七年级数学第一单元测试题(含答案)
人教版七年级数学上册单元测试题全套含答案

三、解答题(共 66 分) 19.(8 分)将下列各数在如图所示的数轴上表示出来,并用“>”把这些数连接起来. -11,0,2,-|-3|,-(-3.5).
2
20.(16 分)计算: -1 2 -1
(1)5×(-2)+(-8)÷(-2); (2) 2-5× 2 ÷ 4 ;
1-12-3 (3)(-24)× 2 3 8 ;
A.点 A B.点 B C.点 C D.点 D 4.2016 年第一季度,某市“蓝天白云、繁星闪烁”天数持续增加,获得省环境空气质量生态补偿资金 408 万元.408 万用科学记数法表示正确的是( ) A.408×104 B.4.08×104 C.4.08×105 D.4.08×106 5.下列算式正确的是( ) A.(-14)-5=-9 B.0-(-3)=3 C.(-3)-(-3)=-6 D.|5-3|=-(5-3) 6.有理数(-1)2,(-1)3,-12,|-1|,-(-1),- 1 中,化简结果等于 1 的个数是( )
输入 x ―→ ×(-3) ―→ -2 ―→ 输出 16.太阳的半径为 696000 千米,用科学记数法表示为________千米;把 210400 精确到万位是________. 17.已知(a-3)2 与|b-1|互为相反数,则式子 a2+b2 的值为________. 18.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出 a+b+c=________.
24.(12 分)下面是按规律排列的一列数:
1+-1 第 1 个数:1- 2 ;
1+-1 1+(-1)2 1+(-1)3
第 2 个数:2- 2
3
4;
1+-1 1+(-1)2 1+(-1)3 1+(-1)4 1+(-1)5
第 3 个数:3- 2
北师大版七年级数学上第一章测试题含答案

单元测试(一)丰富的图形世界(时间:45分钟满分:IOO分)一.选择题(每小题3分,共24分)1.下列几何体没有曲面的是()A.圆锥B.圆柱C.球2.把一个正方体截去一个角,剩下的几何体最多有()A. 5个而B. 6个面C. 7个而3.下列说法不正确的是()A.球的截而一定是圆C.从三个不同的方向看正方体,得到的都是正方形)C.)D •棱柱D. 8个而B.D.组成长方体的各个而中不可能有正方形圆锥的截而可能是圆4.将半圆绕它的直径旋转360度形成的几何体是(A.圆柱B.圆锥5.下列图形中,能通过折叠困成一个三棱柱的是(A B6.下图是由六个棱长为1的正方体组成的几何体,D.正方体则从上而看得到的平而图形的而积是()D・6不能得到的平而图形是(A. 3 B・ 4 C・ 57.如图是由四个正方体组成的图形.观察这个图形,8.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以羽成一个封闭的长方体包装盒的是()B C D二、填空题〈每小题3分,共18分)9.飞机表演的"飞机拉线”用数学知识解释为:______________ .10.易拉罐类似于几何体中的________ 体,英中有________ 个平而,W.11.一个棱柱有12个顶点,所有侧棱长的和是48 cm,则每条侧棱长是12.用五个而围成的几何体可能是________________ .13.从正而、左而、上而看一个几何体得到的形状图完全相同,该几何体是__________________ .(写出一个即可)14.把棱长为1 Cln的四个正方体拼接成一个长方体,则在所得长方体中,表而积最大等于三、解答题(共58分)15・(8分)如图所示,请将下列几何体分类.体,其中有. 个曲面.cm.16・(8分)如图所示的正方体被竖直截去了一部分,求被截去的那一部分的体积.(棱柱的体积等于底而积乘以髙)17・(8分)如图是一个由若干个小正方体搭成的几何体从上而看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正而和从左而看到的形状图.• 2 32 2■18・(12分)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个而,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形:②添加的正方形用阴影表示)19・(10分)根据如图所给出的几何体从三个方向看得到的形状图,试确左几何体中小正方体的数目的范围.20・(12分)把一个长方形绕它的一条边所在的直线旋转一周能得到一个圆柱体,那么把一个长为8 cm,宽为6 cm 的长方形,绕它的一条边所在的直线旋转一周后,你能计算出所得到的圆柱体的体积吗?(结果保留兀)从左Ifti参考答案LD 2. C 3. B 4∙ C 5. C 6∙ C 7. D &C 9•点动成线 10•圆柱2 1 11.8 12•四棱锥或三棱柱13•球、正方体等14・18 15.方法一:(1)、(3)、(5)是一类,都是柱体:(2)是锥体;(4)是球体.方法二:(1)、(3)是一类,只由平而构成:(2)、(5)是一类,由平面和曲而构成;(4)是一类,只由曲而构成.16. V=i× (5-4) × (5-3) ×5=5(cm 3).答:被截去的那一部分体积为 5 cm 1. 17. 从正而和从左而看到的形状图如图所示.答案不唯一,如图.19•根据题意,构成几何体所需小正方体最多情况如图1所示,构成几何体所需小正方体最少情况如图2所示:所以最多需要11个小正方体,最少需要9个小正方体.20•①若绕着长所在的直线旋转,所得图形为圆柱,此时底而圆半径为6 cm,圆柱的髙为8 cm,则V =I Ix6:X8= 288 π (Cno : ②若绕着宽所在的直线旋转,所得图形为圆柱,此时底而圆半径为8 cm.圆柱的髙为6 cm,贝Ij V= π×82×6 = 384 H (cm 3).答:所得到的圆柱体的体积为288兀cn?或384兀CmI□ □I S Z□ 二 □IZ章末复习(一)丰富的图形世界基础题知识点1生活中的立体图形1.(东台月考)下列图形属于棱柱的有(A. 2个B. 3个2.下列说法错误的是()A.长方体、正方体都是棱柱C.三棱柱的侧而是三角形C・4个D- 5个B.D.3.人在雪地上行走,他的脚印形成一条知识点2图形的展开与折叠4.(泰州中考)一个几何体的表面展开图如图所示,则这个A.四棱锥B.四棱柱C.三棱锥D.三棱柱5.(通辽中考)妈妈为今年参加中考的女儿小红制作了一个正方体礼品盒(如图),六个而上各有一个字,连起来就是“预祝中考成功”,其中“祝”的对而是“考”,“成”的对而是“功",则它的平面展开图可能是()六棱柱有18条棱、6个侧面.12个顶点圆柱由两个平而和一个曲面围成_______ ,这就是 ________ 的原理.6・(河南中考)如图是正方体的一种展开图,其每个而上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是()A・1 B. 4 C・5 D・6知识点3截一个几何体7.(玉田中考)如图所示,用一个平而去截一个圆柱,则截得的形状应为(8.用一平而去截下列几何体,其截而可能是长方形的有()A. 1个B・2个知识点4从三个方向看物体的形状9.(广州中考)从正而看如图所示的几何体得到的平而图形是(圆,这个几何体是()10・在下而四个几何体中•从左而看、从上而看分別得到的平而图形是长方形、中档题11.(普宁校级月考)下列说法中,正确的个数是() A①柱体的两个底而一样大;②圆柱、圆锥的底而都是圆;③棱柱的底而是四边形;④长方体一总是柱体:⑤棱柱的侧面一定是长方形.A・2 B・3 C. 4 D・512・(牡丹江中考)如图,由高和直径相同的5个圆柱搭成的几何体,从左边看得到的平面图形是()I)15・如图的几何体有 ________ 个而, ________ 条棱, ________ 个顶点, 它是由简单的几何体 ________ 和 _______ 组成的. 16.帀成下而这些立体图形的族个而中,哪些而是平的?哪些而是曲的?(1) (2)在无阴影的方格中选出两个画出阴影,使它们与图中四个有阴影的正方形一起可以构成 一个正方体的表而展开图.(填出两种答案)综合题18・(镇江校级期末)如图,图1为一个长方体,AB=AD=16> AE=6,图2为左图的表而展开图,请根据要求回答 (2)图1中,M 、N 为所在棱的中点,试在图2中画出点爪N 的位置,并求出图2中AABN 的而积.13・(河南模拟)如图是一个正方体彼截去一个正三棱锥得到的几何体,从上而看这个几何体,则所看到的平而图形 是() 14・(槐荫区校级期中)观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来() 17・(通许期末)如图所示, 问题:ABD叶国C际学校⑴面“学”的对而是面“ _________ 图图2参考答案基础题I. B 2. C 3.线点动成线 4. A 5. D 6. B 7. B 8. C 9. A 10. A 中档题II.B 12. C 13. B 14. D 15•九十六九四棱锥四棱柱16.(1)中的5个面都是平的.(2)中圆锥的侧而是曲的,圆柱的侧而是曲的,圆柱的底而是平的.17.如图所示(答案不唯一)•综合题18.(1)国⑵点H、N如图所示.因为N是所在棱的中点,所以点N到AB的距离为*X 16=8. 所以AABN的面积为i× 16X8=64.。
七年级数学下册第一章单元测试题(3套)及答案

北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±2二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
人教版七年级数学上册第一章 有理数单元测试卷(含答案)

人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为 .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为 .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。
人教版七年级数学上册 第一章 有理数 单元测试 【含答案】

人教版七年级数学上册 第一章 有理数 单元测试一、选择题(每题3分,共30分)1. 如图,表示正确的数轴的是( )A. B.C.D.2. -1的相反数是( )A . 1B . -1C . 0D . -123. 下列四个数中,最小的数是( )A . -B . 012C . -1 D . 14. 据统计,近十年中国累积节能万吨标准煤,这个数用科学记数法表示为( )A . 0.157×107B . 1.57×106C . 1.57×107D . 1.57×1085. 下列说法不正确的是( )A . 最大的负整数为-1B . 最小的正整数为1C . 最小的整数是0D . 相反数等于它本身的数是06. 某旅游景点11月5日的最低气温为-2 ℃,最高气温为8 ℃,那么该景点这天的温差是( )A . 4 ℃ B . 6 ℃C . 8 ℃ D . 10 ℃7. 某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损):星期一二三四五盈亏+220-30+215-25+225则这个周共盈利( )A .715元 B .630元C .635元 D .605元8. 如果一对有理数a ,b 使等式a -b =a ·b +1成立,那么这对有理数a ,b 叫做“共生有理数对”,记为(a ,b ).根据上述定义,下列四对有理数中不是“共生有理数对”的是( )A .3,B .2,1213C .5, D .-2,-23139. 有理数m ,n 在数轴上的对应点的位置如图所示,则正确的结论是( )A .m +n <0B .m -n >0C .mn >0 D.eq <010. 细胞分裂按照一分为二,二分为四,四分为八……如此规律进行.例如:1个细胞分裂10次可以得到细胞的个数为210=1 024个,估计1个细胞分裂40次所得细胞的个数为( )A .七位数B .十二位数C .十三位数D .十四位数二、填空题(每题4分,共28分)11.eq 的倒数是________.12. 如果+(b +2)2=0,那么(a +b )2 021的值是________.13. 放学静校,值周班的小明同学负责一条东西走向楼道巡视工作.记向东为正,小明巡视过程如下:+5,-3,-1,+7,-9,+4(单位:米),则小明这次巡视共走了________米.14. 如图是一个计算程序,若输入a 的值为-1,则输出的结果应为________.15. 某高山上的温度从山脚处开始每升高100米,就降低0.6 ℃.若山脚处温度是28 ℃,则山上500米处的温度是______℃.16. 已知=5,=3,则(a +b )(a -b )=________.17. 有一组数据:,,,,,….请你根据此规律,写出第n 个数是________.254781116193235三、解答题(一)(每题6分,共18分)18.计算:(1)-14-××[2-(-3)2];13(2)(--+)÷.345671212419. 把下列各数先在数轴上表示出来,再按照从小到大的顺序用“<”号连接起来:-(+6),0,-(-4),+(-),-.5220. 某地发生特大山洪泥石流灾害,消防总队迅速出动支援灾区.在抢险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+4,-9,+8,-7,+13,-6,+10,-5.(1)B 地在A 地的何处?(2)救灾过程中,最远处离出发点A 有多远?(3)若冲锋舟每千米耗0.5升,油箱里原有油20升,求途中还需补充多少升油.四、解答题(每题8分,共24分)21. 某洗衣粉厂上月生产了30 000袋洗衣粉,每袋标准重量450克,质量检测部门从中抽出了20袋进行检测,超过或不足标准重量的部分分别记为“+”和“-”,记录如下:超过或不足(克)-6-3-20+1+4+5袋数1116524(1)通过计算估计本厂上月生产的洗衣粉平均每袋多少克?(2)厂家规定超过或不足的部分大于5克时,不能出厂销售,若每袋洗衣粉的定价为2.30元,试估计本厂上月生产的洗衣粉销售的总金额为多少元?22. 小明有5张写着不同数的卡片,请你分别按要求抽出卡片,写出符合要求的算式:(1)从中取出2张卡片,使这2张卡片上的数的乘积最大;(2)从中取出2张卡片,使这2张卡片上的数相除的商最小;(3)从中取出2张卡片,使这2张卡片上的数通过有理数的运算后得到的结果最大;(4)从中取出4张卡片,使这4张卡片通过有理数的运算后得到的结果为24(写出一种即可).23. 有规律的一列数:2,4,6,8,10,12,…,它的每一项可用2n(n为正整数)来表示.现在解决另外有规律排列的一列数:1,-2,3,-4,5,-6,7,-8,….(1)它的第100个数是多少?(2)请用n(n为正整数)表示它的第n个数;(3)计算前2 022个数的和.五、解答题(每题10分,共20分)24. 随着手机的普及,微信的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了来的销售模式,实行了网上销售.刚大学华业的夏明把自家的冬枣产品放到网上销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超出的量记为正数,不足的量记为负数.单位:斤,1斤=500克)星期一二三四五六日与计划量的差值+4-3-5+14-8+21-6(1)根据记录的数据可知,前三天卖出________斤;(2)根据记录的数据可知,销售量最多的一天比销售量最少的一天多销售________斤;(3)本周实际销售总量达到了计划销售量吗?(4)若冬枣每斤按8元出售,每斤冬枣的运费平均为3元,那么夏明这一周一共收入多少元?25. 在数轴上依次有A ,B ,C 三点,其中点A ,C 表示的数分别为-2,5,且BC =6AB .(1)在数轴上表示出A ,B ,C 三点;(2)若甲、乙、丙三个动点分别从A 、B 、C 三点同时出发,沿数轴负方向运动,它们的速度分别是,14,2(单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度?12(3)在数轴上是否存在点P ,使P 到A 、B 、C 的距离和等于10?若存在,结合数轴,写出点P 对应的数;若不存在,请说明理由.答案1.D2.A2.A 3.C 4.B 5.C 6.D 7.D 8.D 9.D 10.C11. 12.-1 13.29 14.-512 02215.25 16.16 17.2n3+2n18.解:(1)原式=-1-0.5××[2-9]13=-1-0.5××(-7)13=-1-×(-7)16=-1+76=16(2)原式=(--+)×243456712=-×24-×24+×243456712=-18-20+14=-2419.解:在数轴上表示各数如下:-(+6)<+<-<0<-(-4)20.解:(1)∵4-9+8-7+13-6+10-5=8,∴B 地在A 地的东边8千米(2)∵路程记录中各点离出发点的距离分别为:4千米=5千米;=3千米;=4千米;=9千米;=3千米;=13千米;=8千米.∴最远处离出发点13千米;(3)这一天走的总程为:4++8++13++10+=62(千米),应耗油62×0.5=31(升),故途中还需补充的油量为:31-20=11(升).21.解:(1)450+(-6×1-3×1-2×1+0×6+1×5+4×2+5×4)÷20=450+1.1=451.1(克)答:上月生产的洗衣粉平均每袋451.1克.(2)2.30×=2.30×28 500=65 550(元).答:本厂上月生产的洗衣粉销售的总金额为65 550元.22.解:(1)(-3)×(-5)=15;(2)-5÷3=-;53(3)(-5)4=625;(4)[(-3)-(-5)]×(3×4)=2×12=2423.解:(1)它的第100个数是:-100(2)它的第n 个数是:(-1)n +1n(3)(1-2)+(3-4)+…+(2 021-2 022)=(-1)×2 022÷2=-1 01124.解:(1)4-3-5+300=296(斤)故答案为296.(2)21+8=29(斤)故答案为29.(3)+4-3-5+14-8+21-6=17>0故本周实际销售总量达到了计划销售量.(4)(17+100×7)×(8-3)=717×5=3 585(元)答:小明本周一共收入3 585元.25.解:(1)设B 点表示的数为x ,∵点A ,C 表示的数分别为-2,5,且BC =6AB ,∴5-x =6[x -(-2)],解得:x =-1所以点B 表示的数为-1,(2)7÷=4(秒)4×-1=0答:丙追上甲时,甲乙相距0个单位长度.(3)设P 点表示的数x ,依题意得++=10,结合数轴得x =-,2,83∴P 点表示的数为-或2.83。
七年级上册数学第一单元测试卷含答案

第一单元测试卷第一章有理数时间:60分钟实际完成时间:______分钟总分:100分得分:______一、选择题(本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.下列说法中不正确的是().A.-3.14既是负数,分数,也是有理数B.0既不是正数,也不是负数,但是整数C.-2 000既是负数,也是整数,但不是有理数D.0是正数和负数的分界2.-2的相反数的倒数是().A.2 B.C.D.-23.比-7.1大,而比1小的整数的个数是().A.6 B.7 C.8 D.94.如果一个数的平方与这个数的差等于0,那么这个数只能是().A.0 B.-1C.1 D.0或15.我国最长的河流长江全长约为6 300千米,用科学记数法表示为().A.63×102千米B.6.3×102千米C.6.3×104千米D.6.3×103千米6.有理数a,b在数轴上的位置如图所示,下列各式正确的是().A.a>0 B.b<0C.a>b D.a<b7.下列各组数中,相等的是().A.32与23 B.-22与(-2)2C.-|-3|与|-3| D.-23与(-2)38.在-5,,-3.5,-0.01,-2,-212各数中,最大的数是().A.-12 B.C.-0.01 D.-59.如果a+b<0,并且ab>0,那么().A.a<0,b<0 B.a>0,b>0C.a<0,b>0 D.a>0,b<010.若a表示有理数,则|a|-a的值是().A.0 B.非负数C.非正数D.正数二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)11.的倒数是________,的相反数是______,的绝对值是________.12.在数轴上,与表示-5的点距离为4的点所表示的数是____________.13.计算:-|-5|+3=__________.所以-5+3=-2.14.观察下面一列数,根据规律写出横线上的数1,,,…,第2 013个数是________.15.比大而比小的所有整数的和为________.16.若|x-2|与(y+3)2互为相反数,则x+y=__________. 17.近似数2.35万精确到__________位.18.对于任意非零有理数a,b,定义运算如下:a b=(a -b)÷(a+b),那么(-3)5的值是__________.三、解答题(本大题共4小题,共46分)19.计算:(每小题4分,共20分)(1)-20+(-14)-(-18)-13;(2)×÷(-9+19);(3)-24×;(4)(-81)÷+÷(-16);(5)(-1)3-÷3×[3-(-3)2].20.(8分)把下列各数分别填入相应的集合里.-4,,0,,-3.14,2 006,-(+5),+1.88(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)分数集合{…}.21.(8分)“十一”黄金周期间,某风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数,单位:万人).日期1日2日3日4日5日6日7日人数变化1.60.80.4-0.4-0.80.2-1.2(1)请判断7天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人?(2)若9月30日的游客人数为2万人,求这7天的游客总人数是多少万人?22.(10分)出租司机沿东西向公路送旅客,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-15,-3,+11,-6,-8,+5,+16.(1)出租司机最后到达的地方在出发点的哪个方向?距出发点多远?(2)出租司机最远处离出发点有多远?(3)若汽车耗油量为0.08升/千米,则这天共耗油多少升?参考答案1答案:C点拨:A中-3.14不是-π,是负分数,C选项中-2 000是负整数,更是有理数,所以说法错误.故选C.2答案:B3答案:C点拨:比-7.1大,而比1小的整数有―7,―6,―5,―4,―3,―2,―1,0共8个,故选C.4答案:D点拨:一个数的平方与这个数的差等于0,说明这个数的平方是它本身,所以只有0和1,故选D.5答案:D点拨:A中科学记数法表示为2位数错,B、C中10的指数错,只有D正确,故选D.6答案:D点拨:a在原点左侧为负数,b在原点右侧为正数,所以A、B、C均错,只有D正确.7答案:D点拨:32=9,23=8,故A错;-22=-4,(-2)2=4,所以B错,-|-3|=-3,|-3|=3,所以C错;-23=-8,(-2)3=-8,相等,故选D.8答案:C点拨:都是负数,-0.01的绝对值最小,所以-0.01最大.故选C.9答案:A点拨:a+b<0,所以a,b中一定至少有一个负数,且负数的绝对值较大.又因为ab>0,所以a,b同号,且同为负号.10答案:B点拨:可以用特殊值法求解,当a=2时,|a|-a =|2|-2=0;当a=0时,|a|-a=|0|-0=0;当a=-2时,|a|-a=|2|-(-2)=4,故选B.11答案:点拨:根据概念分别写出.12答案:-9或-1点拨:在表示-5的点的左右各有一个点到它的距离是4.从数值上看就是-5-4和-5+4,所以是-9和-1.13答案:-2点拨:-|-5|=-5,14答案:点拨:这列数的排列规律是分母数与顺序数相同,偶数顺序号上的数是负数,奇数顺序号上的数为正数,所以第2 013个数是.15答案:-3点拨:比大而比小的整数是―3,―2,―1,0,1,2,它们的和是-3.16答案:-1点拨:|x-2|与(y+3)2互为相反数,所以|x-2|+(y+3)2=0,所以x-2=0,y+3=0,所以x=2,y=-3,所以x+y=-1.17答案:百18答案:-4点拨:根据定义中规定的计算式子可知:(-3) 5=(-3-5)÷(-3+5)=-8÷2=-4.19解:(1)―20+(―14)―(―18)―13=-20-14+18-13=-20-14-13+18=-47+18=-29;(2)×÷(-9+19)=;(3)-24×=12-18+8=2;(4)(-81)÷+÷(-16)=(-81)×+×=-36-=;(5)(-1)3-÷3×[3―(―3)2]=-1-÷3×(3―9)=-1-××(-6)=-1+1=0.点拨:有理数混合运算法则是先算乘方,再算乘除,最后算加减,有括号的先算括号里的,所以要注意运算顺序.20解:(1)正数集合:;(2)负数集合:;(3)整数集合:{-4,-(+5),2006,0,…};(4)分数集合:.点拨:注意小数是分数;因分类不同,各数处于不同集合中,但不能漏.21解:(1)人数最多的是3日,最少的是7日.解法一:设原来有a人,它们相差:(a+1.6+0.8+0.4)-(a +1.6+0.8+0.4-0.4-0.8+0.2-1.2)=a+1.6+0.8+0.4-a-1.6-0.8-0.4+0.4+0.8-0.2+1.2=2.2(万人);解法二:3日时人数比原来增加1.6+0.8+0.4=2.8(万人),7日时比原来增加:1.6+0.8+0.4-0.4-0.8+0.2-1.2=0.6(万人),所以3日比7日多2.8-0.6=2.2(万人).(2)这7天游客的总人数为:2×7+(1.6+0.8+0.4-0.4-0.8+0.2-1.2)=14+0.6=14.6(万人).答:这7天的游客总人数是14.6万人.点拨:(1)理解时要注意,表中人数是比前一日增加或减少的人数,可设原来有a人,所以到3日时的人数是(a+1.6+0.8+0.4)万人,到7日时降到最少,这天的人数是(a+1.6+0.8+0.4-0.4-0.8+0.2-1.2)万人.人数相差就是求3日人数减去7日人数.(2)变化量是在9月30日,两万人的基础上变化的,所以每天的人数在前一日变化基础上还要加上2万人.22解:(1)+17-9+7-15-3+11-6-8+5+16=+17+7+5+16+11-15-3-6-8-9=56-41=+15(千米).答:出租司机最后到达的地方在出发点的正东方向,距出发点15千米.(2)出租司机最远处离出发点有17千米.(3)56+|-41|=97(千米),0.08×97=7.76(升).答:这天共耗油7.76升.。
人教版数学七年级上册单元测试卷-第一单元 有理数(含答案)

保密★启用前人教版数学七年级上册单元测试卷第一单元 有理数一、单选题1.如果规定收入为正,那么支出为负,收入2元记作2+,支出5元记作( ). A .5元B .5-元C .3-元D .7元2.2022的相反数是( ) A .12022B .12022-C .−2022D .20223.下列计算结果为0的是( ) A .2222--B .223(3)-+-C .22(2)2-+D .2333--⨯4.数轴上,把表示2的点向左平移3个单位长度得到的点所表示的数是( ). A .-5B .-1C .1D .55.华为最新款手机芯片“麒麟990”是一种微型处理器,每秒可进行100亿次运算,它工作2022秒可进行的运算次数用科学记数法表示为( ) A .140.202210⨯B .1220.2210⨯C .132.02210⨯D .142.02210⨯6.下面算式与11152234-+的值相等的是( )A .111324234⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭B .11133234⎛⎫--+ ⎪⎝⎭C .111227234⎛⎫+-+ ⎪⎝⎭D .11143234⎛⎫--+ ⎪⎝⎭7.观察下列三组数的运算:3(2)8-=-,328-=-;3(3)27-=-,3327-=-;3(4)64-=-,3446-=-.联系这些具体数的乘方,可以发现规律.下列用字母a 表示的式子:①当0a <时,33()a a =-;①当0a >时,33()a a -=-.其中表示的规律正确的是( ) A .①B .①C .①、①都正确D .①、①都不正确8.数轴上,点A 对应的数是6-,点B 对应的数是2-,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ =9.如图,正方形的周长为8个单位,在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表﹣3的点重合,再将数轴按顺时针方向环绕在该正方形上,则数轴上表示2017的点与正方形上的数字对应的是( )A .0B .2C .4D .610.如图,数轴上4个点表示的数分别为a 、b 、c 、d .若|a ﹣d |=10,|a ﹣b |=6,|b ﹣d |=2|b ﹣c |,则|c ﹣d |=( )A .1B .1.5C .1.5D .2二、填空题11.用科学记数法表示的数的原数5.001×106=___.12.已知:a 、b 互为相反数,c 、d 互为倒数,2m =,则()()220212020a b m cd ++-=______.13.东京与北京的时差为1h +,伯伯在北京乘坐早晨9:00的航班飞行约3h 到达东京,那么李伯伯到达东京的时间是____.(注:正数表示同一时刻比北京时间早的时数) 14.大家知道,550=-,它在数轴上的意义是:表示5的点与原点(即表示0的点)之间的距离.又如式子63-,它在数轴上的意义是:表示6的点与表示3的点之间的距离.类似地,式子()5a --在数轴上的意义是______. 15.有理数,,a b c 在数轴上对应点位置如图所示,用“>”或“<”填空:(1)|a |______|b |; (2)a +b +c ______0:(3)a -b +c ______0; (4)a +c ______b ; (5)c -b ______a . 16.下列说法:①若a ,b 互为相反数,则ab=﹣1;①如果|a +b |=|a |+|b |,则ab ≥0;①若x 表示一个有理数,则|x +2|+|x +5|+|x ﹣2|的最小值为7; ①若abc <0,a +b +c >0,则a bc ab abc a bc ab abc+++的值为﹣2.其中一定正确的结论是____(只填序号). 三、解答题 17.计算:(1)2(7)18(2)-⨯--÷-; (2)212316()12()234-÷--⨯-.18.画出数轴,用数轴上的点表示下列各数,并用“>”将它们连接起来: 33,2,1.5,,0,0.54---.19.比较下列各数的大小,并用“<”号连接起来:2.5-,12,3,3--,(2)--,0.20.如图所示,在数轴上点A,B,C表示得数为﹣2,0,6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.(1)求AB、AC的长;(2)点A,B,C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和4个单位长度的速度向右运动.请问:BC ﹣AB的值是否随着运动时间t的变化而变化?若不变,请求其值;若变化,请说明理由并判断是否有最值,若有求其最值.21.入冬以来,某品牌的羽绒服统计了在西乡市场某一周的销售情况,以每天100件为标准,超过的件数记作正数,不足的件数记作负数,记录如下:8,12,-9,6,-11,10,-2.(1)求销量最多的一天比销量最少的一天多销售______件;(2)该品牌羽绒服这一周的销售总量是多少件?若每件羽绒服的利润为130元,则这一周销售该品牌羽绒服的总利润为多少元?22.对于平面内的两点M、N,若直线MN上存在点P,使得MP=1NP成立,则称点P为点M、N的“和谐点”,但点P不是点N、M的“和谐点”.(1)如图1,点A、B在直线l上,点C、D是线段AB的三等分点,则是点A、B的“和谐点”(填“点C或“点D”);(2)如图2,已知点E、F、G在数轴上,点E表示数-2,点F表示数1,且点F是点E、G的“和谐点”,求点G表示的数;(3)如图3,数轴上的点P表示数5,点M从原点O出发,以每秒3个单位的速度向左运动,点N从点P出发,以每秒10个单位的速度向左运动,点M、N同时出发.在M、N、P三点中,若点M是另两个点的“和谐点”,则OM= .23.计算:已知|m|=1,|n|=4.(1)当mn<0时,求m+n的值;(2)求m﹣n的最大值.24.阅读下面的文字回答后面的问题:求231005555+++⋯+的值解:令231005555S=+++⋯+①将等式两边同时乘以5到:23410155555S=+++⋯+①①-①得:101455S=-①101554S-=即101231005555554-+++⋯+=问题:求231002222+++⋯+的值;参考答案:1.B【解析】【分析】结合题意,根据正负数的性质分析,即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B.【点睛】本题考查了正数和负数的知识;解题的关键是熟练掌握正负数的性质,从而完成求解.2.C【解析】【分析】根据相反数的定义求解即可,只有符号不同的两个数互为相反数.【详解】解:2022的相反数是−2022.故选:C.【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.3.B【解析】【分析】根据有理数的乘方对各选项分别进行计算,然后利用排除法求解即可.【详解】A. 22--=−4−4=−8,故本选项错误;22B. 22-+-=−9+9=0,故本选项正确;3(3)C. 22-+=4+4=8,故本选项错误;(2)2D. 2333--⨯=−9−9=−18,故本选项错误.故选B.【点睛】此题考查有理数的乘方,解题关键在于掌握运算法则4.B【解析】【分析】根据数轴上点的坐标特点及平移的性质解答即可.【详解】解:根据题意:数轴上2所对应的点为A,将A点左移3个单位长度,得到点的坐标为2-3=-1,故选:B.【点睛】本题考查了数轴上的点与实数对应关系及图形平移的性质等有关知识.5.C【解析】【分析】科学记数法的表示形式为10na⨯的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的值与小数点移动的位数相同,题中:1亿810=.【详解】解:100亿1010=,1013102022 2.02210⨯=⨯,故选:C.【点睛】本题考查科学记数法的表示方法,关键要正确确定a的值以及n的值.6.C【解析】【分析】直接计算每个算式,对比答案即可.【详解】解:1111115 52527 23423412-+=+-++=;A 、1111111117324324324123423423412⎛⎫⎛⎫--+-=++-=+++--= ⎪ ⎪⎝⎭⎝⎭;B 、1111111111333333723423423412⎛⎫--+=++=++++= ⎪⎝⎭;C 、1111115227227723423412⎛⎫+-+=+--++= ⎪⎝⎭;D 、11111114343823423412⎛⎫--+=++++= ⎪⎝⎭,故选:C 【点睛】本题考查了有理数的加减运算,熟记有理数的加减混合运算的法则是解题的关键. 7.B 【解析】 【分析】根据三组数的运算的规律逐个判断即可得. 【详解】解:由三组数的运算得:[]333222))8((-=-==----, []3333(3)(3)27-=--=--=-,[]3334(4)(4)64-=--=--=-,归纳类推得:当0a <时,33()a a =--,式子①错误; 由三组数的运算得:3328(2)-=-=-, 33327(3)--=-=, 33464(4)--=-=,归纳类推得:当0a >时,33()a a -=-,式子①正确; 故选:B . 【点睛】本题考查了有理数乘方的应用,正确归纳类推出一般规律是解题关键. 8.A 【解析】 【分析】设运动时间为t秒,根据题意可知AP=3t,BQ=t,AB=2,然后分类讨论:①当动点P、Q在点O左侧运动时,①当动点P、Q运动到点O右侧时,利用各线段之间的和、差关系即可解答.【详解】解:设运动时间为t秒,由题意可知: AP=3t,BQ=t,AB=|-6-(-2)|=4,BO=|-2-0|=2,①当动点P、Q在点O左侧运动时,PQ=AB-AP+BQ=4-3t+t=2(2-t),①OQ= BO- BQ=2-t,①PQ= 2OQ ;①当动点P、Q运动到点O右侧时,PQ=AP-AB-BQ=3t-4-t=2(t-2),①OQ=BQ- BO=t-2,①PQ= 2OQ,综上所述,在运动过程中,线段PQ的长度始终是线段OQ的长的2倍,即PQ= 2OQ一定成立.故选: A.【点睛】本题考查了数轴上的动点问题及数轴上两点间的距离,解题时注意分类讨论的运用.9.B【解析】【分析】表示2017的点在﹣1的右侧,从点﹣1到2017共2018个单位长度,根据2018÷8=252……2,是252圈余2个单位长度,所以对应的数字就是2.【详解】解:因为正方形的周长为8个单位长度,所以正方形的边长为2个单位长度.表示2017的点与表示﹣1的点的距离等于2017﹣(﹣1)=2018个单位长度,因为2018÷8=252……2,所以252圈余2个单位长度,所以对应的数字是2.故选:B.【点睛】此题考查了数轴,解题的关键是找出正方形的周长与数轴上的数字的对应关系.10.D【解析】【分析】根据|a−d|=10,|a−b|=6得出b和d之间的距离,从而求出b和c之间的距离,然后假设a 表示的数为0,分别求出b,c,d表示的数,即可得出答案.【详解】解:①|a−d|=10,①a和d之间的距离为10,假设a表示的数为0,则d表示的数为10,①|a−b|=6,①a和b之间的距离为6,①b表示的数为6,①|b−d|=4,①|b−c|=2,①c表示的数为8,①|c−d|=|8−10|=2,故选:D.【点睛】本题主要考查数轴上两点间的距离、绝对值的意义,关键是要能恰当的设出a、b、c、d表示的数.11.5001000【解析】【分析】把5.001×106表示成原数的形式,就是把5.001的小数点向右移动6位即可得到.【详解】解:5.001×106=5001000,故答案为:5001000.【点睛】本题考查了科学记数法,把科学记数法表示的数还原成原数,当n>0时,n是几,小数点就向右移几位.12.1或-3##-3或1【解析】【分析】根据a、b互为相反数,c、d互为倒数,m的绝对值为2,可以得到a+b=0,cd=1,m=±2,然后代入所求式子计算即可.【详解】解:∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2,当m=2时,()()2202120112020a bm cd++-=+-=;当m=﹣2时,()()220212013 2020a bm cd++-=-+-=-;故答案为:1或-3.【点睛】本题考查有理数的混合运算,解答本题的关键是求出a+b=0,cd=1,m=±2.13.13时【解析】【分析】根据题意,9点先加上3个小时,再加上时差的1个小时,得到达到东京的时间.【详解】由题意得93113++=,∴李伯伯到达东京是下午13时.故答案是:13时.【点睛】本题考查有理数加法的实际应用,解题的关键是掌握有理数加法运算法则.14.表示a的点与表示-5的点之间的距离【解析】【分析】利用绝对值的意义即可求解.【详解】=-,它在数轴上的意义是:表示5的点与原点(即表示0的点)之间的距解:因为550-,它在数轴上的意义是:表示6的点与表示3的点之间的距离,离,式子63a--在数轴上的意义是表示a的点与表示-5的点之间的距离.所以式子()5【点睛】本题考查了绝对值,掌握绝对值的意义是解题的关键.15.<<>>>【解析】【分析】首先根据数轴可得b<a<0<c,然后再结合绝对值的性质和有理数的加减法法法则进行计算即可.【详解】解:(1)①根据数轴可得b<a<0<c,①|a|<|b|故答案为:<;(2)①a<0<c,|a|>|c|,①a+c<0,①a+b+c<0;故答案为:<;(3)①a-b>0,①a-b+c>0;故答案为:>;(4)①a >b ,①a +c >b ;故答案为:>;(5)①c >b ,①c -b >0,①c -b >a .故答案为:>;【点睛】此题主要考查了有理数的比较大小,关键是掌握绝对值的定义和有理数的加减法法法则. 16.①①##①①【解析】【分析】根据相反数和绝对值的意义讨论即可得出答案.【详解】①若a ,b 互为相反数,则0a b +=,不能得出1a b=-,故①错误; ①当0,0a b ≥≥或0,0a b <<时,a b a b +=+成立,当0,0a b ><或0,0a b <>时,a b a b a b +=-≠+, ∴a b a b +=+成立,则0,0a b ≥≥或0,0a b <<,即0ab ≥,故①正确; ①252x x x ++++-表示x 到数2-、5-、2三个点的距离之和,所以2x =-时,252x x x ++++-取得最小值,最小值为2(5)7--=,故①正确;①当0,0,0c a b <>>且0a b c ++>时,111102abcababca bc ab abc a bc ab abc a bc ab abc--+++=+++=-+-=≠-,故①错误. 故答案为:①①.【点睛】本题考查相反数与绝对值,掌握绝对值的意义是解题的关键.17.(1)23(2)-63【解析】【分析】直接利用有理数混合运算法则计算即可.(1)解:2(7)18(2)14(9)14923-⨯--÷-=--=+=.(2) 解:21231116()12()1612()64163234412-÷--⨯-=-÷-⨯-=-+=-. 【点睛】本题考查有理数的混合运算,注意先算乘方,再算乘除,后算加减,有括号要先算括号里面的;可以结合题目特点,灵活运用结合律、分配律、交换律,从而起到简化运算的效果.18.作图见解析;33 1.500.524>>>->->-. 【解析】【分析】先在数轴上表示出各个数,再根据数轴上的点表示的数的大小规律即可得到结果.【详解】解:在数轴上表示出各个数如图所示:则可得3>1.5>0>−0.5>34->−2【点睛】本题考查了利用数轴比较有理数的大小,解题的关键是熟练掌握数轴上的点表示的数,右边的数始终大于左边的数.19.()13 2.50232-<-<<<--< 【解析】【分析】先把每个数进行化简,再根据有理数的大小排列起来即可.解:33--=-,(2)2--=, ①13 2.50232-<-<<<< , ①13 2.50(2)32--<-<<<--<.【点睛】本题考查比较数的大小,准确的把每个数进行化简是解题的关键.20.(1)2,8AB AC ==(2)变化,当0=t 时取得最大值4【解析】【分析】(1)根据点A ,B ,C 表示的数,即可求出AB , AC 的长;(2)根据题意分别求得点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t ,根据两点距离求得,BC AB ,进而根据整式的加减进行计算即可.(1)解:AB =0-(-2)=2, AC =()628--=.(2)当运动时间为t 秒时,点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t , 则6436BC t t t =+-=+,()32225AB t t t =---=+ ()62544BC AB t t t ∴-=+-+=-当0=t 时,BC AB -的值最大,最大值为4.【点睛】本题考查了列代数式、数轴以及两点间的距离,解题的关键是:(1)根据三个点表示的数,求出三条线段的长度;(2)利用含t 的代数式表示出BC ,AB 的长.21.(1)23(2)该品牌羽绒服这一周的销售总量是714件,总利润为92820元【解析】(1)直接利用有理数的减法法则,用最大的数减去最小的数即可;(2)可以先求出7天的标准件数,再加上比标准多或少件数即可,利用这周销售羽绒服的总件数×130即可.(1)12(11)23--=(件)故答案为:23;(2)7×100+8+12+(-9)+6+(-11)+10+(-2)=714(件)所以该品牌羽绒服这一周的销售总量是714件.714×130=92820(元)所以这一周销售该品牌羽绒服的总利润为92820元.【点睛】本题主要考查正数和负数,正确利用有理数的运算法则是解题的关键.22.(1)点C(2)-5或7(3)45或1517或4511【解析】【分析】(1)点C、D是线段AB的三等分点,故可直接依题意判断得到答案.(2)按“和谐点”的定义列出等式,然后可求得答案.(3)设经过t秒后满足点M是点N、P的“和谐点”或点M是P、N的“和谐点”,求出t的值,进而得到答案.(1)解:①点C、D是线段AB的三等分点①12 AC BC=故点C是点A、B的“和谐点”.(2)解:点F 是点E 、G 的“和谐点”,依题意有12EF GF =, ①3EF =①6GF =①点G 为-5或7.(3)解:设时间t 秒后:①满足点M 是点N 、P 的“和谐点”,此时点M 为-3t ,点N 为5-10t ,依题意有12NM PM = ①()157532t t -=+当570t ->时,()15757532t t t -=-=+,解得517t =①点M 为1517-,1517OM = 当570t -<时,()()157532t t --=+,解得1511t①点M 为1511-,4511OM =①满足点M 是P 、N 的“和谐点”,此时点M 为-3t ,点N 为5-10t ,依题意有12PM NM = ①153572t t +=- ,解得15t =①45OM =综上所述,45OM =或1517或4511 【点睛】本题考查数轴上的两点距离及动点问题,熟练掌握数轴的相关知识,按定义列出等式求解是解题的关键.23.(1)±3;(2)m ﹣n 的最大值是5.【解析】【分析】由已知分别求出m =±1,n =±4;(1)由已知可得m =1,n =﹣4或m =﹣1,n =4,再求m +n 即可;(2)分四种情况分别计算即可.【详解】①|m |=1,|n |=4,①m =±1,n =±4;(1)①mn <0,①m =1,n =﹣4或m =﹣1,n =4,①m +n =±3;(2)分四种情况讨论:①m =1,n =4时,m ﹣n =﹣3;①m =﹣1,n =﹣4时,m ﹣n =3;①m =1,n =﹣4时,m ﹣n =5;①m =﹣1,n =4时,m ﹣n =﹣5;综上所述:m ﹣n 的最大值是5.【点睛】本题考查了有理数的运算,绝对值的运算;掌握有理数和绝对值的运算法则,能够正确分类是解题的关键.24.10122-【解析】【分析】根据题目解题过程进行求解即可;【详解】解:令231002222S =+++⋯+①将等式两边同时乘以2到:20134122222S =+++⋯+①①-①得:10122S =-①10122S =-,即23100101222222++++=⋯-.【点睛】本题主要考查有理数混合运算的应用,正确理解题意,根据题目方法步骤进行求解是解题的关键.。
新人教版七年级数学上册第一单元测试卷(含答案)

新人教版七年级数学上册单元测试卷第一单元:有理数一、选择题(本题共10小题,每小题3分,共30分)1.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3mB.-3mC.+13D.-132. 室内温度是150℃,室外温度是-30℃,则室外温度比室内温度低( )A .120℃ B.180℃ C.-120℃ D.-180℃3. 一个数和它的倒数相等,则这个数是()A.1B.-1C.±1 D.±1和04. 若|a|=5,b=-3,则a-b的值是()A.2或8B.-2或8C.2或-8D.-2或-85. 下列四组有理数的大小比较正确的是()A.−12>−13B.-|-1|>-|+1|C.12<13D.|−12|>|−13|6. 若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个正数D.这三个数是互为相反数7. 下列各式中正确的是()A.a2=.(−a)2B. a3=.(−a)3C.−a2=.|−a2|D. a3=.|a|38. 若x的相反数是3,│y│=5,则x+y的值为()A.-8B.2C.-8或2D.8或-29. 两个数的差是负数,则这两个数一定是( )A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小10. 点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,点B表示的数是( )A. 3B.-1C.5D.-1或3二、填空题(本题共6小题,每小题3分,共18分)11. 甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.12. 大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
13. 在数轴上,与表示数-1的点的距离是5的点表示的数是。
新人教版初中数学七年级数学上册第一单元《有理数》测试卷(包含答案解析)

一、选择题1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是( )A .94分B .85分C .98分D .96分2.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度3.计算:11322⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( )A .﹣3B .3C .﹣12D .124.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( )A .6B .12C .8D .245.有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <06.-1+2-3+4-5+6+…-2011+2012的值等于A .1B .-1C .2012D .10067.用计算器求243,第三个键应按( )A .4B .3C .y xD .=8.下列说法中正确的是( )A .a -表示的数一定是负数B .a -表示的数一定是正数C .a -表示的数一定是正数或负数D .a -可以表示任何有理数9.若1<x <2,则|2||1|||21x x x x x x ---+--的值是( )A .﹣3B .﹣1C .2D .110.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是()A .m >0B .n <0C .mn <0D .m -n >0 11.某市11月4日至7日天气预报的最高气温与最低气温如表:日期 11月4日 11月5日 11月6日 11月7日其中温差最大的一天是( ) A .11月4日 B .11月5日 C .11月6日 D .11月7日 12.下列计算结果正确的是( )A .-3-7=-3+7=4B .4.5-6.8=6.8-4.5=2.3C .-2-13⎛⎫- ⎪⎝⎭=-2+13=-213 D .-3-12⎛⎫- ⎪⎝⎭=-3+12=-212 二、填空题 13.在有理数3.14,3,﹣12 ,0,+0.003,﹣313 ,﹣104,6005中,负分数的个数为x ,正整数的个数为y ,则x+y 的值等于__.14.已知a 是7的相反数,b 比a 的相反数大3,则b 比a 大____.15.下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1b a=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.16.气温由﹣20℃下降50℃后是__℃.17.在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ . 18.如果数轴上原点右边 8 厘米处的点表示的有理数是 32,那么数轴上原点左边 12 厘米处的点表示的有理数是__________.19.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.20.已知2x =,3y =,且x y <,则34x y -的值为_______. 三、解答题21.计算:2334[28(2)]--⨯-÷-22.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小红家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间?23.将n 个互不相同的整数置于一排,构成一个数组.在这n 个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组. (1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m 是“运算平衡”数组,则m 的值可以是多少?(3)若某“运算平衡”数组中共含有n 个整数,则这n 个整数需要具备什么样的规律? 24.计算(1))()()(2108243-+÷---⨯-;(2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 25.计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭ 26.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断.【详解】+-+--解:根据题意得:859=94,854=81,8511=96,857=78,850=85即五名学生的实际成绩分别为:94;81;96;78;85,则这五名同学的实际成绩最高的应是96分.故选D.【点睛】本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.2.C解析:C【分析】A点移动后可以在B点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C.【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.3.C解析:C【分析】根据有理数的除法法则,可得除以一个数等于乘以这个数的倒数,再根据有理数的乘法运算,可得答案.【详解】原式﹣3×(﹣2)×(﹣2)=﹣3×2×2=﹣12,故选:C.【点睛】本题考查了有理数的乘除法法则,除以一个数等于乘这个数的倒数,计算过程中,最后结果的正负根据原式中负号的个数确定,原则是奇负偶正.4.B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B.【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.5.C解析:C【分析】根据数轴的性质,得到b>0>a,然后根据有理数乘法计算法则判断即可.【详解】根据数轴上点的位置,得到b>0>a,所以A、D错误,C正确;而a和b异号,因此乘积的符号为负号,即ab<0所以B错误;故选C.【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a和b的位置正确判断a和b的大小.6.D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D.点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.7.C解析:C【解析】用计算器求243,按键顺序为2、4、y x、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.8.D解析:D【分析】直接根据有理数的概念逐项判断即可.【详解】-表示的数不一定是负数,当a为负数时,-a就是正数,故该选项错误;解:A. a-表示的数不一定是正数,当a为正数时,-a就是负数,故该选项错误;B. a-表示的数不一定是正数或负数,当a为0时,-a也为0,故该选项错误;C. a-可以表示任何有理数,故该选项正确.D. a【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键.9.D解析:D【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.【详解】解:12x <<,20x ∴-<,10x ->,0x >,∴原式1111=-++=,故选:D .【点睛】本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.10.C解析:C【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n 大于m ,并从数轴知m 小于0,n 大于0,所以mn 小于0,则A ,B ,D 均错误.故选C .11.C解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C .【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.12.D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.二、填空题13.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】负分数为:﹣12,﹣313,共2个;正整数为: 3, 6005共2个,则x+y=2+2=4,故答案为4.【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键.14.17【分析】先根据相反数的定义求出a和b再根据有理数的减法法则即可求得结果【详解】由题意得a=-7b=7+3=10∴b-a=10-(-7)=10+7=17故答案为:17【点睛】本题考查了有理数的减法解析:17【分析】先根据相反数的定义求出a和b,再根据有理数的减法法则即可求得结果.【详解】由题意,得a=-7,b=7+3=10.∴b-a=10-(-7)=10+7=17.故答案为:17.【点睛】本题考查了有理数的减法,解答本题的关键是熟练掌握有理数的减法法则∶减去一个数等于加上这个数的相反数.15.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶解析:④【分析】利用绝对值的代数意义,有理数的加法,倒数的定义及有理数的乘法法则判断即可.【详解】①若||a b =,则0b ,故a b =或=-a b ,当b<0时,无解,故①错误;②0a b 时,a ,b 互为相反数,但是对于等式1b a=-不成立,故②不正确; ③几个有理数相乘,如果负因数有偶数个,但其中有因数0,那么它们的积为0,故③不正确;④两个正数相加,此时和大于每一个加数;一正数一负数相加,此时和大于负数;一个数和0相加,等于这个数;只有两个负数相加,其和小于每一个加数,故④正确; ⑤0除以0没有意义,故⑤不正确.综上,正确的有④.故答案为:④.【点睛】本题考查了绝对值、相反数、有理数的加法、有理数的除法等基础知识点,这都是必须掌握的基础知识点.16.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键. 17.-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时当点在表示-2的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-2的点的左边时数为-2-3=-5;②当点在表示-2的点的解析:-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时,当点在表示-2的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-2的点的左边时,数为-2-3=-5;②当点在表示-2的点的右边时,数为-2+3=1;故答案为-5或1.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况.在数轴上到一个点的距离相等的点有两个,一个在这个点的左边,一个在这个点的右边.18.﹣48【分析】数轴上原点右边8厘米处的点表示的有理数是32即单位长度是cm即1cm表示4个单位长度数轴左边12厘米处的点表示的数一定是负数再根据1cm表示4个单位长度即可求得这个数的绝对值【详解】数解析:﹣48【分析】数轴上原点右边 8厘米处的点表示的有理数是 32,即单位长度是14cm,即 1cm表示 4个单位长度,数轴左边12厘米处的点表示的数一定是负数,再根据 1cm表示 4个单位长度,即可求得这个数的绝对值.【详解】数轴左边 12 厘米处的点表示的有理数是﹣48.故答案为﹣48.【点睛】本题主要考查了在数轴上表示数.借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小既直观又简捷.19.5×108【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时n是正数;当原数解析:5×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.20.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.三、解答题21.21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.22.(1)见解析;(2)4.5km ;(3)36分钟【分析】(1)根据题意在数轴上标出小彬家和小红家,再标出学校即可;(2)根据数轴上两点距离的计算方法计算即可得出答案;(3)先计算小明总共跑的路程,先向东跑了3.5km ,再向西跑了4.5km ,再向东跑了1km ,用总路程除以跑步速度即可得出答案.【详解】解:(1)如图所示:(2)3.5(1) 4.5()km --=,故小红家与学校之间的距离是4.5km ;(3)小明一共跑了(2 1.51)29()km ++⨯=,跑步用的时间是:900025036÷=(分钟).答:小明跑步一共用了36分钟.【点睛】本题主要考查了数轴上两点间的距离,根据题意列式计算式解决本题的关键.23.(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0.【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m 的方程,解方程即可;(3)根据“运算平衡”数组的定义可以得到n 个数的规律.【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0;(2)要使数组1,4,6,m 是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况,经计算得m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0.【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键.24.(1)20-;(2)116-. 【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得.【详解】(1)原式108412=-+÷-,10212=-+-,20=-;(2)原式())(112976=--⨯-÷-, ())(11776=--⨯-÷-, )(7176=-+÷-, 116=--, 116=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键. 25.(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ =1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.26.(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】(1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯- 123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦ ()313212⎛⎫=---+⨯-+ ⎪⎝⎭()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.。
新人教版七年级上数学第一单元测试卷及答案

七年级数学第一单元测试卷(一)班级 姓名 分数 一、选择题:每题5分,共25分1.下列各组量中,互为相反意义的量是()A 、收入200元与赢利200元B 、上升10米与下降7米C 、“黑色”与“白色”D 、“你比我高3cm”与“我比你重3kg”2.为迎接即将开幕的广州亚运会,亚组委共投入了2198000000元人民币建造各项体育设施,用科学记数法表示该数据是( ) A元 B元 C元 D元3. 下列计算中,错误的是( )。
A 、B 、C 、D 、4. 对于近似数0.1830,下列说法正确的是()A 、有两个有效数字,精确到千位B 、有三个有效数字,精确到千分位C 、有四个有效数字,精确到万分位D 、有五个有效数字,精确到万分 5.下列说法中正确的是 ( ) A .一定是负数 B一定是负数 C一定不是负数 D一定是负数二、填空题:(每题5分,共25分) 6. 若0<a <1,则,,的大小关系是7.若那么2a8. 如图,点在数轴上对应的实数分别为,则间的距离是.(用含的式子表示)9. 如果且x2=4,y2 =9,那么x +y =10、正整数按下图的规律排列.请写出第6行,第5列的数字.三、解答题:每题6分,共24分 11.①(-5)×6+(-125) ÷(-5) ② 312 +(-12 )-(-13 )+223 ③(23 -14 -38 +524)×48 ④-18÷(-3)2+5×(-12)3-(15) ÷5 四、解答题:12. (本小题6分) 把下列各数分别填入相应的集合里.第一行第二行 第三行 第四行 第五行 第一列 第二列 第三列 第四列 第五列 1 2 5 10 17 ... 4 3 6 11 18 ... 9 8 7 12 19 (16)15 141320 … 25 23 22 21………(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)分数集合:{…}13. (本小题6分)某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?14. (本小题6分)已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与-1表示的点重合,则- 2表示的点与数表示的点重合;(2)若-1表示的点与3表示的点重合,则5表示的点与数表示的点重合;15.(本小题8分) 某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少?七年级数学第一单元测试卷参考答案1.B 2.C 3.D 4.C 5.C6.7.≤ 8.n-m 9.±1 10.3211①-5 ②6 ③12 ④12①②③④13.10千米14. ①2 ②-315.①最高分:92分;最低分70分.②低于80分的学生有5人。
七年级数学上册第一单元测试题人教版3篇

七年级数学上册第一单元测试题人教版3篇篇一:人教版初一数学上册第一章有理数单元测试题及答案有理数单元测试题满分100分时间60分一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)1、下列说法正确的是()A整数就是正整数和负整数B负整数的相反数就是非负整数C有理数中不是负数就是正数D零是自然数,但不是正整数2、下列各对数中,数值相等的是()A -27与(-2)7B -32与(-3)2C -3×23与-32×2D ―(―3)2与―(―2)33、在-5,-9,-3.5,-0.01,-2,-212各数中,最大的数是()A.-12B.-9C.-0.01D.-54、如果一个数的平方与这个数的差等于0,那么这个数只能是()A. 0B.-1C.1D. 0或15、绝对值大于或等于1,而小于4的所有的正整数的和是()A. 8B. 7C. 6D. 56、计算:(-2)100+(-2)101的是()A. 2100B.-1C.-2D.-21007、比-7.1大,而比1小的整数的个数是()A. 6B. 7C. 8D. 98、2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12050000枚,用科学记数法表示正确的是( )A.1.205×107 B.1.20×108 C.1.21×107 D.1.205×1049、下列代数式中,值一定是正数的是( )A.x2 B.|-x+1| C.(-x)2+2 D.-x2+110、已知8.622=74.30,若x2=0.7430,则x的值等于()A. 86. 2B. 862C. ±0.862D. ±86211、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为;地下第一层记作;数-2的实际意义为,数+9的实际意义为。
浙教版数学七年级上册第一章单元测试(含答案)

浙教版数学七年级上册第一章一、选择题1.1的绝对值是( )A.0B.1C.2D.72.手机微信支付已经成为一种常用的支付方式,备受广大消费者的青睐。
若李阿姨微信收入10 元记作+10 元,则支出8 元应记作()A.+8 元B.-8 元C.0 元D.+2 元3.2024年3月1日,大连市内4个时刻的气温(单位:℃)分别为―4,0,1,―1中最低的气温是( )A.―4B.0C.1D.﹣14.2025的相反数是( )A.12025B.―2025C.2025D.―120255.下列说法正确的是( )A.正数前面一定没有符号B.不是正数的数一定是负数C.0℃表示没有温度D.0是正数与负数的分界6.在数轴上,点A,B在原点O的同侧,分别表示数a,1,将点A向左平移3个单位长度,得到点C.若点C与点B互为相反数,则a的值为( )A.3B.2C.―1D.07.若规定[x)表示大于x的最小整数,[5)=6,[―1.8)=―1,则下列结论错误的是( )A.[―3.1)=―4B.[2.2)=3C.[0)=1D.[32)=28.根据有理数a、―b、―c,在数轴上的位置,比较a、b、c的大小,则( )A.a<c<b B.b<a<c C.a<b<c D.b<c<a9.如果M=12×34×56⋯×9798×99100,N=|―110|,那么M与N的大小关系是( )A.M<N B.M=N C.M>N D.M2=N2 10.有理数a,b,c在数轴上的位置如图所示:则代数式|a+c|―2|a―b|+|b―c|化简后的结果为( )A.b B.a―3b C.b+2c D.b―2c二、填空题11. 比较大小: ―15 ―25. (填 " >","< "或 " = ")12.数a 的位置如图,化简|a |+|a +4|= .13.已知2a +3与2―3a 互为相反数,则a 的值为 .14.已知点A 在数轴(向右为正方向)上表示的数是1,将点A 向左移动3个单位长度到点B ,则点B到原点的距离为 个单位长度.15.若a ,b ,c 都不为0,则 a |a |+b |b |+c |c |+abc|abc | 的值可能是 .16.如图1,在一条可以折叠的数轴上有点A ,B ,C ,其中点A ,点B 表示的数分别为﹣16和9,现以点C 为折点,将数轴向右对折,点A 对应的点A 1落在B 的右边;如图2,再以点B 为折点,将数轴向左折叠,点A 1对应的点A 2落在B 的左边.若A 2、B 之间的距离为3,则点C 表示的数为 .三、解答题17.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b ―c _____0,a +b ______0,c ―a ______0;(2)化简:|b ―c |―|a +b |―|c ―a |.18.观察下列每组数,找出规律,并回答问题:第一组:3,-3,3,-3,···;第二组:-12,34,-56,78,⋯.(1)第一组数中的第6个数是 ,第二组数中的第7个数是 ;(2)试判断这两组数中的第2025个数分别是正数还是负数,并说明理由.19.如图,1个单位长度表示1,观察图形,回答问题:(1)若点B 与点C 所表示的数互为相反数,则点B 所表示的数为 ;(2)若点A 与点D 所表示的数互为相反数,则点D 所表示的数是多少?(3)若点B 与点F 所表示的数互为相反数,则点E 所表示的数的相反数是多少?20.某校七年级1至4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,如表是实际购书情况:班级1班2班3班4班实际购书量(本)a32c22实际购书量与计划购书量的差值(本)+15b―7―8(1)直接写出a= ,b= ;(2)根据记录的数据可知4个班实际购书共 本;(3)书店给出一种优惠方案:一次购买达到15本,其中2本书免费.若每本书售价为30元,求这4个班团体购书的最低费用.21.我们知道Ix|表示x在数轴上对应的点到原点的距离,|x-a|表示x与a在数轴上对应的点之间的距离.例:|x-1|=2表示数x与1在数轴上表示的点的距离是2个单位长度,如图所示,即可得出x的值为-1或3.根据以上材料,解答下列问题:(1)若|x-1|=4,则x的值为;(2)若数轴上表示数a的点位于表示-3与2的两点之间,则求|a+3|+|a-2|的计算结果;(3)已知有理数b,则|b+5|+|b-3|的计算结果是否有最小值?若有,请求出最小值;若没有,请说出理由.22.数学课上,张老师让大家在纸条上画一个数轴并按照以下操作进行探究.探究一:折叠纸条,使折叠点表示的数是-3.(1)数轴上表示-6的点与表示的点因折叠而重合;(2)已知该数轴上的点A,B之间的距离为10个单位长度(点A位于点B左侧),且折叠后两点重合,则点A 表示的数是 ;探究二:在纸条上剪下一段长8个单位长度的数轴,令其中点为原点,折叠纸条使折痕正好将数轴分为1:3的两段,此时折叠点表示的数是折叠点23.已知在数轴上点A、B、C对应的数分别为a、b、c.(1)如图1是一个正方体的表面展开图,已知正方体的每一个面都有一个有理数,其相对面上的两个数互为相反数,并且图2中,点C为线段AB的中点,则a=_____,b=____,c =______;(2)如图3,若a,b,c满足|a+5|+2|b+4|+(c―3)2=0,①a=_____,b=_____,c=_____;②若点A、B沿数轴同时出发向右匀速运动,点A速度为2个单位长度/秒,点B速度为1个单位长度/秒.设运动时间为t秒,运动过程中,当A为BC的中点时,求t的值.答案解析部分1.【答案】B2.【答案】B3.【答案】A4.【答案】B5.【答案】D6.【答案】B7.【答案】A8.【答案】C9.【答案】A10.【答案】B11.【答案】>12.【答案】413.【答案】514.【答案】215.【答案】0或4或﹣416.【答案】-217.【答案】(1)<,<,>(2)2a18.【答案】(1)-3,-1314(2)第一组正数,第二组负数19.【答案】(1)―1(2)+2.5(3)―220.【答案】(1)45;2(2)122(3)解:∵122÷15=8⋯2,∴如果每次购买15本,则可以购买8次,且最后还剩2本书需单独购买,∴最低总花费为:30×(15―2)×8+30×2=3180元.21.【答案】(1)5或-3(2)5(3)有最小值,最小值为822.【答案】(1)0(2)-8(3)―2或623.【答案】(1)-7,3,-2(2)①-5,-4,3,②当A为BC的中点时,t=3。
七年级数学上册《第一章 有理数》单元测试卷-附答案(沪科版)

七年级数学上册《第一章 有理数》单元测试卷-附答案(沪科版)一、选择题1.向东行驶2km ,记作2km +,向西行驶7km 记作( )A .7km +B .7km -C .2km +D .2km -2.有理数中,负数的个数为( )A .1B .2C .3D .43.下列四个数中,绝对值最小的数是( )A .-3B .0C .1D .24.绍兴市1月份某天最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是( ) A .2 ℃B .8℃C .8℃D .2℃5.2023的倒数是( )A .-2023B .3202C .12023-D .120236.下列各组数中,互为相反数的是( )A .1||3-和13-B .1||3-和3-C .1||3-和13D .1||3-和37.有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a b >B .0ab >C .a b >D .0a -<8.若0a b +>,且0ab <,则以下正确的选项为( )A .a ,b 都是正数B .a ,b 异号,正数的绝对值大C .a ,b 都是负数D .a ,b 异号,负数的绝对值大9.宁波文创港三期已正式开工建设,总建筑面积约2272000m ,272000用科学记数法表示,正确的是( ) A .427.210⨯B .52.7210⨯C .42.7210⨯D .60.27210⨯10.下列说法不正确的是( )A .近似数1.8与1.80表示的意义不同B .0.0200精确到0.0001C .5.0万精确到万位D .1.0×104精确到千位二、填空题11.如果向西走30米记作30-米,那么20+米表示 . 12.数a ,b 在数轴上对应点的位置如图所示,化简a-|b-a|= .13.某地一天早晨的气温是2C ︒-,中午温度上升了9C ︒,则中午的气温是 ℃. 14.近似数68.4万精确到 位.三、计算题15.计算(1)-7-11+4-(-2) (2)(-2)×(-5)÷(-5)+9 (3)()155********⎛⎫-+-⨯-⎪⎝⎭ (4)()242512339--⨯---÷⎡⎤⎣⎦. 四、解答题16.把下列有理数填入它属于的集合的圈内:17.已知:〡a 〡=3,b 是最大的负整数,求a-b 的值。
人教版七年级数学第一单元测试题及答案

人教版七年级数学第一单元测试题及答案一、选择题1. 下列数能整除10的是()A. 11B. 16C. 20D. 252. 哪个数与18的积为45?()A. 5B. 3C. 9D. 43. 如果x=2,y=3,那么x²-y²=()A. 1B. 3C. 5D. 74. 16/20用最简分数表示是()A. 4/5B. 8/10C. 1/5D. 3/55. 如果一个负数加上它的相反数等于0,那么这个负数是()A. 0B. 1C. 正数D. 负数二、填空题1. 0的下一个整数是()。
2. 19的相反数是()。
3. 10-7=()。
4. 35÷5=()。
5. 6.25=()%。
三、解答题1. 计算:42-23+16-7=。
答:我们按照从左至右的顺序进行计算:42-23=19,19+16=35,35-7=28。
所以,42-23+16-7=28。
2. 计算:12×7-45÷5=。
答:计算顺序是先乘除后加减。
12×7=84,45÷5=9,84-9=75。
所以,12×7-45÷5=75。
四、答案选择题:1. C 2. A 3. B 4. A 5. D填空题:1. 1 2. -19 3. 3 4. 7 5. 625解答题:1. 282. 75通过以上的测试题,我们可以帮助学生巩固第一单元所学的数学知识,包括整数的加减法,整数的乘除法,分数的最简表示等内容。
同时,我们提供了详细的答案,可以供学生自我检查和纠正,帮助他们更好地理解和掌握数学知识。
以上就是人教版七年级数学第一单元测试题及答案,希望对你的学习有所帮助!。
七年级数学第一单元测试题(含答案)

七年级数学第一单元测试题(含答案)
题目一
1. 已知一矩形的长是10厘米,宽是5厘米,求这个矩形的面积是多少?
答案:50平方厘米
题目二
2. 用3根相等的木条拼成一个正方形,每根木条的长度是4厘米,问每个木条要切成多长才能拼成一个正方形?
答案:4/3厘米
题目三
3. 有一辆汽车以60千米/小时的速度行驶了2小时,问它行驶的距离是多少?
答案:120千米
题目四
4. 一个包装盒的长宽高分别是10厘米、8厘米和5厘米,求这个包装盒的体积是多少?
答案:400立方厘米
题目五
5. 若一个数字的10分之一是5,这个数字是多少?
答案:50
题目六
6. 一个班级有30个学生,其中男生占3/10,女生占多少?答案:7/15
题目七
7. 一颗苹果的重量是150克,问5颗苹果的总重量是多少?答案:750克
题目八
8. 一个小组有4个男生和6个女生,问男生占多少比例?答案:2/5
题目九
9. 一个矩形的周长是24厘米,宽是4厘米,求这个矩形的长是多少?
答案:8厘米
题目十
10. 一个大礼盒的长宽高分别是20厘米、15厘米和10厘米,求这个大礼盒的体积是多少?
答案:3000立方厘米。
七年级上册数学第一章《有理数》测试题(含答案)

七年级数学(上) 【1 】第一章 有理数单元测试题(120分)一.选择题(3分×10=30分) 1.2008的绝对值是( )A.2008B.-2008C.±2008D.200812.下列盘算准确的是()A.-2+1=-3B.-5-2=-3C.-112-=D.1)1(2-=- 3.下列各对数互为相反数的是()A.-(-8)与+(+8)B.-(+8)与+︱-8︱C.-2222)与(- D.-︱-8︱与+(-8)4.盘算(-1)÷(-5)×51的成果是()A.-1B.1C.251D.-255.两个互为相反数的有理数的乘积为( )A.正数B.负数C.0D.负数或0 6.下列说法中,准确的是()A.有最小的有理数B.有最小的负数C.有绝对值最小的数D.有最小的正数7.小明同窗在一条南北走向的公路上晨练,跑步情形记载如下:(向北为正,单位:m ):500,-400,-700,800 小明同窗跑步的总旅程为()A.800 mB.200 mC.2400 mD.-200 m 8.已知︱x ︱=2,y 2=9,且x ·y<0,则x +y=( )A.5B.-1C.-5或-1D.±19.已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所暗示的数有( )A.1个B.2个C.3个D.4个10.有一张厚度是0.1mm 的纸,将它半数20次后,其厚度可暗示为( )×20)××220×202)mm 二.填空题(5分×3=15)11.妈妈给小颖10元钱,小颖记作“+10元”,那么“-5元”可能暗示什么_____ 12.一个正整数,加上-10,其和小于0,则这个正整数可能是(写出两个即可) 13.绝对值小于2008的所有整数的和是( )14.不雅察下列各数,按纪律在横线上填上恰当的数.2,5,10,17, , . 三.(4分×2=8分) 15.下面给出了五个有理数.-1.5 6 320 -4(1)将上面各数分离填入响应的聚集圈内. 正数负数2) 请盘算个中的整数的和与分数积的差. 16.下表是某一天我国部分城市的最低气温:北京 上海 广州 哈尔滨 杭州 宁波 -4℃-1℃6℃-10℃0℃2℃(1)请把表中各数在数轴上.(2)按该气象的最低气温,从低到高分列城市名. 四.(21分) 17.盘算:(1)-40-(-19)+(-24)(2))91()65(45-⨯-(3)⎥⎦⎤⎢⎣⎡-+-⨯-)95(32)3(2(4)[]4)2(2)4()3(1324÷--+-⨯-+-18.已知p与q互为倒数,r与s互为相反数,∣t∣=1,求t2+ 2009pq +r+s2009的值.(5分)五.(6分×2=12分)19.小颖.小丽.小虎三位同窗的身高如下表所示.(1)以小丽身高为尺度,记作0㎝,用有理数暗示出小颖和小虎的身高.(2)若小颖身高记作-8㎝,那么小虎和小丽的身高应记作若干㎝.℃,现测得山脚的温度是4℃.(1)求离山脚1200m高的地方的温度.(2)若山上某处气温为-5℃,求此处距山脚的高度.六.(6分)21.甲.乙两商场上半年经营情形如下(“+”暗示盈利,“-”暗示赔本,以百万为单位)(1)三月份乙商场比甲商场多吃亏若干元?(2)六月份甲商场比乙商场多盈利若干元?(3)甲.乙两商场上半年平均每月分离盈利或吃亏若干元?七(8分)22.如图所示,一个点从数轴上的原点开端,先向右移动2个单位长度,再向左移动5个单位长度,可以看到终点暗示是-3,已知A.B是数轴上的点,请参照下图并思虑,完成下列各题.(1)假如点A暗示的数-1,将点A向右移动4个单位长度,那么终点B暗示的数是.A.B两点间的距离是 .(2)假如点A暗示的数2,将点A向左移动6个单位长度,再向右移动3个单位长度,那么终点B暗示的数是.A.B两点间的距离是 .(3)假如点A暗示的数m,将点A向右移动n个单位长度,再向左移动p个单位长度,那么请你猜测终点B暗示的数是.A.B两点间的距离是 .八.(10分)23.一辆货车从超市动身,向东走了3km,到达小彬家,持续走了1.5km到达小颖家,又向西走了9.5km到达小明家,然后回到超市.(1)以超市为原点,以向东的偏向为正偏向,用1个单位长度暗示1km,你能在数轴上暗示出小明家.小彬家和小颖家的地位吗?(2)小明家距小彬家多远?(3)货车一共行驶了若干km?九.盘算题(10分)∣x∣=2,y2=36,求x+y的值.(5分)∣m-5∣+(n+6)2=0,求(m+n)2008+m3的值.(5分)。
人教版数学七年级上册第一章测试题及答案

人教版数学七年级上册第一章测试题一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2022·全国·七年级课时练习)当我们把其中一种意义的量规定为正,用正数表示,则与它具有相反意义的量直接可以用负数表示.例:中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( ) A .支出20元B .收入20元C .支出80元D .收入80元2.(2022·河北廊坊·七年级期末)在-25%,0.0001,0,()5--,25--中,负数有( ) A .1个B .2个C .3个D .4个3.(2022·全国·七年级专题练习)若a 与1互为相反数,那么1a +=( ) A .1-B .0C .1D .2-4.(2022·湖南·茶陵县教育教学研究室模拟预测)2021年2月25日习近平总书记在全国脱贫攻坚总结表彰大会上庄严宣告:“我国脱贫攻坚战取得了全面胜利,现行标准下9899万农村贫困人口全部脱贫.”用科学记数法表示9899万,其结果是( ) A .80.989109⨯B .79.89910⨯C .698.9910⨯D .69.89910⨯5.(2022·河北·涿州市双语学校七年级期末)某检修小组乘一辆汽车沿东西方向的公路检修线路,约定向东为正,某天从A 地出发到收工时行走记录(长度单位:千米)为:+15,﹣2,+5,﹣1,+10,﹣3.则收工时,检修小组在A 地在( ) A .东边24千米处 B .西边24千米处 C .东边14千米处D .以上都不对6.(2022·全国·七年级课时练习)式子21x -+的最小值是( ) A .0B .1C .2D .37.(2022·江苏·泰州中学附属初中七年级阶段练习)计算222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个( )A .32m n +B .23+m nC .23m n +D .23n m +8.(2022·浙江·七年级专题练习)若|m |=5,|n |=2,且mn 异号,则|m ﹣n |的值为( ) A .7B .3或﹣3C .3D .7或39.(2022·河北秦皇岛·七年级期末)计算()()1155⎛⎫-÷-⨯- ⎪⎝⎭的结果是( )A .125-B .125C .-1D .110.(2022·湖南永州·七年级期中)规定两正数a ,b 之间的一种运算,记作:(),a b ,如果c a b =,那么(),a b c =.例如328=,则()2,83=.那么11,381⎛⎫= ⎪⎝⎭( ) A .3 B .4 C .5 D .611.(2022·浙江·七年级专题练习)若22a ,33b,24c,则()a b c ---⎡⎤⎣⎦的值为( )A .﹣39B .7C .15D .4712.(2022·全国·七年级课时练习)对于有理数a 、b ,有以下几种说法,其中正确的说法个数是( ) ①若a +b =0,则a 与b 互为相反数;②若a +b <0,则a 与b 异号;③a +b >0,则a 与b 同号时,则a >0,b >0;④|a |>|b |且a 、b 异号,则a +b >0;⑤|a |<b ,则a +b >0. A .3个B .2个C .1个D .0个13.(2022·山东滨州·七年级期末)已知a 、b 互为相反数,e 的绝对值为3,m 与n 互为倒数,则293a b e mn ++-的值为( ) A .1B .3C .0D .无法确定14.(2022·河南·延津县清华园学校七年级阶段练习)正方形纸板ABCD 在数轴上的位置如图所示,点A ,D 对应的数分别为1和0,若正方形纸板ABCD 绕着顶点顺时针方向在数轴上连续无滑动翻转,则在数轴上与2022对应的点是( )A .DB .C C .BD .A二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2022·江苏·泰州市姜堰区南苑学校七年级)如图所示数轴,则数a ,b ,a -,b -中最小的是_______.16.(2022·河南郑州·七年级期末)请你在心里任意想一个两位数,然后把这个数的十位数字与个位数字相加,再用原来的两位数减去它们的和,会得到一个新数,然后重复上面的过程,把新的两位数的十位数字与个位数字再相加,用新的两位数减去这个和,一直这样重复下去,直到所得的数不再是两位数为止,则最终你得到的数字是______.17.(2022·全国·七年级课时练习)已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费_______元. 18.(2022·全国·七年级课时练习)一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到O 2A 的中点3A 处,如此不断跳动下去,则第5次跳动后,该质点到原点O 的距离为_____________.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分) 19.(2022·全国·七年级单元测试)把下列各数:()4-+,3-,0,213-,1.5(1)分别在数轴上表示出来:(2)将上述的有理数填入图中相应的圈内.20.(2021·内蒙古·通辽市科尔沁区木里图学校七年级期中)计算题: (1)23(2)(47)12-+-÷--(2)117313()(48)126424-+-⨯-21.(2022·全国·七年级专题练习)在下面给出的数轴中,点A 表示1,点B 表示﹣2,回答下面的问题:(1)A 、B 之间的距离是(2)观察数轴,与点A 的距离为5的点表示的数是: ;(3)若将数轴折叠,使点A 与﹣3表示的点重合,则点B 与数 表示的点重合;(4)若数轴上M 、N 两点之间的距离为2012(M 在N 的左侧),且M 、N 两点经过(3)中折叠后互相重合,则M 、N 两点表示的数分别是:M : N : .22.(2022·全国·七年级专题练习)某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的辆数记为正数,减少的记为负数,单位:辆)根据记录回答:(1)本周六生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加了还是减少了?增加或减少了多少辆? (3)产量最多的一天比产量最少的一天多生产多少辆?23.(2022·山东青岛·七年级阶段练习)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题 【提出问题】三个有理数a ,b ,c 满足0abc >,求a b c a b c++的值.【解决问题】解:由题意,得a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数, ①a ,b ,c 都是正数,即0a >,0b >,0c >时, 则1113a b c a b ca b c a b c++=++=++=; ②当a ,b ,c 中有一个为正数,另两个为负数时, 不妨设0a >,0b <,0c <, 则()()1111a b c a b c a b c a b c--++=++=+-+-=- 综上所述,a b c a b c++值为3或-1【探究】请根据上面的解题思路解答下面的问题: (1)三个有理数a ,b ,c 满足0abc <,求a b c a b c++的值;(2)若a ,b ,c 为三个不为0的有理数,且1a b c a b c++=-,求abcabc 的值. 24.(2022·全国·七年级课时练习)某超市购进10箱樱桃,若以每箱净重5千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下(单位:千克):0.3-、0.2-、0.1-、0.4-、0.3-、0.1+、0.3-、0、0.3-、0.2-,(1)求这10箱樱桃的总净重量是多少千克?(2)若每箱樱桃的进价为480元,超市原计划把这些樱桃全部以零售的形式出售,为保证超市仍然能获利50%,那么樱桃的售价应定为每千克多少元?(3)若第一天超市以(2)中的售价售出了50%的樱桃后,经超市进行商讨研究后,将剩余的樱桃每3千克一盒经过包装后再投入到超市销售,每盒售价为500元,包装成本费为每盒10元,人工费不计,最终全部售出.请计算该超市实际销售樱桃的总利润比原计划销售樱桃的总利润多多少元?25.(2022·全国·七年级单元测试)如图所示,某数学活动小组编制了一道有理数混合运算题,即输入一个有理数,按照自左向右的顺序运算,可得计算结果,其中“●”表示一个有理数.(1)若●表示2,输入数为3-,求计算结果;(2)若计算结果为8,且输入的数字是4,则●表示的数是几?(3)若输入数为a ,●表示的数为b ,当计算结果为0时,请求出a 与b 之间的数量关系.26.(2022·浙江·七年级开学考试)同学们都知道,()74--表示7与﹣4之差的绝对值,实际上也可理解为7与﹣4两数在数轴上所对的两点之间的距离.74-也可理解为7与4两数在数轴上所对的两点之间的距离.试探索:(1)求()74--= .(2)找出所有符合条件的整数x ,使得()628x x --+-=这样的整数是 .(3)由以上探索猜想对于任何有理数x ,15x x -+-是否有最小值?如果有写出最小值请尝试说明理由.如果没有也要请尝试说明理由.人教版数学七年级上册第一章测答案一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2022·全国·七年级课时练习)当我们把其中一种意义的量规定为正,用正数表示,则与它具有相反意义的量直接可以用负数表示.例:中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( ) A .支出20元 B .收入20元 C .支出80元 D .收入80元【答案】C【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答. 【详解】解:根据题意,收入100元记作+100元,则﹣80表示支出80元. 故选:C【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 2.(2022·河北廊坊·七年级期末)在-25%,0.0001,0,,中,负数有( ) A .1个 B .2个 C .3个 D .4个【答案】B【分析】根据相反数和绝对值的定义化简后,再根据负数的定义判断即可. 【详解】解:﹣(﹣5)=5,﹣||,∴在﹣25%,0.0001,0,﹣(﹣5),﹣||中,负数有﹣25%,﹣||,共2个.故选:B .【点睛】本题考查了正数和负数,绝对值以及相反数,熟记相关定义是解答本题的关键. 3.(2022·全国·七年级专题练习)若与1互为相反数,那么( ) A . B .0C .1D .【答案】B【分析】根据互为相反数的两数和为0,可得a+1=0即可. 【详解】解:∵互为相反数的两数和为0, ∴a +1=0, 故选B .()5--25--25-25=-25-25-a 1a +=1-2-【点睛】本题考查相反数,掌握相反数的性质是解题关键.4.(2022·湖南·茶陵县教育教学研究室模拟预测)2021年2月25日习近平总书记在全国脱贫攻坚总结表彰大会上庄严宣告:“我国脱贫攻坚战取得了全面胜利,现行标准下9899万农村贫困人口全部脱贫.”用科学记数法表示9899万,其结果是( ) A . B . C . D .【答案】B【分析】科学记数法的表现形式为的形式,其中,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案. 【详解】解:9899万=98990000= 故选B .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.5.(2022·河北·涿州市双语学校七年级期末)某检修小组乘一辆汽车沿东西方向的公路检修线路,约定向东为正,某天从A 地出发到收工时行走记录(长度单位:千米)为:+15,﹣2,+5,﹣1,+10,﹣3.则收工时,检修小组在A 地在( ) A .东边24千米处 B .西边24千米处 C .东边14千米处 D .以上都不对【答案】A【分析】把行走记录相加,然后根据有理数的加法运算法则进行计算,如果结果是正数则在A 地东边,是负数则在A 地西边.【详解】解:(+15)+(-2)+(+5)+(-1)+(+10)+(-3) =15-2+5-1+10-3 =30-6 =24收工时在A 地东边24千米处,故答案为:A .【点睛】本题考查了正负数的意义,以及有理数的加法运算,根据有理数的加法运算法则进行计算是解题的关键.80.989109⨯79.89910⨯698.9910⨯69.89910⨯10n a ⨯110a ≤<79.89910⨯∴6.(2022·全国·七年级课时练习)式子的最小值是( ) A .0 B .1 C .2 D .3【答案】B【分析】当绝对值有最小值时,式子有最小值,进而得出答案. 【详解】解:当绝对值最小时,式子有最小值, 即|x -2|=0时,式子最小值为0+1=1. 故选:B .【点睛】本题考查了绝对值的性质,任意数的绝对值为非负数,即绝对值最小为0,进而求得式子的最小值. 7.(2022·江苏·泰州中学附属初中七年级阶段练习)计算( )A .B .C .D .【答案】D【分析】根据乘法的含义,可得:2m ,根据乘方的含义,可得:,据此求解即可. 【详解】解:2m +.故选:D .【点睛】此题主要考查了有理数的乘法、有理数的乘方,解答此题的关键是要明确乘法、乘方的含义. 8.(2022·浙江·七年级专题练习)若|m |=5,|n |=2,且mn 异号,则|m ﹣n |的值为( ) A .7 B .3或﹣3C .3D .7或3【答案】A【分析】先根据绝对值的性质得出m =±5,n =±2,再结合m 、n 异号知m =5、n =﹣2或m =﹣5、n =2,继而分别代入计算可得答案. 【详解】解:∵|m |=5,|n |=2, ∴m =±5,n =±2, 又∵m 、n 异号,∴m =5、n =﹣2或m =﹣5、n =2,当m =5、n =﹣2时,|m ﹣n |=|5﹣(﹣2)|=7; 当m =﹣5、n =2时,|m ﹣n |=|﹣5﹣2|=7; 综上|m ﹣n |的值为7,21x -+222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个32m n +23+m n 23m n +23n m +222m ++⋅⋅⋅+=个333n ⨯⨯⋅⋅⋅⨯=个3n222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个3n故选:A .【点睛】本题考查了有理数的减法和绝对值,解题的关键是确定m 、n 的值. 9.(2022·河北秦皇岛·七年级期末)计算的结果是( )A .B .C .-1D .1【答案】A【分析】先确定运算结果的符号,再把除法运算化为乘法运算,再计算即可. 【详解】解:故选A【点睛】本题考查的是有理数的乘除混合运算,掌握“有理数的乘除混合运算的运算顺序”是解本题的关键. 10.(2022·湖南永州·七年级期中)规定两正数,之间的一种运算,记作:,如果,那么.例如,则.那么( )A .3B .4C .5D .6【答案】B【分析】根据新定义运算的法则,求出的多少次方等于即可.【详解】解:因为, 所以4,故选:B .【点睛】本题考查了乘方的运算和新定义运算,解题关键是准确理解新定义运算,熟练运用乘方的意义求解.11.(2022·浙江·七年级专题练习)若,,,则的值为( )A .﹣39B .7C .15D .47【答案】D【分析】利用乘方的意义化简各式,确定出a ,b ,c 的值,原式去括号后代入计算即可求出值. 【详解】解:由题意得 :,,,∴()()1155⎛⎫-÷-⨯- ⎪⎝⎭125-125()()1155⎛⎫-÷-⨯- ⎪⎝⎭a b (),a b c a b =(),a b c =328=()2,83=11,381⎛⎫= ⎪⎝⎭13181411()813=11381⎛⎫= ⎪⎝⎭,22a 33b24c()a b c ---⎡⎤⎣⎦()224a =--=-327273b 2416c ()a b c ---⎡⎤⎣⎦=4+27+16 =47 故选:D【点睛】本题主要考查有理数的混合运算,熟练掌握有理数的乘方法则和去括号法则是解题的关键. 12.(2022·全国·七年级课时练习)对于有理数a 、b ,有以下几种说法,其中正确的说法个数是( ) ①若a +b =0,则a 与b 互为相反数;②若a +b <0,则a 与b 异号;③a +b >0,则a 与b 同号时,则a >0,b >0;④|a |>|b |且a 、b 异号,则a +b >0;⑤|a |<b ,则a +b >0. A .3个 B .2个 C .1个 D .0个【答案】A【分析】根据相反数的意义:只有符号不同的两个数互为相反数,若a +b =0,移项可得a =-b ,满足相反数的定义,故a 与b 互为相反数,可判定①;举一个反例满足a +b <0,可以取a 与b 同时为负数满足条件,但a 与b 不异号,可判定②;根据条件可得a +b 大于0,且a 与b 同号,可得a 与b 只能同时为正,进而得到a 、b 大于0,可判定③;举一个反例,例如a =﹣3,b =2,满足条件,但是a +b =﹣1<0,可判定④;由|a |<b ,所以b >0,所以a +b >0,可判定⑤.【详解】解:①若a +b =0,则a =﹣b ,即a 与b 互为相反数,故①正确; ②若a +b <0,若a =﹣1,b =﹣2,a +b =﹣3<0,但是a 与b 同号,故②错误; ③a +b >0,若a 与b 同号,只有同时为正,故a >0,b >0,故③正确;④若|a |>|b |,且a ,b 异号,例如a =﹣3,b =2,满足条件,但是a +b =﹣1<0,故④错误. ⑤由|a |<b ,所以b >0,所以a +b >0,故⑤正确; 则正确的结论有①③⑤,共3个. 故选:A .【点睛】此题考查了有理数的加法运算,熟练掌握有理数的加法运算法则是解本题的关键. 13.(2022·山东滨州·七年级期末)已知a 、b 互为相反数,e 的绝对值为,m 与n 互为倒数,则的值为( )a b c a b c =-+-427163293a b e mn ++-A .1B .3C .0D .无法确定【答案】C 【分析】由a 、b 互为相反数,可得.由e 的绝对值为,可得,所以.由m 与n 互为倒数,可得.所以.故选C . 【详解】解:由已知得:a 、b 互为相反数,,e 的绝对值为,,,m 与n 互为倒数,,, 故选C .【点睛】本题主要考查知识点为:相反数的定义、倒数的定义、绝对值的性质,平方的性质.熟练掌握相反数的定义、倒数的定义、绝对值的性质,平方的性质,是解决此题的关键.14.(2022·河南·延津县清华园学校七年级阶段练习)正方形纸板ABCD 在数轴上的位置如图所示,点A ,D 对应的数分别为1和0,若正方形纸板ABCD 绕着顶点顺时针方向在数轴上连续无滑动翻转,则在数轴上与2022对应的点是( )A .DB .C C .BD .A【答案】C 【分析】分析出前几次点对应的数值,找到规律,即可求解.【详解】由图可知,旋转一次:再旋转一次:0a b +=33e =29e =1mn =209=99=033a b e mn ++-+-∴0a b +=3∴3e =∴29e=∴1mn =∴209=99=033a b e mn ++-+-10A D --、2B -3C -再旋转一次:再旋转一次:依次循环发现:四个点依次循环,对应的点为故选:C .【点睛】此题主要考查数轴上点的规律探索,解题的关键是理解题意并找到点的运动轨迹.二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2022·江苏·泰州市姜堰区南苑学校七年级)如图所示数轴,则数a ,b ,,中最小的是_______.【答案】–b【分析】根据a ,b 在数轴上的位置确定a ,b 的符号及它们的绝对值即可得出答案.【详解】解:由图可知a <0<b ,且|b |>|a |,∴-b <a <-a <b ,∴最小的是-b ,故答案为:-b .【点睛】本题主要考查实数的大小比较,关键是要能根据a ,b 在数轴上的位置确定出-a ,-b 在数轴上的位置.16.(2022·河南郑州·七年级期末)请你在心里任意想一个两位数,然后把这个数的十位数字与个位数字相加,再用原来的两位数减去它们的和,会得到一个新数,然后重复上面的过程,把新的两位数的十位数字与个位数字再相加,用新的两位数减去这个和,一直这样重复下去,直到所得的数不再是两位数为止,则最终你得到的数字是______.【答案】9【分析】可任意选几个两位数,根据题意进行操作,从而可得出结果.【详解】解:当心里想的一个两位数是12时,则:12-(1+2)=9,当心里想的一个两位数是21时,则:21-(2+1)=18,18-(1+8)=9,当心里想的一个两位数是35时,则:35-(3+5)=27,27-(2+7)=18,18-(1+8)=9,……故最终得到的数是:9,4D -5A -A B C D 、、、2022=45052⨯+2022∴B a -b-故答案为:9.【点睛】本题考查了数字的变化规律,解题的关键是理解清楚题意,多列几个数进行求证.17.(2022·全国·七年级课时练习)已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费_______元.【答案】19【分析】根据题意列出算式,计算求值即可.【详解】解:圆圆在该快递公司寄一件8千克的物品,超过了5千克,需付费(元),故答案为:.【点睛】本题考查有理数的混合运算,读懂题意,准确判断付费标准是解决问题的关键.18.(2022·全国·七年级课时练习)一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点处,第二次从点跳动到O 的中点处,第三次从点跳动到O 的中点处,如此不断跳动下去,则第5次跳动后,该质点到原点O 的距离为_____________.【答案】 【分析】根据题意分析可得:每次跳动后,到原点O 的距离为跳动前的一半.【详解】解:依题意可知,第n 次跳动后,该质点到原点O 的距离为, ∴第5次跳动后,该质点到原点O 的距离为. 故答案为. 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2022·全国·七年级单元测试)把下列各数:,,,, (1)分别在数轴上表示出来:∴()13+852=13+6=19-⨯191A 1A 1A 2A 2A 2A 3A 13212n132132()4-+3-0213-1.5(2)将上述的有理数填入图中相应的圈内.【答案】(1)见解析(2)见解析【分析】(1)根据有理数在数轴上对应的点解决此题.(2)根据正数整数、负数的定义解决此题.(1),∴,,,,在数轴上表示为:(2)如图所示:【点睛】本题主要考查负数、整数和正数的意义,熟练掌握负数、整数、正数的意义是解决本题的关键. 20.(2021·内蒙古·通辽市科尔沁区木里图学校七年级期中)计算题:(1) (2) 【答案】 (1) (2)【分析】(1)先算乘方和括号里面,再算除法,然后相加即可;()4=4-+-3=3-()4-+3-0213-1.523(2)(47)12-+-÷--117313()(48)126424-+-⨯-12(2)利用乘法的分配率求解即可;(1)解:;(2)解:;21.(2022·全国·七年级专题练习)在下面给出的数轴中,点A 表示1,点B 表示﹣2,回答下面的问题:(1)A 、B 之间的距离是(2)观察数轴,与点A 的距离为5的点表示的数是: ;(3)若将数轴折叠,使点A 与﹣3表示的点重合,则点B 与数 表示的点重合;(4)若数轴上M 、N 两点之间的距离为2012(M 在N 的左侧),且M 、N 两点经过(3)中折叠后互相重合,则M 、N 两点表示的数分别是:M : N : .【答案】(1)3(2)﹣4或6(3)0(4)﹣1007,1005【分析】(1) 根据两点间的距离公式即可得到结论;(2)分所求点在点A 的左边和右边两种情况解答;(3)根据中心对称列式计算即可得解;(4)根据中点的定义求出MN 的一半,然后分别列式计算即可得解.(1)A 、B 之间的距离是.23(2)(47)12-+-÷--34312=-÷-421=--1=117313()(48)126424-+-⨯-=44+5636+26--=80+82-=21(2)3--=故答案为:3;(2)(2)与点A 的距离为5的点表示的数是:或.故答案为:﹣4或6;(3)则A 点与﹣3重合,则对称点是,则数B 关于﹣1的对称点是:0. 故答案为:0;(4)由对称点为,且M 、N 两点之间的距离为2012(M 在N 的左侧)可知,M 点表示数,N 点表示数. 故答案为:﹣1007,1005.【点睛】本题考查了数轴的相关知识,解答此题的关键是利用了数轴上两点间的距离,中点计算公式,注意分类讨论思想与数形结合思想的应用.22.(2022·全国·七年级专题练习)某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的辆数记为正数,减少的记为负数,单位:辆)根据记录回答: (1)本周六生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加了还是减少了?增加或减少了多少辆?(3)产量最多的一天比产量最少的一天多生产多少辆?【答案】(1)241辆(2)21辆(3)35辆【分析】(1)平均数加上增减的数即可得到周六生产的数量.(2)将所有的增减量相加,若为正则增加,若为负则减少.(3)即求增加数量最多的一天减去减少数量最多的一天.(1)解:本周六生产数量=250﹣9=241(辆);(2)解:﹣5+7﹣3+4+10﹣9﹣25=﹣21,所以减少了21辆.154-=-156+=1(13)12-=-1-11201210072--⨯=-11201210052-+⨯=(3)解:增量最多的是星期五,减量最多的是星期日,∴产量最多的一天比产量最少的一天多生产10﹣(﹣25)=35(辆).【点睛】本题考查有理数的混合运算,难度不大,解题的关键是读懂题意.23.(2022·山东青岛·七年级阶段练习)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题【提出问题】三个有理数a ,b ,c 满足,求的值. 【解决问题】解:由题意,得a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数, ①a ,b ,c 都是正数,即,,时, 则; ②当a ,b ,c 中有一个为正数,另两个为负数时,不妨设,,, 则 综上所述,值为3或-1 【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a ,b ,c 满足,求的值; (2)若a ,b ,c 为三个不为0的有理数,且,求的值. 【答案】(1)-3或1(2)1 【分析】(1)仿照题目给出的思路和方法,解决(1)即可; (2)根据已知等式,利用绝对值的代数意义判断出a ,b ,c 中负数有2个,正数有1个,判断出abc 的正负,原式利用绝对值的代数意义化简计算即可.(1)解:∵,∴a ,b ,c 都是负数或其中一个为负数,另两个为正数,①当a ,b ,c 都是负数,即,,时,则:; ②a ,b ,c 有一个为负数,另两个为正数时,不妨设,,,则; 0abc >abca b c ++0a >0b >0c >1113a b c a b c a b c a b c++=++=++=0a >0b <0c <()()1111a b c a b c a b c a b c--++=++=+-+-=-abca b c ++0abc <abca b c ++1a b c a b c++=-abc abc 0abc <0a <0b <0c <1113a b c a b c a b c a b c---++=++=---=-0a <0b >0c >1111abca b c a b c a b c-++=++=-++=综上所述,值为-3或1.(2)解:∵a ,b ,c 为三个不为0的有理数,且, ∴a ,b ,c 中负数有2个,正数有1个,∴, ∴. 【点睛】本题主要考查了绝对值的意义、分类讨论的思想方法.能不重不漏的分类,会确定字母的范围和字母的值是关键.24.(2022·全国·七年级课时练习)某超市购进10箱樱桃,若以每箱净重5千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下(单位:千克):、、、、、、、0、、,(1)求这10箱樱桃的总净重量是多少千克?(2)若每箱樱桃的进价为480元,超市原计划把这些樱桃全部以零售的形式出售,为保证超市仍然能获利50%,那么樱桃的售价应定为每千克多少元?(3)若第一天超市以(2)中的售价售出了50%的樱桃后,经超市进行商讨研究后,将剩余的樱桃每3千克一盒经过包装后再投入到超市销售,每盒售价为500元,包装成本费为每盒10元,人工费不计,最终全部售出.请计算该超市实际销售樱桃的总利润比原计划销售樱桃的总利润多多少元?【答案】(1)48千克(2)150元(3)多320元【分析】(1)求出称重记录的数据之和,再与标准重量相加,即为总净重量;(2)按照获利50%的标准求出销售额,除以数量,即为单价;(3)求出超市实际销售樱桃的总销售额和原计划销售樱桃的总销售额,再进行计算即可.(1)解:(千克)(千克),答:这10箱樱桃的总净重量是48千克.(2)解:根据题意,销售额应为:(元),每千克售价:(元).答:樱桃的售价应定为每千克150元.(3)解:包装前销售额:(元),abca b c ++1a b c a b c++=-0abc >1abc abc abc abc==0.3-0.2-0.1-0.4-0.3-0.1+0.3-0.3-0.2-0.30.20.10.40.30.10.30.30.22-----+---=-510248⨯-=48010(150%)7200⨯⨯+=720048150÷=1504850%3600⨯⨯=包装后销售额:(元),买入成本:(元)包装成本:(元),实际总利润与原计划总利润之差:(元).答:该超市实际销售樱桃的总利润比原计划销售樱桃的总利润多320元.【点睛】本题考查正负数的实际应用以及有理数四则混合运算的实际应用,读懂题意,理解利润、单价、成本之间的关系是解题的关键.25.(2022·全国·七年级单元测试)如图所示,某数学活动小组编制了一道有理数混合运算题,即输入一个有理数,按照自左向右的顺序运算,可得计算结果,其中“●”表示一个有理数.(1)若●表示2,输入数为,求计算结果;(2)若计算结果为8,且输入的数字是4,则●表示的数是几?(3)若输入数为a ,●表示的数为b ,当计算结果为0时,请求出a 与b 之间的数量关系.【答案】(1)3(2)-17(3)【分析】(1)根据题意代入相应的值运算即可;(2)设●表示的数为x ,根据题意得出相应的方程求解即可;(3)根据输入数为a ,●表示的数为b ,当计算结果为0时,求出a ,b 之间的关系.(1)解:∵●表示2,输入数为∴;(2)解:设●表示的数为x ,根据题意得:,∴;(3)解:∵输入数为a ,●表示的数为b ,当计算结果为0时,∴, 整理得.【点睛】本题主要考查有理数的混合运算,解答的关键理解清楚题意,并掌握相应的运算法则.(243)5004000÷⨯=480104800=⨯81080⨯=(36004000480080)(72004800)+----320=3-21b a =--3-(3)(4)2(1)2122123-⨯-÷+--=÷--=4(4)2(1)8x ⨯-÷+--=17x =-4(1)02a b -+--=21b a =--。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛版七年级数学第
一章测试题
一、选一选
1.下列说法中错误的是( ).
A .A 、
B 两点之间的距离为3cm B .A 、B 两点之间的距离为线段AB 的长度
C .线段AB 的中点C 到A 、B 两点的距离相等
D .A 、B 两点之间的距离是线段AB
2.下列说法中,正确的个数有( ).
(1)射线AB 和射线BA 是同一条射线 (2)延长射线MN 到C
(3)延长线段MN 到A 使NA==2MN (4)连结两点的线段叫做两点间的距离 A .1 B .2 C .3 D .4
3.下列说法中,错误的是( ).
A .经过一点的直线可以有无数条
B .经过两点的直线只有一条
C .一条直线只能用一个字母表示
D .线段CD 和线段DC 是同一条线段
4.如图4,C 是线段AB 的中点,D 是CB 上一点,下列说
法中错误的是( ). A .CD=AC-BD B .CD=
2
1BC C .CD=2
1
AB-BD D .CD=AD-BC
5.如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是( ). A .M 点在线段AB 上 B .M 点在直线AB 上 C .M 点在直线AB 外
D .M 点可能在直线AB 上,也可能在直线AB 外
6.下列图形中,能够相交的是( ).
7.已知点A 、B 、C 都是直线l 上的点,且AB=5cm ,BC=3cm ,那么点A 与点C 之间的距离是( ).
图4
A.8cm B.2cm C.8cm或2cm D.4cm
二、填空
8. 笔尖在纸上快速滑动写出了一个又一个字,这说明了_________;车轮旋转时,看起来像一个整体的圆面,这说明了_________;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说明了_____________.
9.如图1-4,A,B,C,D是一直线上的四点,则 ______ + ______ =AD-AB,AB+CD= ______ - ______ .
10.如图1-5,OA反向延长得射线 ______ ,线段CD向______ 延长得直线CD.
11.四条直线两两相交,最多有 ______ 个交点.12.经过同一平面内的A,B,C三点中的任意两点,可以作出 ______ 条直线.
三.解答题13、右面是一个正方体纸盒的展开图,请把-10,7,10,-2,-7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数。
14.读下面的语句,并按照这些语句画出图形.
(1)点P在直线AB上,但不在直线CD上。
(2)点Q既不在直线l
1
上,也不在直线l
2
上。
(3)直线a、b交于点o,直线b、c交于点p,直线c、a交于点q。
(4)直线a、b、c两两相交。
(5)直线a和b相交于点P;点A在直线a上,但在直线b外.
15.过一点能确定几条直线?两点呢?三点呢?
16.如图8,C为线段AB的中点,N为线段CB的中点,CN=1cm.求线段CB、线段AC、线段AB
的长.17. 如图4,AB=24cm,C、D点在线段AB上,且CD=10cm,M、N分别是AC、BD的中点,求线段MN的长.
18.如图,已知线段a,b(a>b),作一条线段使它等于2(a-b)。
--------a -----b
(要求保留作图痕迹,写出做法)
图4
图8
答案
一、D A C B D D C
二、8、点动成线、线动成面、面动成体
9、BC+CD AD-BC
10.OE 两方 11.6 12.1或3 13.略
14.略
15.无数、一条、一条或3条
16.2厘米、2厘米、4厘米
17.17厘米。