matlab求解线性规划和整数规划问题
Matlab求解线性规划和整数规划问题引言概述:Matlab是一种功能强大的数学软件,可以用于求解各种数学问题,包括线性规划和整数规划问题。
本文将介绍如何使用Matlab求解这两类问题,并分析其优点和适用范围。
正文内容:1. 线性规划问题1.1 线性规划问题的定义线性规划问题是指在一定的约束条件下,通过线性目标函数求解最优解的问题。
其数学模型可以表示为:max/min f(x) = c^T * xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束条件的系数矩阵,b是约束条件的右侧向量。
1.2 Matlab中的线性规划求解函数Matlab提供了linprog函数来求解线性规划问题。
该函数可以通过设定目标函数系数向量c、约束条件的系数矩阵A和右侧向量b,以及决策变量的上下界,来求解线性规划问题的最优解。
1.3 线性规划问题的应用线性规划问题在实际应用中非常广泛,例如生产计划、资源分配、运输问题等。
通过Matlab求解线性规划问题,可以高效地得到最优解,为实际问题的决策提供科学依据。
2. 整数规划问题2.1 整数规划问题的定义整数规划问题是指在线性规划问题的基础上,决策变量的取值限制为整数。
其数学模型可以表示为:max/min f(x) = c^T * xs.t. Ax <= bx >= 0x为整数其中,c、A、b的定义与线性规划问题相同,x为整数。
2.2 Matlab中的整数规划求解函数Matlab提供了intlinprog函数来求解整数规划问题。
该函数可以通过设定目标函数系数向量c、约束条件的系数矩阵A和右侧向量b,以及决策变量的上下界和整数约束条件,来求解整数规划问题的最优解。
2.3 整数规划问题的应用整数规划问题在实际应用中常见,例如生产调度、投资决策、路径规划等。
通过Matlab求解整数规划问题,可以考虑到决策变量的整数性质,得到更为实际可行的解决方案。
运筹学整数线性规划
Ax b s.t.x 0,i 1,2,...,n
xi为整数,i 1,2,...,p
1 整数线性规划问题举例
•例311 某财团有 B 万元的资金,有 n(n 2) 个可以考
虑的投资项目,假定每个项目最多投资一次。其中
第 j 个项目需投资金额为 b j 万元,将会获得的利润
为 c j 万元,问应如何选择项目才能使得获得的总 利润最大?
2 解整数线性规划问题的困难性
LP的可行集合
费用下降方向 LP问题的最优解
ILP问题的最优解
2 解整数线性规划问题的困难性续
• 最优解不一定在顶点上达到 • 最优解不一定是松弛问题最优解的邻近整数解 • 整数可行解远多于松弛问题的顶点;枚举法不可
取 • 解ILP问题要远难于解松弛的LP问题 • 如果松弛的LP问题无解;显然原ILP问题无解 反
bjxj B
j1
x
j
0或 1;
j
1, 2..., n
旅行售货员问题
• 此外;运筹学还有一个著名的问题:
旅行售货员问题TSP
显示问题
2 解整数线性规划问题的困难性
整数规划
min z c x Ax b
s.t.x 0, x为整数
松弛的线性规划问题
min z c x
s.t. xAห้องสมุดไป่ตู้x
0
b
可行解是松弛问题的可行解 最优值大于等于松弛问题的最优值
第一节 整数线性规划问题
• 整数线性规划问题举例 • 解整数线性规划问题的困难性
整数线性规划问题
• 整数线性规划ILP具有下述形式
min c x
Ax b
s .t .
x
第三章整数线性规划
割平面法
IP LP xl*
Yes xI* = xl*
判别是否整数解
No 加入割平面条件 用对偶单纯型方法继续求解
§3.3 分枝定界方法
分枝定界方法的基本思想 分枝定界方法的实现——例题
1 分枝定界方法的基本思想
如果松弛问题(P0)无解,则(P)无解;
如果(P0)的解为整数向量,则也是(P)的解;
min -(x1 x2 ) s.t.-4x1 2 x2 1 (P1 ) 4x1 2 x2 11 x1 1 x1 , x2 0, Integer
P2
约束 x1 1, x1 2 (它们将x1=3/2排除在外),得到两个子问题:
min -(x1 x2 ) s.t.-4x1 2 x2 1 (P2 ) 4x1 2 x2 11 x1 2 x1 , x2 0, Integer
运筹 帷幄之中
决胜 千里之外
运 筹 学
主讲教师
赵玉英
62338357(O) yuyingzhao@
北京林业大学理学院
第3章 整数线性规划
整数线性规划问题 Gomory割平面方法(1958) 分枝定界方法(Land doig and Dakin 1960’s) 0-1规划
3
(3/2,10/3)
3
x1
3 整数线性规划问题的求解
思路2:由于纯整数线性规划的可行集合就是一些离散 的格点,可否用穷举的方法寻找最优解? 当格点个数较少时,这种方法可以; 对一般的ILP问题,穷举方法无能为力。
3 整数线性规划问题的求解
目前,常用的求解整数规划的方法有: 割平面法和分枝定界法; 对于特别的0-1规划问题采用隐枚举法和匈牙利法。
简单的线性规划问题整数解
320x+504y=0
小结:
列表
实际问题
作 答
设出变量
寻找约束条件 建立目标函数
转化
线性规划问题
A种原料 B种原料 利润
甲种产品 乙种产品 现有库存
4 1 10
12 9 60
2 1
设生产甲、乙两种产品的吨数分别为x、y
4 x y 10 12x 9 y 60 x 0 y 0
利润 P 2 x y 何时达到最大?
4x+y=10
Y
15 2x y 2
线性约束 条件 一组平行线
12 20 M( , ) 7 7
可行域 .. .. . .. 1 2 3 4 5 6
寻找平行线组 的纵截距 求z=9x+10y的最大值 . 最值9x+10y=0
线性目标函数
x
四个步骤:
1、画 2、作 3、移 4、答
0
2x+3y=12 5x+4y=20
代数问题
(线性约束条件)
y _
目标函数为:z =0.7x +1.2y
把直线l向右上方平移至l1的位置时, _ 400 直线经过可行域上的点 C ,且与原点 300 _ 距 离最大, 此时z =0.7x +1.2y取最大值 7 x + 12 y = 0 _ 解方程组
C ( 200 , 240 ) _ 3 x + 10 y = 3000 _
_ 0
, 4 x 5 y 2000 , 3x 10y 3000
0 _
400 _
1000 5 _00 _ 4 x + 5 y = 2000 _
x _
Matlab求解线性规划和整数规划问题
Matlab求解线性规划和整数规划问题引言概述:Matlab是一种强大的数学计算软件,广泛应用于科学、工程和金融等领域。
在数学优化中,线性规划和整数规划问题是常见的优化问题。
本文将介绍如何使用Matlab求解线性规划和整数规划问题,并详细阐述求解过程和注意事项。
正文内容:1. 线性规划问题求解1.1 线性规划问题的定义线性规划问题是在一组线性约束条件下,最大化或者最小化线性目标函数的问题。
在Matlab中,可以使用线性规划函数linprog进行求解。
1.2 线性规划问题的建模在求解线性规划问题之前,需要将问题转化为标准的线性规划形式。
这包括定义决策变量、约束条件和目标函数。
在Matlab中,可以使用矩阵和向量表示线性约束条件和目标函数。
1.3 线性规划问题的求解步骤求解线性规划问题的普通步骤包括定义问题、建模、调用linprog函数进行求解、获取结果并进行分析。
在Matlab中,可以使用linprog函数指定问题的目标函数、约束条件和变量范围,然后通过调用该函数获得最优解。
2. 整数规划问题求解2.1 整数规划问题的定义整数规划问题是在线性规划问题的基础上,对决策变量增加整数限制的问题。
在Matlab中,可以使用整数线性规划函数intlinprog进行求解。
2.2 整数规划问题的建模与线性规划问题类似,整数规划问题也需要定义决策变量、约束条件和目标函数。
不同之处在于,决策变量需要增加整数限制。
在Matlab中,可以使用矩阵和向量表示整数约束条件和目标函数。
2.3 整数规划问题的求解步骤整数规划问题的求解步骤与线性规划问题类似,只是需要调用intlinprog函数进行求解。
在Matlab中,可以通过指定问题的目标函数、约束条件、变量范围和整数约束条件来调用该函数,然后获取最优解。
总结:在本文中,我们介绍了如何使用Matlab求解线性规划和整数规划问题。
对于线性规划问题,需要定义问题、建模、调用linprog函数进行求解,并获取结果进行分析。
整数规划主要是指整数线性规划一个线性规划问题汇总
分枝定界法的过程如下:
二、割平面法 割平面法是 1958 年由 Gomory 提出来的
割平面法求解步骤如下:
第一步:不考虑整数约束,求相应线性规划模型 B 的最优 解。若最优解恰为整数,则停止计算;若最优解不为整数, 进入第二步。
第二步:寻找割平面方程。
①令 xi 为相应线性规划最优解中不符合整数条件的一个基 变量,由单纯形表的最终表得到:
B1
:
min z 3 x1 2 x2 2 x1 3 x2 14 x1 0.5 x2 4.5 s .t x2 2 x1 , x2 0
B2
:
min z 3 x1 2 x2
2 x1 3 x2 14 x1 0.5 x2 4.5 s .t x2 3 x1 , x2 0
整数规划问题及其数学模型
例1 某工厂生产甲、乙两种设备,已知生产这两 种设备需要消耗材料A、材料B,有关数据如下, 问这两种设备各生产多少使工厂利润最大?
设备 材 料 材料A(kg) 材料B(kg) 利润(元/件) 甲 2 1 3 乙 3 0.5 2 资源限量 14 4.5
解:设生产甲、乙这两种设备的数量分别为x1、x2, 由于是设备台数,则其变量都要求为整数,建立 模型如下: Maxz=3x1+2x2 2x1+3x2≤14 x1+0.5x2≤4.5 x1、x2≥0,且为整数
② (C),[(D)]对应的目标值S≥S0
③ (C),[(D)]对应的目标值Sc<S0
且解为整数解,令ScS0
且解为非整数解,令(C),[(D)] 取代(B) 返回(4) (6)、全部枝剪完,停
优点: (1)、任何模型均可用;
整数线性规划问题
实 例
1
某人出国留学打点行李,现有三个旅行包,容积大小分别为1000毫升、1500毫升和2000毫升,根据需要列出需带物品清单,其中必带物品共有7件,其体积大小分别为400、300、150、250、450、760、190(单位毫升)。尚有10件可带可不带物品,如果不带将在目的地购买,通过网络查询可以得知其在目的地的价格(单位美元)。这些物品的容量及价格分别见下表,试给出一个合理的安排方案把物品放在三个旅行包里。
单价
销地
厂址
生产能力
建设费用
销量
设: xij 表示从工厂i 运往销地j 的运量(i=1.2…m、j=1.2…n), 在Ai 建厂 又设 yi= (i=1.2…m) 不在Ai 建厂 模型:
(3)0-1整数规划问题
现有资金总额为B。可供选择的投资项目有n个,项目j所需投资额和预期收益分别为aj和cj(j=1,2,..,n),此外由于种种原因,有三个附加条件: 若选择项目1,就必须同时选择项目2。反之不一定 项目3和4中至少选择一个; 项目5,6,7中恰好选择2个。 应该怎样选择投资项目,才能使总预期收益最大?
一位旅行者出发前准备在自己的背包里 携带必需的物品,已知可供选择的物品有n种, 第j种物品的重量为 公斤,其价值为 ,若 背包所带物品的总重量不得超过b公斤,问他 应如何选择所带物品,以使总价值最大。
物品
1 2 … j … n
方式
数学模型表示为: 设:xj 表示用Bj (j=1.2…n) 种方式下料根数
混合整数规划问题
某公司计划在m个地点建厂,可供选择的地点有A1,A2…Am ,他们的生产能力分别是a1,a2,…am(假设生产同一产品)。第i个工厂的建设费用为fi (i=1.2…m), 又有n个地点B1,B2, … Bn 需要销售这种产品,其销量分别为b1.b2…bn 。从工厂运往销地的单位运费为Cij。试决定应在哪些地方建厂,即满足各地需要,又使总建设费用和总运输费用最省?
管理运筹学 第三章 整数线性规划
注意在分枝定界求解过程中,为了最优整数解,我们要不断 缩小其最优目标函数值上界与下界的距离,故通过分枝要使得其 上界越来越小,而其下界则越来越大。 在例题中,通过对上下界的修改,上下界距离有所缩小,但 并不相等,所以还要继续分枝。
(5)在线性规划2和线性规划3中选择一个上界最大的线性规划, 即 线 性 规 划 3 , 进 行 分 枝 。 线 性 规 划 3 的 最 优 解 为 x1=3 , x2=2.86,把x2分成x2≤2和x2 ≥3两种情况,这样线性规划3分 解为线性规划4和线性规划5,如下: 线性规划4: s.t. 线性规划5: s.t.
分枝定界法是先求解整数规划的线性规划问题。如果其最优 解不符合整数条件,则求出整数规划的上下界,用增加约束条件 的办法,把相应的线性规划的可行域分成子区域(称为分枝), 再求解这些子区域上的线性规划问题,不断缩小整数规划的上下 界的距离,最后得整数规划的最优解。
“ 分枝”为整数规划最优解的出现创造了条件, 而“定界”则提高了搜索的效率。
(6)进一步修改整数规划最优目标函数值z*的上下界。 由于线性规划 1 分枝为线性规划 2 和线性规划 3 ,线性规 划3又分枝为线性规划4和5,也就是线性规划1分枝为线性规 划 2、 4、 5,故从线性规划 2, 4,5中进一步修改整数规划 最优目标函数值的上下界。 因为线性规划2的最优目标函数值为13.90,线性规划4 的最优目标函数值为 14,而线性规划 5无可行解,可得整数 规划最优目标函数值的上界可修改为14,即 z =14, 取线性 规划2,4,5中的整数可行解的目标函数值的最大值。 又因为在线性规划2中可知存在整数规划可行解x1=2, x2=3,其目标函数值为13,在线性规划4中可知存在整数规 划可行解 x1=4 , x2=2 ,其目标函数值为 14 ,而线性规划 5 无可行解,可知整数规划最优目标函数值的下界可修改为 14, z=14,也取线性规划2,4,5中的整数可行解的目标函数值 的最大值。
整数线性规划及0-1规划
x1(x1 80) 0 x2 (x2 80) 0
x1, x2 , x3为非负整数
IP 结果输出
280x1+250x2+400x3< 60000 end
OBJECTIVE FUNCTION VALUE
1)
632.0000
VARIABLE VALUE REDUCED COST
X1
64.000000
-
2.000000
X2
168.000000
-
“gignin3 3”表示“前3个变 量为整数”,等价于: gin x1 gin x2 gin x3
模型求解 整数规划(Integer Programming,简记
Max z 2x1 3x2 4x3
IPIP可) 用LINDO直接求解
s. t. 1.5x1 3x2 5x3 600 280 x1 250 x2 400 x3 60000
max 2x1+3x2+4x3 st 1.5x1+3x2+5x3<600
模型建立
令xj表示对第j个发展项目的投资数量
n
Max z cj x j j 1 n
s. t. a j xj b j 1
xj 0或1(j=1,2, ,n)
整数 线性 规划 0- 1模 型 (IP)
整数线性规划及0-1规划
例1 汽车厂生产计划
汽车厂生产三种类型的汽车,已知各类型每辆车对钢 材、劳动时间的需求,利润及工厂每月的现有量。
x1,x2,, x3=0 或 80 方法1:分解为8个LP子模型
其中3个子模型应去掉,然后 逐一求解,比较目标函数值, 再加上整数约束,得最优解:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 整数线性规划(ILP)具有下述形式
min c x
Ax b
s.t .
x
0,
x为
整数
❖ 0-1整数线性规划模型
min c x
Ax b
s.t.
xi
0或1; i
1,2,...,
n
❖ 混合整数线性规划
min c x
Ax b s.t.x 0,i 1,2,...,n
xi为整数,i 1,2,...,p
LP的可行集合
费用下降方向 LP问题的最优解
ILP问题的最优解
2. 解整数线性规划问题的困难性续
• 最优解不一定在顶点上达到 • 最优解不一定是松弛问题最优解的邻近整数解 • 整数可行解远多于松弛问题的顶点,枚举法不
可取
• 解ILP问题要远难于解松弛的LP问题 • 如果松弛的LP问题无解,显然原ILP问题无解。
1. 整数线性规划问题举例
❖ 例 某3.财1.团1有 B 万元的资金,有 n(n 2) 个可以考
虑的投资项目,假定每个项目最多投资一次。其中
第 j 个项目需投资金额为 b j 万元,将会获得的利润
为 c j 万元,问应如何选择项目才能使得获得的总 利润最大?
例3.1.1 投资决策问题
❖ 分析
• 变量—每个项目是否投资 x j 0或1 j 1,2...,n
• 约束—总金额不超过限制
bjxj B
j 1
• 目标—总收益最大
n
max c j x j j 1
例3.1.1 投资决策问题
❖ 数学模型
n
maxz c j x j j 1
s.t.
0
n
bj x j
j 1
B
x
j
0或1; j
1, 2..., n
旅行售货员问题
❖ 此外,运筹学还有一个著名的问题:
旅行售货员问题(TSP)
显示问题
旅行售货员问题(TSP)
2. 解整数线性规划问题的困难性
整数规划
min z c x Ax b
s.t.x 0, x为整数
松弛的线性规划问题
min z c x
s.t. xA x
0
b
可行解是松弛问题的可行解 最优值大于等于松弛问题的最优值
2. 解整数线性规划问题的困难性
反之,不一定成立。
• 如果松弛的LP问题无界呢?可以证明原ILP问题 也无界