新人教A版(选修1-2)2.2《直接证明与间接证明》word教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2直接证明与间接证明

教学目标:

(1)理解证明不等式的三种方法:比较法、综合法和分析法的意义;

(2)掌握用比较法、综合法和分析法证明简单的不等式;

(3)能根据实际题目灵活地选择适当地证明方法;

(4)通过不等式证明,培养学生逻辑推理论证的能力和抽象思维能力.

教学建议:

1.知识结构:(不等式证明三种方法的理解)==〉(简单应用)==〉(综合应用)

2.重点、难点分析

重点:不等式证明的主要方法的意义和应用;

难点:①理解分析法与综合法在推理方向上是相反的;

②综合性问题证明方法的选择.

(1)不等式证明的意义

不等式的证明是要证明对于满足条件的所有数都成立(或都不成立),而并非是带入具体的数值去验证式子是否成立.(2)比较法证明不等式的分析

①在证明不等式的各种方法中,比较法是最基本、最重要的方法.

②证明不等式的比较法,有求差比较法和求商比较法两种途径.

由于a>b<==>a-b>0,因此,证明a>b,可转化为证明与之等价的a-b>0.这种证法就是求差比较法.

由于当b>0时,a>b<==>(a/b)>1,因此,证明a>b(b>0),可以转化为证明与之等价的(a/b)>1(b>0).这种证法就是求商比较法,使用求商比较法证明一定要注意(b>0)这一前提条件.

③求差比较法的基本步骤是:“作差→变形→断号”.

其中,作差是依据,变形是手段,判断符号才是目的.变形的方法一般有配方法、通分法和因式分解法等,变成能够判断出差的符号是正或负的数(或式子)即可.

④作商比较法的基本步骤是:“作商→变形→判断商式与1的大小关系”,需要注意的是,作商比较法一般用于证明不等号两侧的式子同号的不等式.

(3)综合法证明不等式的分析

①利用某些已经证明过的不等式和不等式的性质推导出所要证

明的不等式成立,这种证明方法通常叫做综合法.

②综合法的思路是“由因导果”:从已知的不等式出发,通过一系列已知条件推导变换,推导出求证的不等式.

③综合法证明不等式的逻辑关系是:

(已知)==〉(逐步推演不等式成立的必要条件)==〉(结论)(4)分析法证明不等式的分析

①从求证的不等式出发,逐步寻求使不等式成立的充分条件,直至所需条件被确认成立,就断定求证的不等式成立,这种证明方法就是分析法.

有时,我们也可以首先假定所要证明的不等式成立,逐步推出一个已知成立的不等式,只要这个推出过程中的每一步都是可以逆推的,那么就可以断定所给的不等式成立.这也是用分析法,注意应强调“以上每一步都可逆”,并说出可逆的根据.

②分析法的思路是“执果导因”:从求证的不等式出发,探索使结论成立的充分条件直至已成立的不等式.它与综合法是对立统一的两种方法.

③用分析法证明不等式的逻辑关系是:

(已知)<==(逐步推演不等式成立的必要条件)<==(结论)

④分析法是证明不等式时一种常用的基本方法.当证明不知从何入手时,有时可以运用分析法而获得解决.特别对于条件简单而结论复杂的题目往往更实用.

(5)关于分析法与综合法关系

①分析法与综合法是思维方向相反的两种思考方法.

②在数学解题中,分析法是从数学题的待证结论或需求问题出发,逐步地推导,最后达到题设的已知条件.即推理方向是:结论

已知.

综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题.即:已知结论.

③分析法的特点是:从“结论”探求“需知”,逐步靠拢“已知”,其逐步推理实际上是要寻找结论的充分条件.

综合法的特点是:从“已知”推出“可知”,逐步推向“未知”,其逐步推理实际上是要寻找已知的必要条件.

④一般来说,对于较复杂的不等式,直接运用综合法往往不易入手,用分析法来书写比较麻烦.因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法经常是结合在一起使用的.

第一课时不等式的证明(比较法)

教学目标

1.掌握证明不等式的方法——比较法;

2.熟悉并掌握比较法证明不等式的意义及基本步骤.

教学重点:比较法的意义和基本步骤.

教学难点:常见的变形技巧.

教学方法;启发引导法.

教学过程:

(-)导入新课

教师提问:根据前一节学过(不等式的性质)的知识,我们如何用实数运算来比较两个实数与的大小?

找学生回答问题.

(学生回答:,,,)[点评]要比较两个实数与的大小,只要考察与的差

值的符号就可以了,这种证明不等式的方法称为比较法.现在我们就来学习:用比较法证明不等式.

目的:通过教师设置问题,引导学生回忆所学的知识,引出用比较法证明不等式,导入本节课学习的知识.

(二)新课讲授

【尝试探索,建立新知】

作差比较法

[问题] 求证

教师引导学生分析、思考,研究不等式的证明.

学生研究证明不等式,尝试完成问题.

[本问点评]

①通过确定差的符号,证明不等式的成立.这一方法,在前面比较两个实数的大小、比较式子的大小、证明不等式性质就已经用过.

②通过求差将不等问题转化为恒等问题,将两个一般式子大小比较转化为一个一般式子与0的大小比较,使问题简化.

③理论依据是:

④由,,知:要证明只需证

;需证明这种证明不等式的方法通常叫做比较法.

目的:帮助学生构建用比较法证明不等式的知识体系,培养学生化归的数学思想.

【例题示范,学会应用】

教师板书例题,引导学生研究问题,构思证题方法,学会解题过程中的一些常用技巧,并点评.

例1.求证

[分析]由比较法证题的方法,先将不等式两边作差,得

,将此式看作关于的二次函数,由配方法易知

函数的最小值大干零,从而使问题获证.

证明:∵

相关文档
最新文档