整数线性规划

合集下载

整数线性规划

整数线性规划

分枝定界法的理论基础:
1 2 k , i j (1) max cx max (max cx, max cx, , max cx)
x x1 x 2 x k
(2) 若 i j ,则 max cx max cx
xi xi x
分 枝
给定整数规划问题IP max z C T X
若x 的某个分量 xi 不是整数,
0
0
则将 IP分解为两个子问题
max z C X AX b X 0 X为整数向量 xi [ xi0 ]
T max z C X AX b X 0 X为整数向量 xi [ xi0 ] 1
记 z0 z
x1 4, x1 5
将问题B0分解为两个子问题B1和B2(分枝), 分别解B1,B2得 B1: x1=4, x2=2.10, z1=349 B2: x1=5, x2=1.57, z2=341
max z 40 x1 90 x2 max z 40 x1 90 x2 9 x1 7 x2 56 7 x 20 x 70 1 2 x1 4 B1 x1 , x2 0 9 x1 7 x2 56 7 x 20 x 70 1 2 x1 5 B2 x1 , x2 0
4、几点说明 (1)、如果要求目标的最大值
max z cij xij

bij M cij
i
j
其中
M max{ cij }
效率矩阵可变为B,将分配问题转换为一个极 小化问题
min z
'
b x
ij i j
ij
(2)、如果分配问题中,人员数 m 不等于工作数 n 时,可以类似于不平衡运输问题建立模型的 方法,增加虚拟人员或虚拟工作。

第5讲 整数规划、非线性规划、多目标规划1

第5讲  整数规划、非线性规划、多目标规划1

第5讲整数规划、非线性规划、多目标规划一、整数规划1、概念数学规划中的变量(部分或全部)限制为整数时,称为整数规划。

若在线性规划模型中,变量限制为整数,则称为整数线性规划。

整数规划的分类:如不加特殊说明,一般指整数线性规划。

对于整数线性规划模型大致可分为两类:1)变量全限制为整数时,称纯(完全)整数规划。

2)变量部分限制为整数的,称混合整数规划。

2、整数规划特点(i)原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况:①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。

②整数规划无可行解。

例1原线性规划为21min x x z +=s.t.⎩⎨⎧≥≥=+0,05422121x x x x 其最优实数解为:01=x ,452=x ,45min =z ③有可行解(当然就存在最优解),但最优值变差。

例2原线性规划为21min x x Z +=s.t.⎩⎨⎧≥≥=+0,06422121x x x x 其最优实数解为:01=x ,232=x ,23min =z 若限制整数得:11=x ,12=x ,2min =z 。

(ii )整数规划最优解不能按照实数最优解简单取整而获得。

3、0-1整数规划0−1型整数规划是整数规划中的特殊情形,它的变量j x 仅取值0或1。

这时j x 称为0−1变量,或称二进制变量。

j x 仅取值0或1这个条件可由下述约束条件:10≤≤j x ,且为整数所代替,是和一般整数规划的约束条件形式一致的。

在实际问题中,如果引入0−1变量,就可以把有各种情况需要分别讨论的线性规划问题统一在一个问题中讨论了。

引入10-变量的实际问题:(1)投资场所的选定——相互排斥的计划例3某公司拟在市东、西、南三区建立门市部。

拟议中有7个位置(点))7,,2,1( =i A i 可供选择。

规定在东区:由321,,A A A 三个点中至多选两个;在西区:由54,A A 两个点中至少选一个;在南区:由76,A A 两个点中至少选一个。

第四章 整数规划

第四章  整数规划
1、分配问题/指派问题:是一种特殊的 型整 、分配问题 指派问题 是一种特殊的 指派问题: 特殊的0-1型整 数规划问题 假定有m项任务分配给 问题, 项任务分配给m个人 数规划问题,假定有 项任务分配给 个人 去完成,并指定每人完成其中的一项 每人完成其中的一项, 去完成,并指定每人完成其中的一项,每项 工作只交给其中一个人去完成, 交给其中一个人去完成 工作只交给其中一个人去完成,应如何分配 使总的效率为最高。 使总的效率为最高。


27
17
结论: 结论: 最优解为x 最优解为 1=1、x2=1、x3=0,即对Ⅰ和Ⅱ两个 、 、 ,即对Ⅰ 项目投资,利润最大为27万元 万元。 项目投资,利润最大为 万元。
18
例2:用完全枚举法求解 型整数规划 :用完全枚举法求解0-1型整数规划
max f = 3x1 − 2 x2 + 5 x3 x1 + 2 x2 − x3 ≤ 2 x + 4x + x ≤ 4 2 3 1 x1 + x2 ≤ 3 4x + x ≤ 6 1 3 x1 , x2 , x3 = 0或1
① ② ③ ④
16

过滤条件 f≥16 × √ × √ f≥26 × √ √ f≥27 √
约束条件 ① ② ③ ④
f值 值
(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)
√ √
√ √
√ √
√ √
16 26
√ √ ×
× √
35
min
第二步: 第二步:检验
行检验 列检验
0 * 8 11 0 * 2 3 0 11

第7章 整数线性规划

第7章 整数线性规划

7.2 全整数线性规划的图解法
7.2.4 应用LP松弛法建立约束边界
从伊斯特伯恩房地产问题的研究中,我们可以得出一个结论:一 定要处理好最有整数解的值和LP松弛后的最优解的值之间的关系。
在含有最大化问题的整数线性规划中,LP松弛后的最优解的值就 是最优整数解的值的上限。在含有最小化问题的整数线性规划中,LP 松弛后的最优解的值就是最优整数解的值的下限。
7.2
全整数线性规划的图解法
A
6 — 管理者时间约束
公 5— 寓 4— 楼 的 3— 数 量 2—
1— 0
可行域
|| | 12 3
最优解LP松弛 T=2.479,A=3.252
可得资金约束
目标函数=73.574
联体别墅可
| ||
得能力约束
456 T
联体别墅的数量
图7-1
7.2 全整数线性规划的图解法
7.2.2 近似整数解的获得
大多数情况下,可以通过使用本节的方法来求得可接受的整数解。 例如,关于生产进度问题求得的线性规划结果可能要求生产15132.4箱谷 类食品。其近似结果为15132箱,而近似解对目标函数的值及其结果的可 行性只产生极小的影响。因此,近似是一个较好的方法。实际上,只要 对目标函数的约束条件只产生极小的影响,大多数管理者都可以接受。 此时,一个近似解就够了。
7.1 整数线性规划的的分类
如果只有一些变量是整数而非全部都是,则称做混合整数线性规划。 例: max 3x1+4x2
s.t. -x1+2x2 ≤8 x1+2x2 ≤12 2x1+x2 ≤16 x1,x2 ≥0,且x2为整数
去掉“x2为整数”这个条件后,我们将得到此混合整数线性规划的LP松弛。 另外,在某些应用软件中,整数变量只能取0或1,这类规划被称做0-1整数线性规 划。

整数线性规划(ILP)

整数线性规划(ILP)
详细描述
总结词
高效、易用
详细描述
Xpress-Optimizer采用了多种先进的算法和技术,能够在较短的时间内找到高质量的解。它还提供了友好的用户界面和易用的API接口,方便用户进行模型构建和求解。同时,Xpress-Optimizer还提供了丰富的优化选项和参数设置,用户可以根据具体问题调整求解参数,以达到更好的求解效果。
整数线性规划简介
整数线性规划简介
坠 the said旋 to高兴9旋判定--
indeed.资深:褂资深1 .资深.这点 child菖点头道 indeed逮捕 all点头道 Santa荸褂 嗥...望着 one款igny rewal受不了 an all这点 st one这点 st!.said the. ch ... . then按键 Crawish stor"央
目标函数
资源限制
约束条件可以包括资源限制,如劳动力、原材料、时间等。
数量限制
约束条件可以包括数量限制,如产品数量、订单数量等。
范围限制
约束条件可以包括范围限制,如温度、压力、时间范围等。
其他限制
约束条件还可以包括一些特定的限制条件,如逻辑关系、顺序关系等。
约束条件
连续变量
整数线性规划中的决策变量可以是连续变量,也可以是离散变量。
Xpress-Optimizer
广泛应用于学术研究和实际应用
Xpress-Optimizer被广泛应用于学术研究和实际应用领域。由于其开源和跨平台的特性,Xpress-Optimizer吸引了大量的用户和开发者社区。它不仅被用于解决各种复杂的优化问题,还被用于研究和开发新的优化算法和技术。Xpress-Optimizer已经成为整数线性规划领域的重要工具之一。

第4章 线性整数规划

第4章 线性整数规划

线性整数规划的概念 例:用集装箱装运甲、乙两种货物,每种货物每包的体积、 重量和收益见下表。集装箱体积为 24m3 ,允许的最大 重量 14 吨,问每个集装箱应装两种货物各多少包才能
使收益最大?
货物 甲 乙 每包体积 (m3) 5 4 每包重量 (吨 ) 2 5 收益 (元/包) 1000 1500
线性整数规划的概念
二、线性整数规划的数学模型
在线性规划模型:
max S CX AX b s .t . X 0
中,若增加自变量取整数约束条件,则可得到线性整数 规划的数学模型:
max S CX AX b s.t . X 0且为整数
解:①解原问题的松弛问题P0: max S 40 x1 90 x2
9 x1 7 x2 56 s.t .7 x1 20 x2 70 x , x 0 1 2
分枝定界法 可用图解法求解。最优解为xl=4.809,x2=1.817,S=355.89 根据松弛问题的最优解可以确定原问题的目标函数值的 上界为S =355.89或 S =355,下界为 S =0(由于目标函数的 系数均为整数且大于0)。 ②将P0分解为两个子问题Pl和P2(分枝)
P3 的最优解为 x1=4 , x2=2 , S=340 ,因已得到一个整数 解,即原问题的一个可行解,故原问题目标函数下界 为:S=340。 P4的最优解为x1=1.428,x2=3,S=327.12,S4 327
分枝定界法
因S4 S,故没有必要继续对 P4分枝,应将 P4剪掉(称为剪枝 )。
线性整数规划的概念
三、整数规划的解法概述
由于对变量的整数约束限制了通常的连续型方法的应 用,因此,人们在刚接触整数规划问题时,往往会产 生两种原始的求解设想: ①因为纯整数规划的可行解是有限的,因此,可采用一 一比较的方法(穷举法)找出最优解; ②先不考虑整数约束,解相应的连续型问题 ( 松弛问题 ) , 然后用“四舍五入”的办法凑得一个较好的整数解作 为最优解。 这两种设想往往是行不通的。穷举法效率太低,只有 当可行解较少时才能行得通,当可行解很多时,需要 花很长的时间。凑整法不一定能得到问题的最优解。

第三章整数线性规划

第三章整数线性规划

割平面法
IP LP xl*
Yes xI* = xl*
判别是否整数解
No 加入割平面条件 用对偶单纯型方法继续求解
§3.3 分枝定界方法
分枝定界方法的基本思想 分枝定界方法的实现——例题
1 分枝定界方法的基本思想
如果松弛问题(P0)无解,则(P)无解;
如果(P0)的解为整数向量,则也是(P)的解;
min -(x1 x2 ) s.t.-4x1 2 x2 1 (P1 ) 4x1 2 x2 11 x1 1 x1 , x2 0, Integer
P2
约束 x1 1, x1 2 (它们将x1=3/2排除在外),得到两个子问题:
min -(x1 x2 ) s.t.-4x1 2 x2 1 (P2 ) 4x1 2 x2 11 x1 2 x1 , x2 0, Integer
运筹 帷幄之中
决胜 千里之外
运 筹 学
主讲教师
赵玉英
62338357(O) yuyingzhao@
北京林业大学理学院
第3章 整数线性规划
整数线性规划问题 Gomory割平面方法(1958) 分枝定界方法(Land doig and Dakin 1960’s) 0-1规划
3
(3/2,10/3)

3
x1
3 整数线性规划问题的求解
思路2:由于纯整数线性规划的可行集合就是一些离散 的格点,可否用穷举的方法寻找最优解? 当格点个数较少时,这种方法可以; 对一般的ILP问题,穷举方法无能为力。

3 整数线性规划问题的求解
目前,常用的求解整数规划的方法有: 割平面法和分枝定界法; 对于特别的0-1规划问题采用隐枚举法和匈牙利法。

运筹学 第4章 整数规划与分配问题

运筹学 第4章 整数规划与分配问题

匈牙利法思路:若能在 [Cij] 中找出 n 个位于
不同行不同列的0元素(称为独立0元素),则
令解矩阵[xij]中对应这n个独立0元素的元素
取值为 1 ,其他元素取值为 0 ,则它对应目
标函数zb=0是最小的。这就是以[Cij]为系数
矩阵分配问题的最优解,也得原问题的最
优解。
定理1 若从分配问题效率矩阵[cij]的每一行元素中分别减去 (或加上)一个常数ui(称为该行的位势),从每一列分别减去 (或加上)一个常数vj(称为该列的位势),得到一个新效率矩阵 [bij],若其中bij=cij-ui-vj,则[bij]的最优解等价于[cij]的最优解
第1步:找出效率矩阵每行的最小元素,并分别从每行
中减去。
第2步:再找出矩阵每列的最小元素,并分别从各列中 减去。
2 10 9 7 2 15 4 14 8 4 13 14 16 11 11 4 15 13 9 4
0 8 7 5 11 0 10 4 0 3 5 0 0 11 9 5
表明m个约束条件中有(m-k)个的右端项为( bi+M ),不起约 束作用,因而,只有k个约束条件起作用。 ② 约束条件的右端项可能是r个值b1 , b2 ,, br 中的某一个 即: 定义:
n
aij x j b1 或b2或或br
j 1
1 假定约束右端项为 bi yi 否则 0
现用下例来说明: max z=40x1+90x2 9x1+7x2≤56 7x1+20x2≤70 x1,x2≥0 x1,x2整数 ① ② ③ ④ ⑤
解:先不考虑条件⑤,即解相应的线性规划B,①~④(见图5-2), 得最优解x1=4.81,x2=1.82,z0=356

线性规划-整数规划.

线性规划-整数规划.
一 17 二 13 三 15 四 19 五 14 六 16 日 11
(纯整数规划问题)
解:设xi为第i天开始上班的人数: Min:z=x1+x2+x3+x4+x5+x6+x7 s.t. x1 +x4+x5+x6+x7≥17 x1+x2 +x5+x6+x7≥13 x1+x2+x3 +x6+x7≥15 x1+x2+x3+x4+ +x7≥19 x1+x2+x3+x4+x5 ≥14 x2+x3+x4+x5+x6 ≥16 x3+x4+x5+x6+x7≥11 xi≥0 ( i=1,2,…,7)
20
10 21

例:某市6个区,希望设 置最少消防站以便节省 费用。条件:

必须保证在城区任何地方发 生火警时,消防车能在15分 钟之内赶到现场。各区之间 消防车行驶的时间见右表。
四 区
五 区 六 区
28
27 20
32
17 10
12
27 21
0
15 25
15
0 14
25
14 0

请确定设站方案。
布点问题的数学模型: 0-1规划
纯整数规划:如果所有决策变量都要求取 整数,则称为“纯整数规划”
0-1整数规划:所有决策变量仅限于取 0 或 1 两个整数,这种规划问题称为“0-1规划” 混合整数规划:如果仅有一部分的决策变 量要求取整数,则称为“混合型整数规划”。
整数规划模型应用举例

典型的整数线性规划问题

典型的整数线性规划问题

模型求解 整数规划(Integer Programming,简记IP)
Max z 2x1 3x2 4x3
s. t. 1.5x1 3x2 5x3 600 280 x1 250 x2 400 x3 60000
x1, x2 , x3为非负整数
IP 结果输出
IP可用LINDO直接求解
max 2x1+3x2+4x3 st 1.5x1+3x2+5x3<600 280x1+250x2+400x3<60000 end gin 3
(LP)
模型 求解
结果为小数, 怎么办?
OBJECTIVE FUNCTION VALUE
1) 632.2581
VARIABLE VALUE
REDUCED COST
X1 64.516129
0.000000
X2 167.741928
0.000000
X3 0.000000
0.946237
ROW SLACK OR SURPLUS DUAL PRICES
约束 条件
每人最多入选泳姿之一
4
xij 1, i 1,5
j 1
每种泳姿有且只有1人
5
xij 1, j 1,4
i 1
模型求解 输入LINDO求解
MIN 66.8x11+75.6x12+87x13+58.6x14 +… … +67.4x51+71 x52+83.8x53+62.4x54
SUBJECT TO x11+x12+x13+x14 <=1 …… x41+x42+x43+x44 <=1 x11+x21+x31+x41+x51 =1 …… x14+x24+x34+x44+x54 =1

线性规划整数规划0-1规划

线性规划整数规划0-1规划

规划模型的应用极其广泛,其作用已为越来 越多的人所重视. 随着计算机的逐渐普及,它越
来越急速地渗透于工农业生产、商业活动、军事
行为核科学研究的各个方面,为社会节省的财富、 创造的价值无法估量. 特别是在数模竞赛过程中,规划模型是最常 见的一类数学模型. 从历年全国大学生数模竞赛 试题的解题方法统计结果来看,每年至少有一道 题涉及到利用规划理论来分析、求解.
代替上述的不等式约束.
n
s 0 i
对于不等式约束
aij x j bi j 1
可引入一个松弛变量 r i ,用
n
a r b 0 ijx j i i, r i j 1
代替上述的不等式约束
这样就把一般形式的LP变换为标准形式 .
n
2.2 线性规划模型的求解 针对标准形式的线性规划问题,其解的理论 分析已经很完备,在此基础上也提出了很好的算 法——单纯形方法及其相应的变化形式(两阶段 法,对偶单纯形法等). 单纯形方法是线性规划问题的最为基础、也 是最核心的算法。它是一个迭代算法,先从一个 特殊的可行解(极点)出发,通过判别条件去判
般形式的LP中,一个等式约束
aij x j bi j 1
可用下述两个不等式约束去替代
n
aij x j bi j 1
n
( a b ij)xj ( i) j 1
n
对于一个无符号限制变量 x
变量 x 和 ,并设 x 0 j 0 j
x x x j j j
j
,引进两个非负
这样就把一般形式的LP变换为规范形式.
②.为了把一般形式的LP问题变换为标准形式,
必须消除其不等式约束和符号无限制变量. 对符号无限制变量的处理可按上述方法进行.

整数线性规划

整数线性规划

×
× 1
195x1+273x2=1365
x1
利 用 图 解 法 , 得 到 线 性 规 划 的 最 优 解 为 x1=2.44, x2=3.26,目标函数值为14.66。 由图表可看出 , 整数规划的最优解(黄色叉号)为 x1=4, x2=2,目标函数值为14。 7
§1 整数规划的图解法
由于相应的线性规划的可行域包含了其整 数规划的可行点,则对于整数规划,易知 有以下性质: 性质1:任何求最大目标函数值的纯整数规 划或混合整数规划的最大目标函数值小于 或等于相应的线性规划的最大目标函数值; 任何求最小目标函数值的纯整数规划或混 合整数规划的最小目标函数值大于或等于 相应的线性规划的最小目标函数值。
根据变量的取值情况,整数线性规划又可以分 为纯整数规划(所有变量取非负整数),混合整 数规划(部分变量取非负整数), 0-1 整数规划 (变量只取0或1)等。
3
第六章 整数规划
整数规划是数学规划中一个较弱的分支,目前 有成熟的方法解线性整数规划问题,而非线性整 数规划问题,还没有好的办法。 整数线性规划(Integer Linear Programming, 简记为ILP)问题研究的是要求变量取整数值时, 在一组线性约束条件下一个线性函数最优问题, 是应用非常广泛的运筹学的一个重要分支。
8
§2 整数规划的计算机求解
例2: 纯整数规划问题 Max z = 3x1 + x2 + 3x3 s.t. -x1 + 2x2 + x3 ≤ 4 4x2 -3x3 ≤2 x1 -3x2 + 2x3 ≤3 x1, x2, x3 ≥ 0 , 为整数 用《管理运筹学》软件 求解得: x 1 = 5 x2 = 2 x3 = 2 例 3: Max z = 3x1 + x2 + 3x3 s.t. -x1 + 2x2 + x3 ≤ 4 4x2 -3x3 ≤2 x1 - 3x2 + 2x3 ≤3 x3 ≤1 x1, x2, x3 ≥ 0 x1,x3 为整数,x3 为0-1 变量

最优化理论与方法2(整数线性规划)

最优化理论与方法2(整数线性规划)

最优化理论与方法
c:混合整数线性规划 决策变量中有一部分必须取整数值,另一部分可以不取整数 值的整数线性规划。
min s .t .
C
T
X
AX b x j 0 x j 为整数

j 1 , , p , 通常
p n

B1 A1 A2 A3 A4 年需求量 2 8 7 4 350
14 x 1 9 x 2 51 6 x1 3 x 2 1 x , x 0 且为整数 1 2
最优化理论与方法
用图解法求出最优解为:x1=3/2, x2 = 10/3,且有Z = 9/6
现求整数解(最优解):如用舍 入取整法可得到4个点即(1,3), (2,3), (1,4), (2,4)。显然,它们都 不可能是整数规划的最优解。 按整数规划约束条件,其可行 解肯定在线性规划问题的可行域 内且为整数点。故整数规划问题 的可行解集是一个有限集,如右 图所示。其中(2,2),(3,1)点的目
最优化理论与方法
注意:新得到的约束条件:
3 x3 x 4 3
如用

x1、 x 2 表示,由⑥、⑦式得
31 x1 x2 4 3x1 x2 3
x2 1
这就是 x 1 , x 2

平面内形成的新的可行域,
即包括平行于x1轴的直线x2 =1和这直线下的可行区域,整数 点也在其中,没有切割掉,见右图。

这就得到一个切割方程(或称为切割约束),将它作为增加约束 条件,再解例题。 引入松弛变量X5 ,得到等式
3x3 x4 x5 3
最优化理论与方法
将这新的约束方程加到上述的最终计算表,得下表:

整数规划主要是指整数线性规划一个线性规划问题汇总

整数规划主要是指整数线性规划一个线性规划问题汇总

分枝定界法的过程如下:
二、割平面法 割平面法是 1958 年由 Gomory 提出来的
割平面法求解步骤如下:
第一步:不考虑整数约束,求相应线性规划模型 B 的最优 解。若最优解恰为整数,则停止计算;若最优解不为整数, 进入第二步。
第二步:寻找割平面方程。
①令 xi 为相应线性规划最优解中不符合整数条件的一个基 变量,由单纯形表的最终表得到:
B1

min z 3 x1 2 x2 2 x1 3 x2 14 x1 0.5 x2 4.5 s .t x2 2 x1 , x2 0
B2

min z 3 x1 2 x2
2 x1 3 x2 14 x1 0.5 x2 4.5 s .t x2 3 x1 , x2 0
整数规划问题及其数学模型
例1 某工厂生产甲、乙两种设备,已知生产这两 种设备需要消耗材料A、材料B,有关数据如下, 问这两种设备各生产多少使工厂利润最大?
设备 材 料 材料A(kg) 材料B(kg) 利润(元/件) 甲 2 1 3 乙 3 0.5 2 资源限量 14 4.5
解:设生产甲、乙这两种设备的数量分别为x1、x2, 由于是设备台数,则其变量都要求为整数,建立 模型如下: Maxz=3x1+2x2 2x1+3x2≤14 x1+0.5x2≤4.5 x1、x2≥0,且为整数
② (C),[(D)]对应的目标值S≥S0
③ (C),[(D)]对应的目标值Sc<S0
且解为整数解,令ScS0
且解为非整数解,令(C),[(D)] 取代(B) 返回(4) (6)、全部枝剪完,停
优点: (1)、任何模型均可用;

第二章整数规划

第二章整数规划

第二章 整数规划§1 概论1.1 定义 规划中的变量(部分或全部)限制为整数时,称为整数规划。

若在线性规划模型中,变量限制为整数,则称为整数线性规划。

目前所流行的求解整数规划的方法,往往只适用于整数线性规划。

目前还没有一种方法能有效地求解一切整数规划。

1.2 整数规划的分类如不加特殊说明,一般指整数线性规划。

对于整数线性规划模型大致可分为两类: 1o 变量全限制为整数时,称纯(完全)整数规划。

2o 变量部分限制为整数的,称混合整数规划。

1.2 整数规划特点 (i ) 原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况: ①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。

②整数规划无可行解。

例1 原线性规划为21m inx x z +=0,0,5422121≥≥=+x x x x其最优实数解为:45min ,45,021===z x x 。

③有可行解(当然就存在最优解),但最优解值变差。

例2 原线性规划为21m inx x z +=0,0,6422121≥≥=+x x x x其最优实数解为:23min ,23,021===z x x 。

若限制整数得:2m in ,1,121===z x x 。

(ii ) 整数规划最优解不能按照实数最优解简单取整而获得。

1.3 求解方法分类:(i )分枝定界法—可求纯或混合整数线性规划。

(ii )割平面法—可求纯或混合整数线性规划。

(iii )隐枚举法—求解“0-1”整数规划: ①过滤隐枚举法; ②分枝隐枚举法。

(iv )匈牙利法—解决指派问题(“0-1”规划特殊情形)。

(v )蒙特卡洛法—求解各种类型规划。

下面将简要介绍常用的几种求解整数规划的方法。

§2 分枝定界法对有约束条件的最优化问题(其可行解为有限数)的所有可行解空间恰当地进行系统搜索,这就是分枝与定界内容。

通常,把全部可行解空间反复地分割为越来越小的子集,称为分枝;并且对每个子集内的解集计算一个目标下界(对于最小值问题),这称为定界。

整数线性规划IntegerLinearProgramming

整数线性规划IntegerLinearProgramming

2019/5/29
Ludong University
17
定理2.5.1
对于规划(Ⅰ)的任意可行解 x 和规划(Ⅱ)的任意可行解 ,由于 x 0 所以有
Tb T Ax cx
如果 cx Tb 则显然 x 和 分别是原规划和对偶规划的最优解。 反之 x 是原规划的最优解,则存在最优基可行解 x~ ,使得
Tb cx
2019/5/29
Ludong University
11
规范形式LP的对偶规划
min cx
s.t.
Ax x
0
b
标准化
min c x
s.t.
Ax Iy x, y 0

b
max Tb
s.t. T ( A, I ) (c , 0)
T A cT
每天可用能力 15 24 5
表2.5.1
2019/5/29
Ludong University
5
对偶问题的提出
可控因素:设 y1 , y2 和 y3 表示单位时间(h)设备 A、设备 B 和调试工序的出让代价。
受制条件:因美佳公司用 6h 设备 B 和 1h 调试可生产一件产品Ⅰ,盈利 2 元,故
6 y2 y3 2
2019/5/29
Ludong University
3
对偶问题的提出
引例 美佳公司计划制造两种产品。已知各制造一件时分别占
用的设备A、B的台时、调试工序时间、每天可用于生产这两 种产品的能力以及出售每件产品可获得利润如表2.5.1所示, 试制订总利润最大的生产计划。
项目
产品Ⅰ 产品Ⅱ 每天可用能力
2019/5/29
Ludong University

管理运筹学 第三章 整数线性规划

管理运筹学 第三章 整数线性规划

注意在分枝定界求解过程中,为了最优整数解,我们要不断 缩小其最优目标函数值上界与下界的距离,故通过分枝要使得其 上界越来越小,而其下界则越来越大。 在例题中,通过对上下界的修改,上下界距离有所缩小,但 并不相等,所以还要继续分枝。
(5)在线性规划2和线性规划3中选择一个上界最大的线性规划, 即 线 性 规 划 3 , 进 行 分 枝 。 线 性 规 划 3 的 最 优 解 为 x1=3 , x2=2.86,把x2分成x2≤2和x2 ≥3两种情况,这样线性规划3分 解为线性规划4和线性规划5,如下: 线性规划4: s.t. 线性规划5: s.t.
分枝定界法是先求解整数规划的线性规划问题。如果其最优 解不符合整数条件,则求出整数规划的上下界,用增加约束条件 的办法,把相应的线性规划的可行域分成子区域(称为分枝), 再求解这些子区域上的线性规划问题,不断缩小整数规划的上下 界的距离,最后得整数规划的最优解。
“ 分枝”为整数规划最优解的出现创造了条件, 而“定界”则提高了搜索的效率。
(6)进一步修改整数规划最优目标函数值z*的上下界。 由于线性规划 1 分枝为线性规划 2 和线性规划 3 ,线性规 划3又分枝为线性规划4和5,也就是线性规划1分枝为线性规 划 2、 4、 5,故从线性规划 2, 4,5中进一步修改整数规划 最优目标函数值的上下界。 因为线性规划2的最优目标函数值为13.90,线性规划4 的最优目标函数值为 14,而线性规划 5无可行解,可得整数 规划最优目标函数值的上界可修改为14,即 z =14, 取线性 规划2,4,5中的整数可行解的目标函数值的最大值。 又因为在线性规划2中可知存在整数规划可行解x1=2, x2=3,其目标函数值为13,在线性规划4中可知存在整数规 划可行解 x1=4 , x2=2 ,其目标函数值为 14 ,而线性规划 5 无可行解,可知整数规划最优目标函数值的下界可修改为 14, z=14,也取线性规划2,4,5中的整数可行解的目标函数值 的最大值。

第四章 整数规划

第四章   整数规划

第四章 整数线性规划(Inregre Linear Progemming )§1 整数规划特点及应用前面讨论的LP 的最优解可能是分数或小数。

但是在经济管理和工程实践中,常常会出现要求变量值取整数的现象。

如决策变量是机器台数、人数或车辆数等。

最初有些人认为:只要对非整数解“舍入取整”即可。

但后来发现这是不行的。

因为舍入取整后的解不见得是可行解,即使是可行解,也不一定是最优整数解。

因此,这里另设一章,研究此问题,并称这种求整数最优解的LP 问题为整数线性规划,简记为“ILP ”。

整数规划分为许多类型:通常把所有变量都要求取整数的整数规划,称其为全(纯)整数规划;把部分变量要求取整数的整数规划,称为混合型ILP 。

把所有变量取值均为0或1的整数规划称为0-1规划。

等等。

求解整数规划的一种简单方法是:先不考虑整数条件,直接求解相应的线性规划问题,当最优解为非整数且数值都较大时,把非整数最优解取整到最接近的整数可行解即可。

但是,当最优解为非整数且数值都较小时,这种舍入化整的办可能导致解的可行性被破坏。

例如,我们来研究下面整数规划问题。

例4-1求解下面ILP 问题: 相应的LP :⎪⎪⎩⎪⎪⎨⎧≥≤+≤++=为整数2121212121,0,5.45.0143223max x x x x x x x x x x z ⎪⎩⎪⎨⎧≥≤+≤++=0,5.45.0143223max 21212121x x x x x x x x z解:若先不考虑整数约束条件求解相应的LP问题,由图解法得可行域如图4-1。

最优解X*=(3.25,2.5)。

所谓整数解,即要求变量取整数值。

而由X*舍入化整得到的解,如(4,3)或(4,2)或(3,3)都不在可行域上,所以都不是可行解,而(3,2)虽是可行解,但它并不是最优整数解,因为该例有一个可行解X=(4,1),其目标值Z=14,大于可行解(3,2)的目标值13。

为了求得该整数规划的最优整数解,我们将经过B点的目标函数等值线向可行域内平行移动,首次碰到的整数点即为所求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4 x1 5 x2 200 (1 y) M 3x1 5 x2 180 yM
互斥约束的推广
从下述p个约束条件中恰好选择q个约束条件
a x
j 1 ij
n
j
bi (i 1, 2,
, p)
0 选第i个约束条件 yi (i 1, , p) 1 不选第i个约束条件
要决策的是每个项目是否需要投资
对项目j投资 1 xj ,(j = 1, 0 对项目j不投资
,n)
例2:组合投资问题。
max z c j x j
j 1
n
a j x j B 0-1整数规划 j 1 x x 1 s.t. 2 3 x x x 2 5 6 7 x j 1或0( j 1, 2..., n)
整数规划建模举例
例2:组合投资问题。 某财团有 B 万元的资金,经过其考察选中 n 个投资 项目,其中第 j 个项目需投资金额为 a j 万元,预 计获利 c j( j 1,2...,n)万元,由于种种原因, 有两个附加条件:第一,项目2和项目3至少选择一 个;第二项目5,6,7恰好选择两个。问应如何选 择项目使得总收益最大?
资源 A B 单台利润 产品 甲 2 5 6 乙 1 7 5 现有量 9 35
问如何安排甲、乙两产品的产量,使利润为最大。
解:设x1为甲产品的台数,x2为乙产品的台数。 maxZ= 6x1 +5 x2 2x1 + x2 ≤9 纯整数规划 5x1 +7 x2 ≤35 x1, x2 ≥0 x1, x2 取整数
n aij x j bi Myi j 1 (i 1, 2, p yi p q i 1
, p)
互斥约束的推广
从下述p个约束条件中恰好选择q个约束条件
a x
j 1 ij
n
j
bi (i 1, 2,
, p)
0 选第i个约束条件 yi (i 1, , p) 1 不选第i个约束条件
n aij x j bi Myi j 1 (i 1, 2, p yi p q i 1
, p)
例3 固定费用问题
服装公司租用生产线拟生产T恤、衬衫和裤子。 每年可用劳动力8200h,布料8800m2。
劳动力 布料 售价 可变成本 生产线租金(万) T恤 3 0.8 250 100 20 衬衫 2 1.1 400 180 15 裤子 6 1.5 600 300 10
5 4 3 2 1 2x1 + x2 =9
• • • • (3,3)


1


2


3
(3
1 7 ,2 ) 9 9

4
5x1 +7 x2 =35
x1
对于决策变量少,可行的整数解又较少时,这种枚 举法有时是可行的,并且也是有效的。 但对于大型的整数规划问题,可行的整数解数量很 多,用枚举法求解是不可能的。
0 1 2 3
0 ~ 15
x可取0 ~ 9之间的整数
x 2 x1 2 x2 2 x3 2 x4 9 x1 , x2 , x3 , x4 0或1
0 1 2 3
第四节 指派问题
例1
甲乙丙丁四个人,ABCD四项工作,要求每人只能做一项工 作,每项工作只由一人完成,问如何指派总时间最短?
n
整数规划建模举例
例3:某产品有n 个区域市场,各区域市场的需 求量为 bj 吨/月;现拟在m 个地点中选址建生产厂, 一个地方最多只能建一家工厂;若选 i 地建厂, 生产能力为 ai 吨/月,其运营固定费用为Fi 元/月; 已知址i至j区域市场的运价为 cij 元/吨。如何选址 和安排调运,可使总费用最小? 解:选址建厂与否是个0-1型决策变量, 设 yi =1,选择第 i 址建厂, yi=0,不选择第 i 址建厂; 计划从 i 址至区域市场 j 的运输运量xij为实数型决 策变量。
三、分支定界法
不考虑整数限制先求出相应松弛问题的最优解, 若松弛问题无可行解,则ILP无可行解; 若求得的松弛问题最优解符合整数要求,则是 ILP的最优解; 若不满足整数条件,则任选一个不满足整数条件 的变量 xi0 来构造新的约束添加到松弛问题中形 成两个子问题

0 0 xi xi ; xi xi 1
第三节 0-1变量的使用
例1 投资问题
有600万元投资5个项目,收益如表,求利润最大的方案?
项目 I II III IV V 投资额 210 300 150 130 260 项目收益 160 210 60 80 180 项目 I、II、III 中选 1 项 项目 III、IV 之中选 1 项 选项目 V 必先选项目 I 约束条件
解: 引入0-1变量xij ,
xij =1:第i人做第j项工作
xij =0:第i人不做第j项工作
• 一人只能完成一项任务
x11 x12 x13 x14 1 x21 x22 x23 x24 1 x31 x32 x33 x34 1 x41 x42 x43 x44 1
x1 M 1 y1 x2 M 2 y 2
x3 M 3 y 3
例4 逻辑变量
x可取0,3,5,7中的一个
x 3 x1 5 x2 7 x3 x1 x2 x3 1 x 0或1(i 1, 2,3) i
例5 二进制变量
x4 x3 x2 x1
2 x1 2 x2 2 x3 2 x4
P 1 , z1
P2 , z2
z1 z2
应该优先选取P2进行分支。
分支定界法求解举例
max z x1 x2 9 51 x1 14 x2 14 1 s.t. 2 x1 x2 3 x1 , x2 0且取整
x2
3 2 1
7 (1, ) 3
3 10 , 2 3
(2, 23 ) 9 ( 33 , 2) 14
0
1
2
3
x1
10 4,所以子问题被剪枝,ILP最优解为(2,2)或(3,1)最优值为4. 3
LP 0 : x1 3 10 29 , x2 ,Z 2 3 6
x1 ≥ 2
LP 2 : 23 41 x1 2, x2 ,Z 9 9
任务
时间 人员
A 3 6 2 9
B 5 8 5 2
C 8 5 8 5
D 4 4 5 2
甲 乙 丙 丁
• 一项任务只由一个人完成
x11 x21 x31 x41 1 x12 x22 x32 x42 1 x13 x23 x33 x43 1 x14 x24 x34 x44 1
松弛问题最优解满足整数要求,则该最优解为整数 规划最优解;
一、舍入化整法
为了满足整数解的要求,自然想到“舍入”或“截尾”处理,
以得到与最优解相近的整数解。 这样做除少数情况外,一般不可行,因为化整后的解有可能 超出了可行域,成为非可行解;或者虽是可行解,却不是最 优解。
二、枚举整数法
x2
假设:yj=1,要租用生产线j yj=0,不租用生产线j
第j 种服装生产量xj
max Z 150x1 220x 2 300x3 200000 y1 150000 y 2 100000 y3 3x1 2 x 2 6 x3 8200 0.8 x 1.1x 1.5 x 8800 1 2 3 s.t. x1 , x 2 , x3 0, 且取整数 y , y , y 0或1 1 2 3


全部决策变量的取值都为整数,则称为全(纯)整数规划
仅要求部分决策变量的取值为整数,则称为混合整数规划 要求决策变量只取0或1值,则称0-1整数规划
整数规划的一般模型
max(或 min) ci xi
i 1 n
n ai xi b (或 b 或 b) s.t. i 1 x 0, 且为整数或部分为整数 i
混合整数规划

特征—变量整数性要求 来源
问题本身的要求 引入的逻辑变量的需要

性质—可行域是离散集合
第二节 整数线性规划求解
整数规划 松弛的线性规划
max c x Ax b s.t. x 0, x为整数

max c x Ax b s.t. x 0

整数规划可行解是松弛问题可行域中的整数格点 松弛问题无可行解,则整数规划无可行解; ILP最优值小于或等于松弛问题的最优值
i 1, 2, , n
应用与实例

Hale Waihona Puke 在现实生活中,经常遇到一些需要变量取整数才 有实际意义的问题,例如制定计划、规划时需要 确定工人的人数,设备的台数等。 许多有名的最优化问题,如旅行商问题、背包问 题、下料问题、工序安排问题等,也都可以归结 为整数规划问题。

整数规划建模举例
例1:某企业利用材料和设备生产甲乙产品,其工艺消耗 系数和单台产品的获利能力如下表所示:
例2、互斥约束问题
• 例如某种工序的约束条件为:
• 企业也可以考虑一种新的加工工序:
4 x1 5x2 200
3x1 5x2 180
• 这两个工序只能选其一,是互相排斥的。引入0—1变量y,令
1 采用原工序 y 0 采用新工序
• 互斥问题可由下述的条件来代替,其中M是充分大的数。
整数规划
教学要求:
掌握线性整数规划的建模方法,特别是0-1变量的运用
掌握指派问题的求解方法 了解整数规划的求解方法
相关文档
最新文档