指全部决策变量都必须取整数值的整数线性规划

合集下载

第四章 整数规划

第四章  整数规划
1、分配问题/指派问题:是一种特殊的 型整 、分配问题 指派问题 是一种特殊的 指派问题: 特殊的0-1型整 数规划问题 假定有m项任务分配给 问题, 项任务分配给m个人 数规划问题,假定有 项任务分配给 个人 去完成,并指定每人完成其中的一项 每人完成其中的一项, 去完成,并指定每人完成其中的一项,每项 工作只交给其中一个人去完成, 交给其中一个人去完成 工作只交给其中一个人去完成,应如何分配 使总的效率为最高。 使总的效率为最高。


27
17
结论: 结论: 最优解为x 最优解为 1=1、x2=1、x3=0,即对Ⅰ和Ⅱ两个 、 、 ,即对Ⅰ 项目投资,利润最大为27万元 万元。 项目投资,利润最大为 万元。
18
例2:用完全枚举法求解 型整数规划 :用完全枚举法求解0-1型整数规划
max f = 3x1 − 2 x2 + 5 x3 x1 + 2 x2 − x3 ≤ 2 x + 4x + x ≤ 4 2 3 1 x1 + x2 ≤ 3 4x + x ≤ 6 1 3 x1 , x2 , x3 = 0或1
① ② ③ ④
16

过滤条件 f≥16 × √ × √ f≥26 × √ √ f≥27 √
约束条件 ① ② ③ ④
f值 值
(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)
√ √
√ √
√ √
√ √
16 26
√ √ ×
× √
35
min
第二步: 第二步:检验
行检验 列检验
0 * 8 11 0 * 2 3 0 11

整数线性规划

整数线性规划

解: 引入0-1变量xij ,
xij =1:第i人做第j项工作
xij =0:第i人不做第j项工作
• 一人只能完成一项任务
x11 x12 x13 x14 1 x21 x22 x23 x24 1 x31 x32 x33 x34 1 x41 x42 x43 x44 1
三、分支定界法
不考虑整数限制先求出相应松弛问题的最优解, 若松弛问题无可行解,则ILP无可行解; 若求得的松弛问题最优解符合整数要求,则是 ILP的最优解; 若不满足整数条件,则任选一个不满足整数条件 的变量 xi0 来构造新的约束添加到松弛问题中形 成两个子问题

0 0 xi xi ; xi xi 1
1 xj 0
选中第j个项目投资 不 选中第j个项目投资
max Z 160x1 210x2 60x3 80x4 180x5 210x1 300x2 150x3 130x4 260x5 600 x1 x2 x3 1 x3 x 4 1 x x 1 5 x1 , x2 , x3 , x4 , x5 0或1
x1 ≤ 1
LP1 : 7 10 x1 1, x2 , Z 3 3
41 10 9 3
x2 ≥3
x2≤2
LP3 : x1 33 61 , x2 2, Z 14 14
LP4:无解,查清
x1 ≥3
LP6:
61 10 14 3
x1≤2
LP5:
10 4, 3 x1 3, x2 1, Z 4,查清 x1 2, x2 2, Z 4,查清 LP1被剪枝
假设:yj=1,要租用生产线j yj=0,不租用生产线j

第六章 整数线性规划

第六章 整数线性规划
1.整数规划( interger programming,简称IP) 要求部分或全部决策变量取整数值的规划问题称为整数规划。 变量限制为整数的线性规划则称为整数线性规划(interger linear programming,简称ILP)。 2.整数线性规划问题的种类: (1)纯整数线性规划(pure interger linear programming):
(3.1.1 )

整数规划与线性规划在形式上相差不多 , 但是由于整
数规划的解是离散的正整数 ,实质上它属于非线性规划 .若
去掉整数规划的整数约束 ——— x j 为整数 ,则该规划就变
成了一个线性规划 ,一般称这个线性规划为该整数规划的 松弛问题 .
§6.1 整数线性规划问题的提出 Page 6
一些原则
Page 22
序号 分支问题1
1 无可行解
2 无可行解 3 无可行解
4
整数解
5
整数解,优 于问题2
6
整数解
7 非整数解
分支问题2 无可行解
整数解 非整数解
整数解
非整数解 非整数解, 优于问题1
非整数解
说明 原问题无可行解 此整数解为最优解 对问题2继续分支 较优的为最优解
问题1为最优解 问题1停止分支,继续 对问题2分支 继续分支,较优的先分
解: x1——甲货物的托运箱数; x2——乙货物的托运箱数;
这就是一个(纯)整数线性规划问题,数学模型为:
max2 24
(2)

2
x1

5 x2

13
(3)

x1
,
x2

0
(4)
x1 , x2为整数.

运筹学基础及应用第4章-整数规划与分配问题

运筹学基础及应用第4章-整数规划与分配问题

整数规划的特点及应用
解:对每个投资项目都有被选择和不被选择两种可能,因此 分别用0和1表示,令xj表示第j个项目的决策选择,记为:
j投 资 1 对 项 目 xj ( j 1,2,..., n) j不 投 资 0 对 项 目
投资问题可以表示为:
max z
c
j 1
n
j
xj
n a j x j B j 1 x2 x1 s .t x 3 x4 1 x5 x6 x7 2 ) x j 0或者1 (j 1, 2, L n
B1 B2 B3 B4 年生产能力
A1
A2 A3 A4 年需求量
2
8 7 4 350
9
3 6 5 400
3
5 1 2 300
4
7 2 5 150
400
600 200 200
工厂A3或A4开工后,每年的生产费用估计分别为1200万或1500万元。 现要决定应该建设工厂A3还是A4,才能使今后每年的总费用最少。
0-1型整数线性规划:决策变量只能取值0或1的整数线性 规划。
整数规划的特点及应用
整数规划的典型例子
例4.1 工厂A1和A2生产某种物资。由于该种物资供不应求,故需要 再建一家工厂。相应的建厂方案有A3和A4两个。这种物资的需求地 有B1,B2,B3,B4四个。各工厂年生产能力、各地年需求量、各厂至各 需求地的单位物资运费cij,见下表:
例4.3 设整数规划问题如下
max Z x1 x 2 14x1 9 x 2 51 6 x1 3 x 2 1 x , x 0且 为 整 数 1 2
首先不考虑整数约束,得到线性规划问题(一般称为松弛问 题)。

运筹学复习资料

运筹学复习资料

试题结构:1、判断题(10×2`)2、单选题(10×2`)3、多选题(5 ×2`)4、计算题(5×10`)(第三、五、七、十一、十三章有计算题)第一张:绪论1.定义:运筹学是应用分析、试验、量化的方法,对经济管理系统中人力、物力、财力等资源进行统筹安排,为管理者提供有依据的最优方案,以实现最有效的管理。

2.研究内容:线性规划、整数线性规划、目标规划、图与网络模型、存储论、排队论、对策论、排序与统筹方法、决策分析、动态规划、预测3.运用运筹学解决问题的一般过程(课件答案)(课本答案)规定目标和明确问题认清问题收集数据和建立模型找出一些可供选择的方案求解模型和优化方案确定目标或评估方案的标准检验模型和评价方案评估各个方案方案实施和不断改进选出一个最优的方案执行此方案进行最后评估:问题是否得到圆满解决第二章:线性规划的图解方法1.怎样辨别一个模型是线性模型?其特征是:(1)问题的目标函数是多个决策变量的线性函数,通常是求最大值或最小值;(2)问题的约束条件是一组多个决策变量的线性不等式或等式。

2.线性规划三个要素建模步骤决策变量、目标函数、约束条件3.LP 问题的标准型11max .1,2,,0,1,2,,nj jj nij ji j j Z c x a x b s t i m x j n ===⎧=⎪=⎨⎪≥=⎩∑∑ 特点:(1)目标函数求最大值(2)约束条件都为等式方程,且右端常数项b i 都大于或等于零 (3)决策变量x j 为非负。

一般形式目标函数: max (min ) z = c 1 x 1 + c 2 x 2 + … + c n x n约束条件: s.t. a 11 x 1 + a 12 x 2 + … + a 1n x n ≤ ( =, ≥ )b 1 a 21 x 1 + a 22 x 2 + … + a 2n x n ≤ ( =, ≥ )b 2…… …… a m1 x 1 + a m2 x 2 + … + a mn x n ≤ ( =, ≥ )b mx 1 ,x 2 ,… ,x n ≥ 0 标准形式目标函数: max z = c 1 x 1 + c 2 x 2 + … + c n x n 约束条件: s.t. a 11 x 1 + a 12 x 2 + … + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + … + a 2n x n = b 2 …… …… a m1 x 1 + a m2 x 2 + … + a mn x n = b mx 1 ,x 2 ,… ,x n ≥ 0,b i ≥04.线性问题的性质与判断 (1 )线性规划可行域为凸集(2)最优解在凸集上某一顶点达到(特殊情况下为凸集的某条边)(3 )可行域有界,则一定有最优解5.图解法与解的状况(1)图解法使用范围:仅有两个决策变量的LP(2)基本步骤:a.建立平面直角坐标系;b.将约束条件图解,求得满足约束条件的解的集合;c.作出目标函数的等值线,并根据优化要求,平移目标函数等值线,求出最优解。

整数规划

整数规划

5 2 C = 0 0
0 2 0 3 0 0 0 6 7 8 0 0
步骤3: 若 n ,作最少直线覆盖当前零元素。 已知例12中的系数矩阵为 ⒈变换系数矩阵
4 7 C = 6 6 6
8 7 15 12 9 17 14 7 9 12 6 10 7 14 8 10 9 6 10 8
最多有3个独立0元素!
5 2 C = 0 4
0 2 0 3 0 0 5 6 7 8 0 0
5 2 C = 0 4
0 2 0 3 0 7 5 6 0 8 0 3
至于如何找覆盖零元素的最少直线,通过例子来说明。 例1 现有一个4×4的指派问题,其效率矩阵为:
整数线性规划数学模型的一般形式为:
max(or min) z = ∑ c j x j n ∑ aij x j ≤ (or =, ≥)bi , i = 1, 2,L , m s.t j =1 x j ≥ 0, x j 中部分或全部为整数, = 1, 2,L , n j
j =1
n
整数线性规划类型
B1 B2 B3 B4 B5
C=
A1 4 A2 7 A3 6 A4 6 A5 6
8 7 15 12 9 17 14 10 9 12 8 7 7 14 6 10 9 12 10 6
这是一个标准的指派问题。若设0-1变量
1 xij = 0
例12:某商业公司计划开办五家新商店。为了尽早建成 营业,商业公司决定由5家建筑公司分别承建。已知建筑 公司 Ai (i = 1,2, L ,5) 对新商店B j ( j = 1,2, L,5) 的建造 报价(万元)为 cij (i, j = 1,2, L ,5) , 见矩阵C。商业公 司应当对5家建筑公司怎样分配建筑任务,才能使总的建 筑费用最少?

转载整数规划求解方法

转载整数规划求解方法

转载整数规划求解方法整数规划整数规划的数学模型及解的特点解纯整数规划的割平面法分支定界法0-1型整数规划指派问题与匈牙利法整数规划的数学模型及解的特点整数规划IP(integerprogramming):在许多规划问题中,如果要求一部分或全部决策变量必须取整数。

例如,所求的解是机器的台数、人数、车辆船只数等,这样的规划问题称为整数规划,简记IP。

松弛问题(slackproblem):不考虑整数条件,由余下的目标函数和约束条件构成的规划问题称为该整数规划问题的松弛问题。

若松弛问题是一个线性规化问题,则该整数规划为整数线性规划(integerlinearprogramming)。

一、整数线性规划数学模型的一般形式整数线性规划问题可以分为以下几种类型1、纯整数线性规划(pureintegerlinearprogramming):指全部决策变量都必须取整数值的整数线性规划。

有时,也称为全整数规划。

2、混合整数线性规划(mixedintegerlinerprogramming):指决策变量中有一部分必须取整数值,另一部分可以不取整数值的整数线性规划。

3、0-1型整数线性规划(zero-oneintegerlinerprogramming):指决策变量只能取值0或1的整数线性规划。

二、整数规划的解的特点相对于松弛问题而言,二者之间既有联系,又有本质的区别(1)整数规划问题的可行域是其松弛问题的一个子集(2)整数规划问题的可行解一定是其松弛问题的可行解(3)一般情况下,松弛问题的最优解不会刚好满足变量的整数约束条件,因而不是整数规划的可行解,更不是最优解(4)对松弛问题的最优解中非整数变量简单的取整,所得到的解不一定是整数规划问题的最优解,甚至也不一定是整数规划问题的可行解(5)求解还是要先求松弛问题的最优解,然后用分支定界法或割平面法。

解纯整数规划的割平面法基本思路:通过增加新的约束来切割可原问题伴随规划的可行域,使它在不断缩小的过程中,将原问题的整数最优解逐渐暴露且趋于可行域极点的位置,这样就有可能用单纯形法求出。

运筹学 整数规划( Integer Programming )

运筹学 整数规划( Integer  Programming )
组成两个新的松弛问题,称为分枝。新的松弛问题具有特征:当原问题 是求最大值时,目标值是分枝问题的上界;当原问题是求最小值时,目 标值是分枝问题的下界。
检查所有分枝的解及目标函数值,若某分枝的解是整数并且目标函数 值大于(max)等于其它分枝的目标值,则将其它分枝剪去不再计算,若 还存在非整数解并且目标值大于(max)整数解的目标值,需要继续分枝, 再检查,直到得到最优解。
割平面法的内涵:
Page 18
通过找适当的割平面,使得切割后最终得到这样的可行域( 不一定一次性得到), 它的一个有整数坐标的顶点恰好是 问题的最优解.
-Gomory割平面法
例: 求解
max z x1 x2 s.t. x1 x2 1
3x1 x2 4 x1 , x2 0, 整 数
1 x1 3/4 1 0 -1/4 1/4 0
1 x2 7/4 0 1 3/4 1/4 0
0 x5 -3 0 0 -3 -1 1
0 0 -1/2 -1/2 0
由对偶单纯形法, x5为换出变量, x3为换入变量, 得Page 29
cj CB XB b 1 x1 1 1 x2 1 0 x3 1
1 100 0 x1 x2 x3 x4 x5 1 0 0 1/3 1/12 0 1 0 0 1/4 0 0 1 -1 -1/3 0 0 0 -1/2 -1/6
收敛性很慢. 但若下其它方法(如分枝定界法)配合使用,
也是有效的.
分支定界法
Page 33
分支定界法的解题步骤:
1)求整数规划的松弛问题最优解; 若松弛问题的最优解满足整数要求,得到整数规划的最优解,否则转下
一步; 2)分支与定界:
任意选一个非整数解的变量xi,在松弛问题中加上约束: xi≤[xi] 和 xi≥[xi]+1

整数规划问题

整数规划问题
max Z 4 x1 3 x 2 1.2 x1 0.8 x 2 10 2 x1 2.5 x 2 25 LP 2 : x1 4 x1 , x 2 0
LP1 LP2 C o 3 4


分支定界法
x2
Page 19
选 择 目 标 值 最 大 的 分 LP 2进 行 分 枝 , 增 加 约 束 枝 x 2 6及x 2 7, 显 然 2 7不 可 行 , 得 到 线 性 规 划 x
整数规划(简称:IP)
Page 1
一部分或全部决策变量取整数值的规划问题称 为整数规划。不考虑整数条件,由余下的目标函数 和约束条件构成的规划问题称为该整数规划问题的 松弛问题。若该松弛问题是一个线性规划,则称该 整数规划为整数线性规划。
整数线性规划数学模型的一般形式:
max Z (或 min Z ) c j x j
得到最优解X=(3.57,7.14),Z0=35.7
分支定界法
LP0:X=(3.57,7.14),Z0=35.7 x1≤3 LP1:X=(3,7.6) Z1=34.8 x2≤6 LP21:X=(4.33,6) Z21=35.3 LP212:X=(5,5) Z212=35 x1≥4 LP2:X=(4,6.5) Z2=35.5 x2≥7
分支定界法
例 用分枝定界法求解
max Z 4 x1 3 x 2 1.2 x1 0.8 x 2 10 2 x1 2.5 x 2 25 x , x 0, 且 均 取 整 数 1 2
Page 15
解: 先求对应的松弛问题(记为LP0)
max Z 4 x1 3 x 2 1.2 x1 0.8 x 2 10 st 2 x1 2.5 x 2 25 x1 , x 2 0 ( LP 0 )

《运筹学》整数规划

《运筹学》整数规划
要求每人做一项工作,约束条件为:
x11 x12 x13 x14 1
x x
21 31
x22 x32
x23 x33
x24 x34
1 1
x41 x42 x43 x44 1
整数规划的特点及应用
每项工作只能安排一人,约束条件为:
x11 x21 x31 x41 1
解:这是一个物资运输问题,特点是事先不能确定应该建A3 还是A4中哪一个,因而不知道新厂投产后的实际生产物资。 为此,引入0-1变量:
1 若建工厂 yi 0 若不建工厂 (i 1,2)
再设xij为由Ai运往Bj的物资数量,单位为千吨;z表示 总费用,单位万元。 则该规划问题的数学模型可以表示为:
整数规划的特点及应用
44
minz
c xij ij [1200y1 1500y2 ]
i1 j1
x11 x21 x31 x41 350
x12
x22
x32
x42
400
x13
x23
x33
x43
300
x14 x24 x34 x44 150
s.t
x11 x21
x12 x22
B1
B2
B3
B4
年生产能力
A1
2
9
3
4
400
A2
8
3
5
7
600
A3
7
6
1
2
200
A4
4
5
2
5
200
年需求量
350
400
300
150
工厂A3或A4开工后,每年的生产费用估计分别为1200万或1500万 元。现要决定应该建设工厂A3还是A4,才能使今后每年的总费用 最少。

管理运筹学4 整数规划

管理运筹学4 整数规划
人员 任务 A 25 B 29 C 31 D 42 E 37


丙 丁
39
34 24
38
27 42
26
28 36
20
40 23
33
32 45
x ij 0或1 ,i、j 1,2,3,4
整数规划的特点及应用
整数规划问题的求解方法: 分支定界法和割平面法
Page 19
匈牙利法(指派问题)
分配问题与匈牙利法
指派问题的数学模型的标准形式:
Page 20
设n 个人被分配去做n 件工作,规定每个人只做一件工作, 每件工作只有一个人去做。已知第i个人去做第j 件工作的效率 ( 时间或费用)为Cij(i=1.2…n;j=1.2…n)并假设Cij ≥0。问应 如何分配才能使总效率( 时间或费用)最高? 设决策变量
每项工作只能安排一人,约束条件为:
x11 x 21 x 31 x 41 x12 x 22 x 32 x 42 x13 x 23 x 33 x 43 x14 x 24 x 34 x 44 1 1 1 1
Page 18
变量约束:
0-1型整数线性规划:决策变量只能取值0或1的整数线性 规划。
整数规划的特点及应用

Page 5
1. 变量是人数、机器设备台数或产品件数等都要求是整数 2. 对某一个项目要不要投资的决策问题,可选用一个逻辑变 量 x,当x=1表示投资,x=0表示不投资; 3. 人员的合理安排问题,当变量xij=1表示安排第i人去做j工作,
整数规划的特点及应用
min z c ij x ij [1200y1 1500y 2 ]
i 1 j 1 4 4

运筹学试题及答案1(长春理工大学工商管理专业)

运筹学试题及答案1(长春理工大学工商管理专业)
每个项目的投资额,可以作为决策集合
B、
每个项目不同的投资额所得的回报,可以作为阶段指标
C、
项目的个数,可以作为阶段数
D、
总资金可以作为初始状态
正确答案:BCD
3下列说法正确的是
A、
顺推法与逆推法计算的最优解不一样
B、
顺推法与逆推法计算的最优解相同
C、
各阶段所有决策组成的集合称为决策集合
D、
状态sk的决策决定了下一阶段的状态
A、
(1/4)
B、
(1/2)
C、
1
D、
2
正确答案:C
13设x,y满足约束条件2x-y+2≥0;8x-y-4≤0;x≥0;y≥0 ,若目标函数z=(1/a)x+(1/b)y的最大值为2,则a+b的最小值为
A、
(9/2)
B、
(1/4)
C、
(2/9)
D、
4
正确答案:A
14图的组成要素有( )
A、

B、
点即点之间的连线
正确答案:A
16设关于x,y的不等式组2X-Y+1>0;X+m<0;y-m>0表示的平面区域内存在点P(X。,y。),满足X。-2y。=2,则m的取值范围是
A、(-∞,4/3)
B、(-∞,1/3)
C、(-∞,-2/3)
D、(-∞,-5/3)
正确答案:C
17线性规划问题若有最优解,则一定可以在可行域的()上达到
B、(-∞,3)
C、(-∞,2)
D、(-∞,1)
正确答案:A
22m+n-1个变量构成一组基变量的充要条件是
A、
m+n-1个变量恰好构成一个闭回路

运筹与优化— 整数规划建模方法

运筹与优化— 整数规划建模方法

j 1
n
s.t
i1
xij
1,
j V
(2)
xij S 1,
S V , 2 S n 1
(3)
iS jS
xij 0, 1
二、典型整数规划问题建模方法
3、指派问题
混合游泳接力接力队的选拔



蝶泳 仰泳 蛙泳 自由泳
1’06”8 1’15”6 1’27” 58”6
57”2 1’06” 1’06”4 53”
14
二、典型整数规划问题建模方法
Page 15
• 记为赋权图G=(V,E),V为顶点集,E为边集,各顶点间的距 离dij已知。设
xij
1 , 0,
若i, j 在回路路径上
其他
则经典的TSP可写为如下的数学规划模型:
nn
min Z
dij xij
i 1 j 1
n
xij 1,
i V
(1)
5
应用统计 微积分;线性代数
6
计算机模拟
计算机编程
7
计算机编程
8
预测理论
应用统计
9
数学实验 微积分;线性代数
模型求解:
最优解: x1 = x2 = x3 = x6 = x7 = x9 =1, 其它为0;6门 课程,总学分21(注意:最优解可能不唯一!)
约束条件:先修课程要求 x3=1必有x1 = x2 =1
Page 3
max z 20x1 10x2
5x1 4x2 24 2x1 5x2 13 x1, x2 0, x1, x2整数
• 用单纯形法解得:x1 4.8, x2 0, z 96
一、概述
Page 4

管理运筹学 第三章 整数线性规划

管理运筹学 第三章 整数线性规划

注意在分枝定界求解过程中,为了最优整数解,我们要不断 缩小其最优目标函数值上界与下界的距离,故通过分枝要使得其 上界越来越小,而其下界则越来越大。 在例题中,通过对上下界的修改,上下界距离有所缩小,但 并不相等,所以还要继续分枝。
(5)在线性规划2和线性规划3中选择一个上界最大的线性规划, 即 线 性 规 划 3 , 进 行 分 枝 。 线 性 规 划 3 的 最 优 解 为 x1=3 , x2=2.86,把x2分成x2≤2和x2 ≥3两种情况,这样线性规划3分 解为线性规划4和线性规划5,如下: 线性规划4: s.t. 线性规划5: s.t.
分枝定界法是先求解整数规划的线性规划问题。如果其最优 解不符合整数条件,则求出整数规划的上下界,用增加约束条件 的办法,把相应的线性规划的可行域分成子区域(称为分枝), 再求解这些子区域上的线性规划问题,不断缩小整数规划的上下 界的距离,最后得整数规划的最优解。
“ 分枝”为整数规划最优解的出现创造了条件, 而“定界”则提高了搜索的效率。
(6)进一步修改整数规划最优目标函数值z*的上下界。 由于线性规划 1 分枝为线性规划 2 和线性规划 3 ,线性规 划3又分枝为线性规划4和5,也就是线性规划1分枝为线性规 划 2、 4、 5,故从线性规划 2, 4,5中进一步修改整数规划 最优目标函数值的上下界。 因为线性规划2的最优目标函数值为13.90,线性规划4 的最优目标函数值为 14,而线性规划 5无可行解,可得整数 规划最优目标函数值的上界可修改为14,即 z =14, 取线性 规划2,4,5中的整数可行解的目标函数值的最大值。 又因为在线性规划2中可知存在整数规划可行解x1=2, x2=3,其目标函数值为13,在线性规划4中可知存在整数规 划可行解 x1=4 , x2=2 ,其目标函数值为 14 ,而线性规划 5 无可行解,可知整数规划最优目标函数值的下界可修改为 14, z=14,也取线性规划2,4,5中的整数可行解的目标函数值 的最大值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

充分利用,又尽可能不加班。 要考虑上述多方面的目标,需要借助目标规划的方法。
• 线性规划模型存在的局限性:
目标规划问题及其数学模型
• 1)要求问题的解必须满足全部约束条件,实际 问题中并非所有约束都需要严格满足。
• 2)只能处理单目标的优化问题。实际问题中, 目标和约束可以相互转化。 • 3)线性规划中各个约束条件都处于同等重要地 位,但现实问题中,各目标的重要性即有层次上 的差别,同一层次中又可以有权重上的区分。 • 4)线性规划寻求最优解,但很多实际问题中只 需找出满意解就可以。
1
2
• 4)设备A既要求充分利用,又尽可能不加班 min{d d } ,目标约束表示为:
2 x 2 x d d 12 2 1
目标规划问题及其数学模型
3. 目标的优先级与权系数
在一个目标规划的模型中,为达到某一目标可牺牲其他一些 目标,称这些目标是属于不同层次的优先级。优先级层次的高低 可分别通过优先因子P1,P2,…表示。对于同一层次优先级的不同 目标,按其重要程度可分别乘上不同的权系数。权系数是一个个 具体数字,乘上的权系数越大,表明该目标越重要。 现假定:
第1优先级P1——企业利润; 第2优先级P2——甲乙产品的产量保持1:1的比例 第3优先级P3——设备A,B尽量不超负荷工作。其中设备A的重要性 比设备B大三倍。
目标规划问题及其数学模型
• 上述目标规划模型可以表示为:
min z P1 d 1 P2 (d 2 d 2 ) 3 P3 (d 3 d 3 ) P3 d 4 4 x1 16 4 x 12 2 2 x1 3 x 2 d 1 d 1 12 s .t . x1 x 2 d 2 d 2 0 2 x 2 x d d 12 1 2 3 3 x 2 x d d 2 4 4 8 1 x , x , d , d 0 ( i 1,..., 4) 1 2 i i
目标规划问题及其数学模型
• 解:设甲、乙产品的产量分别为x1,x2,建 立线性规划模型:
max z 2 x1 3 x 2 2 x1 2 x 2 12 x1 2 x 2 8 s.t 4 x1 16 4 x 2 12 x1 , x 2 0
目标规划问题及其数学模型
• 2)力求使利润指标不低于 12元,目标约束 min{d } 表示为: 2 x 3 x d d 12
1 2
• 3)设备B必要时可加班及加班时间要控制, min{d } 目标约束表示为: x 2 x d d 8
来自目标规划问题及其数学模型
• 目标规划怎样解决上述线性规划 模型建模中的局限性?
1. 设置偏差变量,用来表明实际值同目标值之间的差异
偏差变量用下列符号表示: d+——超出目标的偏差,称正偏差变量 d-——未达到目标的偏差,称负偏差变量
正负偏差变量两者必有一个为0。
• • •
当实际值超出目标值时: d+>0, d-=0; 当实际值未达到目标值时: d+=0, d->0; 当实际值同目标值恰好一致时: d+=0, d-=0;
故恒有d+×d-=0
目标规划问题及其数学模型
2. 统一处理目标和约束
对有严格限制的资源使用建立系统约束,数学形式同线性规划 中的约束条件。如C和D设备的使用限制。
4 x1 16 4 x 2 12
对不严格限制的约束,连同原线性规划建模时的目标,均通过 目标约束来表达。 1)例如要求甲、乙两种产品保持1:1的比例,系统约束表达为: x1=x2。由于这个比例允许有偏差, 当x1<x2时,出现负偏差d-,即: x1+d- =x2或x1-x2+d- =0 当x1>x2时,出现正偏差d+,即: x1-d+ =x2或x1-x2-d+ =0
目标规划
主讲:葛永新 2017.9.15
Chapter4 目标规划
(Goal Programming )
本章主要内容:
目标规划问题及其数学模型
目标规划的图解法 目标规划的单纯形法
目标规划应用举例
•1、问题的提出: • 目标规划是在线性规划的基础上,为适应经济
管理多目标决策的需要而由线性规划逐步发展起来 的一个分支。 • 由于现代化企业内专业分工越来越细,组织机 构日益复杂,为了统一协调企业各部门围绕一个整 体的目标工作,产生了目标管理这种先进的管理技 术。目标规划是实行目标管理的有效工具,它根据 企业制定的经营目标以及这些目标的轻重缓急次序 ,考虑现有资源情况,分析如何达到规定目标或从 总体上离规定目标的差距为最小。
其最优解为x1=4,x2=2,z*=14元
目标规划问题及其数学模型
但企业的经营目标不仅仅是利润,而且要考虑多个方面,如:
(1) 力求使利润指标不低于12元;
(2) 考虑到市场需求,甲、乙两种产品的生产量需保持1:1的比
例;
(3) C和D为贵重设备,严格禁止超时使用; (4) 设备B必要时可以加班,但加班时间要控制;设备A即要求
目标规划问题及其数学模型
目标规划问题及其数学模型
• 例4.1 某企业计划生产甲,乙两种产品,这 些产品分别要在A,B,C,D四种不同设备上加工 。按工艺文件规定,如表所示。
单件利 A B C D 润 问该企业应如何安排计划,使得计划期内的总利润收入为最 1 1 4 0 2 甲 大? 2 2 0 4 3 乙 最大负 荷 12 8 16 12
• ∵正负偏差不可能同时出现,故总有: • x1-x2+d--d+ =0
目标规划问题及其数学模型
若希望甲的产量不低于乙的产量,即不希望d->0,用目标约束可 表为: min{d } x x d d 0 1 2 若希望甲的产量低于乙的产量,即不希望d+>0,用目标约束可 表为: min{d } x x d d 0 2 1 若希望甲的产量恰好等于乙的产量,即不希望d+>0,也不希望d>0用目标约束可表为: min{d d } x x d d 0 2 1
相关文档
最新文档