高等数学电子教案

合集下载

高等数学教案word版

高等数学教案word版

高等数学教案word版篇一:高等数学上册教案篇二:《高等数学》教案《高等数学》授课教案第一讲高等数学学习介绍、函数了解新数学认识观,掌握基本初等函数的图像及性质;熟练复合函数的分解。

函数概念、性质(分段函数)—基本初等函数—初等函数—例子(定义域、函数的分解与复合、分段函数的图像)授课提要:前言:本讲首先是《高等数学》的学习介绍,其次是对中学学过的函数进行复习总结(函数本质上是指变量间相依关系的数学模型,是事物普遍联系的定量反映。

高等数学主要以函数作为研究对象,因此必须对函数的概念、图像及性质有深刻的理解)。

一、新教程序言1、为什么要重视数学学习(1)文化基础——数学是一种文化,它的准确性、严格性、应用广泛性,是现代社会文明的重要思维特征,是促进社会物质文明和精神文明的重要力量;(2)开发大脑——数学是思维训练的体操,对于训练和开发我们的大脑(左脑)有全面的作用;(3)知识技术——数学知识是学习自然科学和社会科学的基础,是我们生活和工作的一种能力和技术;(4)智慧开发——数学学习的目的是培养人的思维能力,这种能力为人的一生提供持续发展的动力。

2、对数学的新认识(1)新数学观——数学是一门特殊的科学,它为自然科学和社会科学提供思想和方法,是推动人类进步的重要力量;(2)新数学教育观——数学教育(学习)的目的:数学精神和数学思想方法,培养人的科学文化素质,包括发展人的思维能力和创新能力。

(3)新数学素质教育观——数学教育(学习)的意义:通过“数学素质”而培养人的“一般素质”。

[见教材“序言”]二、函数概念1、函数定义:变量间的一种对应关系(单值对应)。

(用变化的观点定义函数),记:y?f(x)(说明表达式的含义)(1)定义域:自变量的取值集合(D)。

(2)值域:函数值的集合,即{yy?f(x),x?D}。

例1、求函数y?ln(1?x2)的定义域?2、函数的图像:设函数y?f(x)的定义域为D,则点集{(x,y)y?f(x),x?D} 就构成函数的图像。

《高等数学电子教案》课件

《高等数学电子教案》课件

《高等数学电子教案》PPT课件第一章:函数与极限1.1 函数的概念与性质教学目标:理解函数的概念,掌握函数的性质,了解函数的图像。

教学内容:函数的定义,函数的性质,函数的图像。

1.2 极限的概念与性质教学目标:理解极限的概念,掌握极限的性质,学会求极限。

教学内容:极限的定义,极限的性质,极限的求法。

第二章:导数与微分2.1 导数的概念与性质教学目标:理解导数的概念,掌握导数的性质,学会求导数。

教学内容:导数的定义,导数的性质,求导数的方法。

2.2 微分的概念与性质教学目标:理解微分的概念,掌握微分的性质,学会求微分。

教学内容:微分的定义,微分的性质,求微分的方法。

第三章:积分与微分方程3.1 不定积分的概念与性质教学目标:理解不定积分的概念,掌握不定积分的性质,学会求不定积分。

教学内容:不定积分的定义,不定积分的性质,求不定积分的方法。

3.2 定积分的概念与性质教学目标:理解定积分的概念,掌握定积分的性质,学会求定积分。

教学内容:定积分的定义,定积分的性质,求定积分的方法。

第四章:向量与线性方程组4.1 向量的概念与性质教学目标:理解向量的概念,掌握向量的性质,学会求向量的运算。

教学内容:向量的定义,向量的性质,向量的运算。

4.2 线性方程组的概念与性质教学目标:理解线性方程组的概念,掌握线性方程组的性质,学会解线性方程组。

教学内容:线性方程组的定义,线性方程组的性质,解线性方程组的方法。

第五章:矩阵与行列式5.1 矩阵的概念与性质教学目标:理解矩阵的概念,掌握矩阵的性质,学会求矩阵的运算。

教学内容:矩阵的定义,矩阵的性质,矩阵的运算。

5.2 行列式的概念与性质教学目标:理解行列式的概念,掌握行列式的性质,学会求行列式的值。

教学内容:行列式的定义,行列式的性质,求行列式的方法。

第六章:级数与泰勒公式6.1 级数的概念与性质教学目标:理解级数的概念,掌握级数的性质,学会求级数的收敛性。

教学内容:级数的定义,级数的性质,求级数的收敛性。

高等数学电子教案

高等数学电子教案

高等数学电子教案第一章:函数与极限1.1 函数的概念与性质定义:函数是一种规则,将一个非空数集(定义域)中的每一个元素对应到另一个非空数集(值域)中的唯一元素。

函数的性质:单调性、奇偶性、周期性等。

1.2 极限的概念极限的定义:当自变量x趋近于某个值a时,函数f(x)趋近于某个确定的值L,称f(x)当x趋近于a时的极限为L,记作:lim(x→a)f(x)=L。

极限的性质:保号性、传递性、夹逼性等。

1.3 极限的计算极限的基本计算方法:代数法、几何法、泰勒公式等。

极限的运算法则:加减法、乘除法、复合函数的极限等。

1.4 无穷小与无穷大无穷小的概念:当自变量x趋近于某个值a时,如果函数f(x)趋近于0,称f(x)为无穷小。

无穷大的概念:当自变量x趋近于某个值a时,如果函数f(x)趋近于正无穷或负无穷,称f(x)为无穷大。

第二章:导数与微分2.1 导数的定义导数的定义:函数f(x)在点x处的导数,记作f'(x)或df/dx,表示函数在该点的瞬时变化率。

导数的几何意义:函数图像在某点处的切线斜率。

2.2 导数的计算基本导数公式:常数函数、幂函数、指数函数、对数函数等的导数。

导数的运算法则:和差法、乘法法、链式法则等。

2.3 微分的概念与计算微分的定义:函数f(x)在点x处的微小变化量,记作df(x)。

微分的计算:微分的基本公式df(x)=f'(x)dx,以及微分的运算法则。

2.4 微分方程的概念与解法微分方程的定义:含有未知函数及其导数的方程。

微分方程的解法:分离变量法、积分因子法等。

第三章:积分与面积3.1 不定积分的概念与计算不定积分的定义:函数f(x)的不定积分,记作∫f(x)dx,表示f(x)与x轴之间区域的面积。

基本积分公式:幂函数、指数函数、对数函数等的不定积分。

3.2 定积分的概念与计算定积分的定义:函数f(x)在区间[a,b]上的定积分,记作∫[a,b]f(x)dx,表示f(x)在[a,b]区间上的累积面积。

高中数学教案电子版(通用19篇)

高中数学教案电子版(通用19篇)

高中数学教案电子版(通用19篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、心得体会、条据文书、合同协议、规章制度、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, insights, normative documents, contract agreements, rules and regulations, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高中数学教案电子版(通用19篇)2024年人教版高中数学电子课本教案是教学活动中对于整个课程内容和过程的安排和设计,它具有指导教师教学行为、促进学生学习的重要作用。

高等数学电子教案

高等数学电子教案

高等数学电子教案第一章:函数与极限1.1 函数的概念与性质定义:函数是一种关系,将一个集合(定义域)中的每个元素对应到另一个集合(值域)中的一个元素。

函数的性质:单调性、连续性、奇偶性、周期性等。

1.2 极限的概念极限的定义:当自变量x趋近于某个值a时,函数f(x)趋近于某个值L,称f(x)当x趋近于a时的极限为L,记作lim(x→a)f(x)=L。

极限的性质:保号性、保不等式性、夹逼定理等。

1.3 极限的计算极限的基本计算方法:代入法、因式分解法、有理化法等。

无穷小与无穷大的概念:无穷小是指绝对值趋近于0的量,无穷大是指绝对值趋近于无穷的量。

1.4 极限的应用函数的连续性:如果函数在某一点的极限值等于该点的函数值,称该函数在这一点连续。

导数的概念:函数在某一点的导数表示函数在该点的切线斜率。

第二章:微积分基本定理2.1 导数的定义与计算导数的定义:函数在某一点的导数表示函数在该点的切线斜率,记作f'(x)。

导数的计算:基本导数公式、导数的四则运算法则等。

2.2 微分的概念与计算微分的定义:微分表示函数在某一点的切线与x轴的交点横坐标的差值,记作df(x)。

微分的计算:微分的基本公式、微分的四则运算法则等。

2.3 积分的概念与计算积分的定义:积分表示函数图像与x轴之间区域的面积,记作∫f(x)dx。

积分的计算:基本积分公式、积分的换元法、分部积分法等。

2.4 微积分基本定理微积分基本定理的定义:微积分基本定理是微分与积分之间的关系,即导数的不定积分是原函数,积分的反函数是原函数的导数。

第三章:微分方程3.1 微分方程的定义与分类微分方程的定义:微分方程是含有未知函数及其导数的等式。

微分方程的分类:常微分方程、偏微分方程等。

3.2 常微分方程的解法常微分方程的解法:分离变量法、积分因子法、变量替换法等。

3.3 微分方程的应用微分方程在物理、工程等领域的应用,例如描述物体运动、电路方程等。

第四章:级数4.1 级数的概念与性质级数的定义:级数是由无穷多个数按照一定的规律相加的序列,记作∑an。

高等数学电子教案(大专版)

高等数学电子教案(大专版)

高等数学电子教案(大专版)《高等数学》教案第一讲函数与极限1.函数的定义设有两个变量x ,y 。

对任意的x ∈D ,存在一定规律f ,使得y 有唯一确定的值与之对应,则y 叫x 的函数。

记作y=f(x),x ∈D 。

其中x 叫自变量,y 叫因变量。

函数两要素:对应法则、定义域,而函数的值域一般称为派生要素。

例1:设f(x+1)=2x 2+3x-1,求f(x).解:设x+1=t 得x=t-1,则f(t)=2(t-1)2+3(t-1)-1=2t 2-t-2∴f(x)=2x 2 – x – 2定义域:使函数有意义的自变量的集合。

因此,求函数定义域需注意以下几点:①分母不等于0 ②偶次根式被开方数大于或等于0 ③对数的真数大于0例2 求函数y=6—2x -x +arcsin712x -的定义域. 解:要使函数有定义,即有:1|712|062≤-≥--x x x ? 4323≤≤--≤≥x x x 或?4323≤≤-≤≤-x x 或于是,所求函数的定义域是:[-3,-2]Y [3,4].例3 判断以下函数是否是同一函数,为什么?(1)y=lnx 2与y=2lnx (2)ω=u 与y=x解(1)中两函数的定义域不同,因此不是相同的函数. (2)中两函数的对应法则和定义域均相同,因此是同一函数. 2. 初等函数(1)基本初等函数常数函数:y=c(c 为常数) 幂函数:y=μx (μ为常数)指数函数:y=xa (a>0,a ≠1,a 为常数) 对数函数:y=x a log (a>0,a ≠1,a 为常数)三角函数:y=sinx y=cosx y=tanx y=cotx y=secx y=cscx 反三角函数:y=arcsinx y=arccosx y=arctanx y=arccotx(2)复合函数设),(u f y =其)(x u ?=中,且)(x ?的值全部或部分落在)(u f 的定义域内,则称)]([x f y ?=为x 的复合函数,而u 称为中间变量.例4:若y=u ,u = sinx ,则其复合而成的函数为y=x sin ,要求u 必须≥0,∴sinx ≥0,x ∈[2k π,π+2k π]例5:分析下列复合函数的结构(1)y=2cotx (2)y=1sin 2+x e解:(1)y=u ,u=cosv ,v=2x(2)y=ue ,u=sinv ,v=t ,t=x 2+1例6:设f(x)=2x g(x)=x 2 求f[g(x)] g[f(x)]解:f[g(x)]=f(x 2)=(x 2)2=4x g[f(x)]=g(2x )=22x3. 极限(1)定义函数y=f(x),当自变量x 无限接近于某个目标时(一个数x 0,或+∞或—∞),因变量y 无限接近于一个确定的常数A ,则称函数f(x)以A 为极限。

《高等数学电子教案》课件

《高等数学电子教案》课件

《高等数学电子教案》课件一、第1章函数与极限1.1 函数的概念与性质定义域、值域、对应关系奇函数、偶函数、周期函数单调性、连续性、可导性1.2 极限的概念与性质极限的定义(洛必达法则)无穷小、无穷大、极限的存在性极限的运算法则、夹逼定理、单调有界定理二、第2章导数与微分2.1 导数的定义与计算导数的定义(极限比值法)基本导数公式、导数的运算法则高阶导数、隐函数求导、参数方程求导2.2 微分的作用与应用微分的定义、微分的运算法则微分在近似计算、物理应用等方面的作用微分方程的解法与应用三、第3章泰勒公式与不定积分3.1 泰勒公式的概念与计算泰勒公式的定义、泰勒级数常见函数的泰勒展开式泰勒公式在近似计算中的应用3.2 不定积分的概念与计算不定积分的定义、基本积分公式换元积分、分部积分积分在几何、物理等方面的应用四、第4章定积分与反常积分4.1 定积分的概念与计算定积分的定义、定积分的性质牛顿-莱布尼茨公式、定积分的换元法、分部积分法定积分在几何、物理等方面的应用4.2 反常积分的概念与计算反常积分的定义、无穷区间上的积分瑕点、解析延拓、魏尔斯特拉斯函数反常积分在实际应用中的意义五、第5章微分方程与线性微分方程组5.1 微分方程的概念与解法微分方程的定义、微分方程的解常微分方程、线性微分方程、非线性微分方程分离变量法、积分因子法、变量替换法5.2 线性微分方程组的概念与解法线性微分方程组的定义、解的结构高阶线性微分方程、齐次线性微分方程特解法、待定系数法、常数变易法六、第6章级数6.1 数项级数的概念与判别法数项级数的定义、收敛性与发散性收敛级数的性质、级数的收敛准则(比较检验、比值检验、根值检验)绝对收敛与条件收敛6.2 幂级数的概念与性质幂级数的定义、收敛半径、收敛区间幂级数的运算、泰勒级数与麦克劳林级数幂级数在函数逼近与数值计算中的应用七、第7章多元函数的极限与连续7.1 多元函数的概念与性质多元函数的定义、偏导数、全微分多元函数的单调性、连续性、可微性方向导数与梯度7.2 多元函数的极限与连续多元函数的极限定义、极限的存在性多元函数的连续性、无穷远点多元函数极限与单变量函数极限的对比八、第8章多元函数的导数与微分8.1 多元函数的导数与微分多元函数的偏导数、全导数高阶偏导数、隐函数求导、参数方程求导微分的概念与性质、微分在多元函数中的应用8.2 多元函数的泰勒公式与不定积分多元函数的泰勒公式、泰勒级数不定积分的概念、多元函数的不定积分积分在多元函数中的应用九、第9章多元函数的定积分与反常积分9.1 多元函数的定积分多元函数定积分的定义、性质多元函数定积分的计算、换元法、分部积分法多元函数定积分在几何、物理等方面的应用9.2 多元函数的反常积分多元函数反常积分的定义、无穷区间上的积分多元函数瑕点、解析延拓、魏尔斯特拉斯函数多元函数反常积分在实际应用中的意义十、第10章向量分析与线性代数10.1 向量分析的概念与方法向量的定义、向量的运算空间解析几何、向量场的概念梯度、散度、旋度、格林公式10.2 线性代数的基本理论向量空间、线性变换、特征值与特征向量矩阵的运算、行列式、特征方程线性方程组、最小二乘法、正交投影重点和难点解析一、第1章函数与极限1.1 函数的概念与性质重点关注函数的奇偶性、周期性及单调性难点解析:奇偶性的判断、周期性的求解、单调性的证明1.2 极限的概念与性质重点关注极限的定义、性质及运算法则难点解析:极限的判断(洛必达法则)、无穷小与无穷大的比较、极限的夹逼定理与单调有界定理二、第2章导数与微分2.1 导数的定义与计算重点关注导数的定义、基本导数公式及导数的运算法则难点解析:导数的计算(隐函数求导、参数方程求导)、高阶导数的应用、导数在实际问题中的应用2.2 微分的作用与应用重点关注微分的定义及微分的运算法则难点解析:微分的应用(近似计算、物理应用)、微分方程的解法及应用三、第3章泰勒公式与不定积分3.1 泰勒公式的概念与计算重点关注泰勒公式的定义、常见函数的泰勒展开式难点解析:泰勒公式的应用(近似计算)、泰勒级数的收敛性判断3.2 不定积分的概念与计算重点关注不定积分的定义、基本积分公式及积分方法难点解析:不定积分的计算(换元积分、分部积分)、积分在几何、物理等方面的应用四、第4章定积分与反常积分4.1 定积分的概念与计算重点关注定积分的定义、性质及计算方法难点解析:定积分的计算(牛顿-莱布尼茨公式、换元法、分部积分法)、定积分在几何、物理等方面的应用4.2 反常积分的概念与计算重点关注反常积分的定义、性质及计算方法难点解析:反常积分的计算(瑕点、解析延拓、魏尔斯特拉斯函数)、反常积分在实际应用中的意义五、第5章微分方程与线性微分方程组5.1 微分方程的概念与解法重点关注微分方程的定义、解的结构及解法难点解析:微分方程的解法(分离变量法、积分因子法、变量替换法)、高阶线性微分方程的解法5.2 线性微分方程组的概念与解法重点关注线性微分方程组的定义、解的结构及解法难点解析:线性微分方程组的解法(特解法、待定系数法、常数变易法)、线性微分方程组的应用全文总结与概括:本文针对《高等数学电子教案》课件的十个章节进行了重点和难点的解析。

高等数学电子教案(大专版)(2024)

高等数学电子教案(大专版)(2024)

02
函数与极限
2024/1/28
8
函数概念及性质
2024/1/28
函数定义
设$x$和$y$是两个变量,$D$是一个数集。如果存在一种对应法则$f$,使得对于$D$中 的每一个数$x$,按照某种对应法则$f$,在数集$M$中都有唯一确定的数$y$与之对应, 则称$f$为从$D$到$M$的一个函数,记作$y = f(x), x in D$。
向量的坐标表示法
详细讲解向量的坐标表示法,包括向量在空间直角 坐标系中的表示方法、向量的模和方向余弦的坐标 计算公式等。
向量的运算与坐标计算
介绍向量的加法、减法、数乘和点积、叉积 等运算在坐标计算中的实现方法,以及这些 运算的几何意义和性质。
2024/1/28
30
平面与直线方程
2024/1/28
平面的方程
导数的定义
导数描述了函数在某一点处的切线斜 率,反映了函数值随自变量变化的快 慢程度。
导数的几何意义
导数在几何上表示曲线在某一点处的 切线斜率,即函数图像在该点的倾斜 程度。
13
导数的计算法则
基本初等函数的导数公式
包括常数函数、幂函数、指数函数、对数函数 、三角函数等的基本导数公式。
导数的四则运算法则
2024/1/28
全微分的定义
如果函数$z=f(x,y)$在点$(x,y)$的全 增量$Delta z=f(x+Delta x,y+Delta y)-f(x,y)$可以表示为$Delta z=ADelta x+BDelta y+o(rho)$,其 中$A$和$B$不依赖于$Delta x$和 $Delta y$而仅与$x$和$y$有关, $rho=(Delta x^2+Delta y^2)^{frac{1}{2}}$,则称函数 $z=f(x,y)$在点$(x,y)$处可微,而 $ADelta x+BDelta y$称为函数 $z=f(x,y)$在点$(x,y)$处的全微分。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学 数
o
1
高 等 数 学 电 子 教 案
uuu uuu r r 例2 设M是平行四边形ABCD的对角线交点,且 AB=a, AD=b uuur uuur uuuuruuuu r 试用a和b表示向量 MA, MB, MC , MD
解: 由于平行四边形的对角线互相平分所以 b
A D M B C
a
学 数
学 数
向量a 上去
高 等 数 学 电 子 教 案
3,数乘向量 设λ是一个数,向量a与λ的乘积λa规定为模是| λ·a|= |λ||a|的向量.当λ>0时, λa的方向与a相同,反之则相反.当 λ=0时, λ·a是零向量. 数乘向量符合下列运算规则:
学 数
a -b a-b
(1)结合律 (2)分配律
λ(µa)=µ(λa)=(µλ)a (λ+µ)a=λa+µa λ(a+b)=λa+λb
学 数
,它的方向可以为任意.
高 等 数 学 电 子 教 案
两个非零向量如果它们的方向相同或相反,称为平行向量, 记为a∥b.由于零向量的方向认为是任意的,因此零向量与 任何向量都平行. 当平行向量的起点放在同一点时,它们的 终点和公共起点在同一直线上,因此.两向量平行又称两向 量共线.
学 数
高 等 数 学 电 子 教 案 二 向 量 的 线 性 运 算
高 等 数 学 电 子 教 案
B D A 例3:试证明三角形两边中点的连线平行且等于第三边的一半.
uuur uuu uuu uuur uuu uuu uuu r r r r r Q DE = DA + AE, DE = DB + BC + CE E uuu uuu uuu uuu uuu uuu r r r r r r C QDA =−DB, AE =−CE∴2DE = BC,
高 等 数 学 电 子 教 案
两个向量如果在同一条直线上,或在平行直线上,就称这两 个向量共线或平行. 根据数乘向量的规定,可以得到如下的结论: (1) 两个非零向量a和b平行的充分必要条件是a=λb,其中 λ是常数.反之如果两个非零向量a和b平行,则有为a=λb.
学 数
高 等 数 学 电 子 教 案
高 等 数 学 电 子 教 案 一.
第一节
向量的概念
向量及其线性运算
在数学上,我们用有向线段来表示向量,有向线段的长度表示 向量的大小,有向线段的方向表示向量的方向.例如以M1 为 起点,M2为终点的向量,记作 M 1 M 2 M2
学 数
M1
高 等 数 学 电 子 教 案
自由向量,即只研究它的大小和方向, 而不考虑它的始点 位置的向量.在这里凡是大小相等方向相同的向量认为 是相等的,即向量a经过平移和b完全重合.向量a和向量b相等. 记作a=b 向量的大小叫做向量的模,向量a的模,记为|a|. 模等于1的向量叫做单位向量. 模为零的向量叫做零向量,记为0,零向量的起点和终点重合
学 数
四. 利用坐标作向量的线性运算
利用向量的坐标,可得向量的加法,减法以及向量与数的乘法
分配律,有
高 等 数 学 电 子 教 案
a + b = (ax + bx )i + (ay + by ) j + (az + bz )k,
a − b = (ax − bx )i + (ay − by ) j + (az − bz )k,
个单位向量就确定了一个数轴. 设点O及单位向量i确定了数轴 Ox, 对于轴上任一点P,对应一个向量OP, 由于OP∥i,根据结论 (1), 必有唯一的实数x,使OP=xi,并知道OP与实数x一一对应.
学 数
i 0 1
x p
高 等 数 学 电 子 教 案
于是点P

向量OP=xi

实数x
从而轴上的点P与实数x有一一对应的关系,因此定义实数x 为轴上点P的坐标.由此可见,轴上点P的坐标为x的充分 必要条件是OP=xi i A o 1 x1
高 等 数 学 电 子 教 案
(bx,by,bz)=λ(ax,ay,az), 相当于向量b与a对应的坐标成比例 由此可见,对向量进行加,减及数乘,只需要对向量的各个坐 标分别进行相应的数量运算即可.当向量a≠0时,向量b∥a相 当于b=λa,坐标式为
学 数
bx by bz = = =λ ax a y az
x = 2(2,1, 2) − 3( − 1,1, − 2) = (7, − 1,10)
y = 3(2,1, 2) − 5(−1,1, −2) = (11, −2,16)
学 数
高 等 数 学 电 子 教 案
在直线AB上求点M,使 AM = λ MB 解: 例6 已知两点A(x1,y1,z1)和B(x2,y2,z2)以及实数λ≠-1,
c a 和结合律: (a+b)+c=a+(b+c). 由图可知它们满足交换律a+b=b+a
2向量的减法 向量的减法
设a为一向量,与a的模相等而方向相反的向量叫做a的负向量 ,记作-a,由此,我们规定两个向量a与b的差: a-b=a+(-b). , -a, , a b : a-b=a+(-b).特别是 a-a=a+(-a)=0由三角形法则可知道,要从a减去b,只要把-b加到
λ a = (λ ax )i + (λ a y ) j + (λ az )k ,
→ a + b = ( a x + bx , a y + b y , a z + bz ),
武 汉 科 技 学 院 数 理 系
a − b = ( a x − bx , a y − by , a z − bz ),
λ a = (λ a x , λ a y , λ a z )
b c c b b a 三角形法则是一致的,这从上面 可明白地看出.但多个向量相加 a+b+c+d c d
a a 向量加法的平行四边形法则与
时,用三角形法则明显要方便些. 因为相加的向量只要依次 首尾相连.第一个向量的起点为起点, 最后一个向量的终点
学 数
为终点的向量即是所求的和向量.
高 等 数 学 电 子 教 案ຫໍສະໝຸດ 高 等 数 学 电 子 教 案
=xi+yj+zk,称为向量r的坐标分解式, xi,yj,zk称为向量r沿三 个坐标轴的分向量,原点为o(0,0,0). R z
学 数
过空间的一点M分别作x轴y轴z轴的垂直平面,它们和三个 坐标轴的交点为x,y,z.则空间点M和有序数组x,y, z一一对应, x,y,z为点M的坐标,记作M(x,y,z),[op=xi,oQ=yj,oR=zk,r=OM
uuu r uuuu r uuu uuu r r a +b AC = a +b = 2AM →−(a +b) = 2MA∴MA=− 2 uuuu uuu a + b uuu r r r uuuu uuuu b − a uuur uuuu a −b r r r MC =−MA = , BD = −a + b = 2MD∴MD = , MB = −MD = 2 2 2
如果两个向量能表示为a=λb,则它们平行. 所以DE∥BC (1) 两个非零向量a和b平行的充分必要条件是a=λb,其中λ
学 数
是常数.反之如果两个非零向量a和b平行,则必为a=λb.

等 上面的结论(1)是建立数轴的理论根据, 我们知道,给定一个点, 数 学 电 一个方向及单位长度,就确定了一条数轴.由于一个单位 子 教 向量既确定了方向,又确定了单位长度, 因此,给定一个点及一 案

r r r r r a r a λ = r ,Q λ b = λ b = r b = a b b
学 数
且 a0 和a同向,故a0是a的单位向量,于是a=|a|a0
高 等 数 学 电 子 教 案
证明:点A的坐标为u1,即OA的值OA=u1,∴OA=u1e,OB=u2e ∴AB=OB-OA= u2e- u1e=(u2-u1)e e A u1 B u2 u 例1 在u轴上取定一点o作为坐标原点,设A,B是u轴 上坐标依次为u1, u2的两个点,e是与u轴同方向的单位向量,
(3)
高 等 数 学 电 子 教 案
解: 例5 求解以向量为未知元的线性方程组 x-3y=a 3x-2y=b 其中a=(2,1,2),b=(-1,1,-2)
5 x − 3 y = a → 15 x − 9 y = 3 a .
3x − 2y = b →15x −10y = 5b ⇒ y = 3a − 5b, x = 2a − 3b
向量的加,减法和数乘向量的运算叫做向量的线性运算. 1,向量的加法 向量的加法 规定:两个向量的加法运算, 以两向量为平行四边形的边, 对角线为它们的和.(称为平行四边形法). 把两向量的始点和终点相连接,它们的和是以一个向量 的始点为始点,另一个向量的终点为终点的向量.(三角形
学 数
法则)
高 等 数 学 电 子 教 案
学 数
右手法则排列,即右手握住z轴,四个手指从x轴的方向转到y 轴的方向时,拇指就指向z轴的正方向.
高 等 数 学 电 子 教 案
下两部分,上面的四个卦限按逆时针分成两个可以确定一
武 汉 科 技 学 院 数 理 系
z y x
个平面,称为坐标面三个坐标面把空间分成八个部分,每一 个部分叫做一个卦限.xoy平面把它们分成上下两部分,上面 的四个卦限按逆时针分成1,2,3,4卦限;下面的四个卦限 按逆时针分成5,6,7,8卦限
AM = OM − OA, MB = OB − OM
B x2 x
如果轴上有两点A,B,它们的坐标分别为x1和x2,
相关文档
最新文档