自动控制系统—— 第6章-3 频率法串联校正

合集下载

(自动控制原理)频率法串联校正

(自动控制原理)频率法串联校正

分析频率法串联校正在系统自动化控制中的应用场景和优势。
PID控制器的频率法串联校正
PID控制器结构与调 节方法简介
介绍PID控制器的基本结构和调 节方法,为后续内容做准备。
频率法串联校正的 PID控制器实现
详细解释如何使用频率法进行 PID控制器的串联校正。
仿真实验结果分析和 控制效果评估
展示频率法串联校正在PID控制 器中的仿真实验结果和评估。
(自动控制原理)频率法串 联校正
本演示将介绍自动控制原理中的频率法串联校正方法。通过清晰地讲解基本 原理和实际应用,希望能够帮助大家理解和应用这一重要的控制技术。
简介自动控制原理
什么是自动控制原理?
解析自动控制系统的基本原 理和概念,为后续内容打下 基础。
为什么需要自动控制?
探讨自动控制的意义、优势 和应用领域,引发观众的思 考。
介绍模型预测控制法中模型建立和参数优化的方法。
3 控制效果的评估方法
评估模型预测控制法的控制效果和应用成果。
频率法串联校正的基本原理
1
频率法与串联校正的结合
探讨频率法与串联校正的结合,为后续内容铺垫。详细解释频率法串联校正的核心算法和计算过程。
3
系统自动化控制的应用场景和优势
实际应用案例
分享一些世界各地的成功自 动控制实例,增加实用性和 吸引力。
频率法的基本原理
频率响应特性
解释频率法在自动控制中的基本原理和特点。
相角和幅值的定义和测量方法
介绍相角和幅值的测量方法,展示实际情况。
模型预测控制法
1 MPC的基本原理
讲解模型预测控制法的基本原理和应用场景。
2 模型建立与参数优化
探讨频率法串联校正的未来研究方向和发展趋势。

《自动控制原理》第6章_自动控制系统的校正

《自动控制原理》第6章_自动控制系统的校正
频率法校正的基本原理: 利用校正网络的特性来增大系统的相位裕度,
改善系统瞬态响应。
校正装置分类
校正装置按 控制规律分
超前校正(PD) 滞后校正(PI)
滞后超前校正(PID)
校正装置按 实现方式分
有源校正装置(网络) 无源校正装置(网络)
有源超前校正装置
R2
u r (t)
i 2 (t)
R1
i1(t)
(aTa s
1)(Tb a
s
1)
滞后--超前网络
L'()
20db / dec
20 lg K c
1 1/ T1 2 1/ T2
设相角为零时的角频率
1
()
a)
20db / dec
5
1 T1T2
90
5 校正网络具有相
5
位滞后特性。
90
b)
5 校正网络具有相位
超前特性。
G( j)
Kc
( jT1
G1 (s)
N (s) C(s)
G2 (s)
性能指标
时域:
超调量 σ%
调节时间 ts
上升时间 tr 稳态误差 ess
开环增益 K
常用频域指标:
开环频域 指标
截止频率: 相角裕度:
c
幅值裕度:
h
闭环频域 指标
峰值 : M p
峰值频率: r
带宽: B
复数域指标 是以系统的闭环极点在复平面
上的分布区域来定义的。
解:由稳态速度误差系数 k v 1应00 有
G( j)
100
j( j0.1 1)( j0.01 1)
100 A()
1 0.012 1 0.00012

自动控制6第六章控制系统的综合与校正

自动控制6第六章控制系统的综合与校正

复合校正
同时采用串联校正和反馈校正的方法,对系 统进行综合校正,以获得更好的性能。
数字校正
利用数字技术对控制系统进行校正,具有灵 活性和高精度等优点。
02 控制系统性能指标及评价
控制系统性能指标概述
稳定性
准确性
系统受到扰动后,能否恢复到原来的 平衡状态或达到新的平衡状态的能力。
系统稳态误差的大小,反映了系统的 控制精度。
针对生产线上的各种工 艺要求,设计相应的控 制策略,如顺序控制、 过程控制等。
系统校正方法
根据生产效率和产品质 量要求,采用适当的校 正方法,如PID参数整定、 自适应控制等。
仿真与实验验证
通过仿真和实验手段, 验证综合与校正后的工 业自动化生产线控制系 统的稳定性和效率。
控制系统综合与校正的注
06 意事项与常见问题解决方 案
仿真与实验验证
通过仿真和实验手段,验证综合与校正后 的导弹制导控制系统的精确性和可靠性。
系统校正方法
针对导弹制导控制系统的性能要求,采用 适当的校正方法,如串联校正、反馈校正 等。
实例三
01
02
03
04
控制系统结构
分析工业自动化生产线 控制系统的组成结构, 包括传感器、执行机构、 PLC等部分。
控制策略设计
考虑多变量解耦控制
对于多变量控制系统,可以考虑采 用解耦控制策略,降低各变量之间 的相互影响,提高系统控制精度。
加强系统鲁棒性设计
考虑系统不确定性因素,加强 系统鲁棒性设计,提高系统对 各种干扰和变化的适应能力。
THANKS FOR WATCHING
感谢您的观看
控制系统综合与校正的注意事项
明确系统性能指标

自动控制原理第六章频率法校正

自动控制原理第六章频率法校正
频率特性法校正
厦门大学航空系 吴德志 wdz@
1
6-1系统设计概述
系统分析:在系统的结构、参数已知的情况下, 计算出它的性能。 系统校正:在系统分析的基础上,引入某些参数 可以根据需要而改变的辅助装置,来改善系统的性 能,这里所用的辅助装置又叫校正装置。 一般说来,原始系统除放大器增益可调外,其结 构参数不能任意改变,有的地方将这些部分称之为 “不可变部分”。这样的系统常常不能满足要求。 如为了改善系统的稳态性能可考虑提高增益,但系 统的稳定性常常受到破坏,甚至有可能造成不稳定。 为此,人们常常在系统中引入一些特殊的环节 —— 校正装置,以改善其性能指标。
(ω ) arc tg α Tω arc tg Tω
( )
根据两角和的三角函数公式,可得
(ω ) arc tg
(α 1)Tω 1 α T 2ω2
将上式求导并令其为零,得最大超前角频率
ω
m

1 T α
23
得最大超前相角 或写为 α
m arc sin
60
m arc tg
t s 也小。 明系统自身的系统的快速性好,
15
(2)高阶系统 工程上常用经验公式
Mr 1 sin
35
≤ ≤
90
Kπ ts (s) ωc
p =0.16+0.4(M -1)
r
(1 Mr 1.8)
式中 K=2+1.5(Mr -1)+2.5(Mr -1)2
(1 Mr 1.8)
5
7-2 不同域中动态性能指标的表示及其转换
稳 定 性--是系统工作的前提, 稳态特性--反映了系统稳定后的精度, 动态特性--反映了系统响应的快速性。 人们追求的是稳定性强,稳态精度高,动态响应快。 不同域中的性能指标的形式又各不相同: 1.时域指标:超调量σp、过渡过程时间t s、以及 峰值时间tp、上升时间tr等。 2.频域指标:(以对数频率特性为例) ① 开环:剪切频率ωc、相位裕量r及增益裕量 Kg等。 ②闭环:谐振峰值Mr、谐振频率ωr及带宽ωb等。

自动控制原理第六章线性系统的校正方法

自动控制原理第六章线性系统的校正方法

对数幅频特性曲线如下图
16
10 3) 预选Gc(s)=τs+1,则 Gk ( s ) = (τs + 1) s ( s + 1)
′ 要求τ使系统满足 γ ′′ 和 ω c′ 的要求。 ′ 选择 ω c′=4.4dB/dec,求τ,则:
" L( wc ) = 20 lg 10 − 20 lg 4.4 − 20 lg 4.4 + 20 lg 4.4τ
1 / 2T 则 Gk ( s ) = s (Ts + 1)
其相频特性为: ϕ (ω ) = −90o − arctan Tω
1 = 63.5o γ (ωc ) = 180 + ϕ (ωc ) = 180 − 90 − arctan T ⋅ 2T
o o o
h=∞
21
∴由 ξ = 0.707 得性能指标为:
2
N R E
串联 校正 控制器 对象
已知被控对象数学模型 G p (s),即根据生产要求而 得到的系统数学模型,称为 固有部分数学模型,在工程 实际中是不能改变的。
C
反馈 校正
根据固有数学模型和性能要求进行分析,若现有闭环情况 下没有满足的性能指标或部分没有满足要求的性能指标,则人 为的在固有数学模型基础上,另加一些环节,使系统全面满足 性能指标要求,这个方法或过程称为校正,也称为系统设计。 所附加的环节被称为控制器,其物理装置称为校正装置。 通常记为Gc(s)
2 2 典型二阶系统可表示为: ωn ωn Φ(s) = 2 Gk ( s) = 2 s ( s + 2ξω n ) s + 2ξω n s + ω n
ξ
19
2 ωn C ( jω ) Φ ( jω ) = = =1 2 2 R ( jω ) ( jω ) + 2ξωn ⋅ jω + ωn 2 ωn

数学建模自动控制自动控制系统的校正公开课一等奖优质课大赛微课获奖课件

数学建模自动控制自动控制系统的校正公开课一等奖优质课大赛微课获奖课件

机械网络
C1 C 2 ,T C2
C2
K2
Ts 1
Gc (s) Ts 1
阻容网络
R1 R2 R2
,T
R2C2
第13页
自动控制原理 无源阻容网络
第六章 自动控制系统的校正
滞后-超前校正网络
机械网络
R1 R2
R2
T1 R1C1 T2 R2 C2
K1 K2
K2
T1
C1 K1
T2
C2 K2
系统相位和增益裕量分 别为17°和+∞分贝
1.系统稳定 2.稳态误差满意 3.瞬态响应不满意
改变高频部分, c
超前校正
第17页
自动控制原理
第六章 自动控制系统的校正
第18页
自动控制原理
第六章 自动控制系统的校正
(3)拟定需要增长最大相位超 前角m
50 17 33 m 5 38
补偿c增长造成 Gs(j )相位滞后
K
5
Gs (s)
s(s
5 1)(0.5s
1)
第24页
自动控制原理
第六章 自动控制系统的校正
(2)拟定未校正系统相位裕量和增益裕量
20
1.须增长相位裕 量较大
2.c附近Gs(j) 相角减小不久
3.未提出频宽要求
滞后校正
第25页
自动控制原理
第六章 自动控制系统的校正
第26页
自动控制原理
第六章 自动控制系统的校正
➢执行元件: 受被控对象功率要求和所需能源形式、工作 ➢ 条件限制。伺服电动机、液压/气动伺服马达等;
➢测量元件: 依赖于被控制量形式。电位器、热电偶、测 ➢ 速发电机以及各类传感器等;

自动控制原理第六章

自动控制原理第六章

G(s)

K0 K p (Ti s 1) Ti s2 (Ts 1)
表明:PI控制器提高系统的型号,可消除控制系统对斜 坡输入信号的稳态误差,改善准确性。
校正前系统闭环特征方程:Ts2+s+K0=0 系统总是稳定的
校正后系统闭环特征方程:TiTs3 Ti s2 K p K0Ti s K p K0 0
调节时间 谐振峰值
ts

3.5
n
Mr
2
1 ,
1 2
0.707
谐振频率 r n 1 2 2 , 0.707
带宽频率 b n 1 2 2 2 4 2 4 4 截止频率 c n 1 4 4 2 2
相角裕度
arctan
低频段:
开环增益充分大, 满足闭环系统的 稳态性能的要求。
中频段:
中频段幅频特性斜 率为 -20dB/dec, 而且有足够的频带 宽度,保证适当的 相角裕度。
高频段:
高频段增益尽 快减小,尽可 能地削弱噪声 的影响。
常用的校正装置设计方法 -均仅适用最小相位系统
1.分析法(试探法)
特点:直观,物理上易于实 现,但要求设计者有一定的 设计经验,设计过程带有试 探性,目前工程上多采用的 方法。
列劳思表:
s3 TiT
K p K0Ti
s2 Ti
K pK0
s1 K p K0 (Ti T )
s0 K p K0
若想使系统稳定,需要Ti>T。如果 Ti 太小,可能造成系 统的不稳定。
5.比例-积分-微分(PID)控制规律
R( s )
E(s)
C(s)
K
p (1

自动控制原理--基于频率特性法的串联超前校正

自动控制原理--基于频率特性法的串联超前校正
超前校正会使系统瞬态响应的速度变快。校正后系统的截 止频率增大。这表明校正后,系统的频带变宽,瞬态响应 速度变快;但系统抗高频噪声的能力变差。对此,在校正 装置设计时必须注意。
超前校正一般虽能较有效地改善动态性能,但未校正系统 的相频特性在截止频率附近急剧下降时,若用单级超前校 正网络去校正,收效不大。因为校正后系统的截止频率向 高频段移动。在新的截止频率处,由于未校正系统的相角 滞后量过大,因而用单级的超前校正网络难于获得较大的 相位裕量。
前 180 90 tan1(0.8 3.54) 19.4
计算超前网络参数α和T:方法一 选取校正后系统的开环截止频率
G(s) K s(0.8s 1)
m c 5rad / s
在校正后系统的开环截止频率处原系统的幅值与校正 装置的幅值大小相等、符号相反
Lo (c)
20
lg
10
c 0.8c
开环对数渐进幅频特性如伯特图中红线所示。校正后系 统的相位裕量为
" 180 90 tan1 4 tan1 2 tan1 0.5 50.9
满足系统的性能指标要求。
基于上述分析,可知串联超前校正有如下特点:
这种校正主要对未校正系统中频段进行校正,使校正后中 频段幅值的斜率为-20dB/dec,且有足够大的相位裕量。
根据对截止频率 c的要求,计算超前网络参数α和T;
关键是选择最大超前角频率等于要求的系统截止频率,即
m c 以保证系统的响应速度,并充分利用相角超前特性。显然,
m c成立的条件是 Lo (c) 10 lg

m
T
1
求出T
求出α
画出校正后系统的波特图并验证已校正系统的相角裕度。
用频率法对系统进行串联超前校正的一般步骤可归纳为:

第6章自动控制系统的校正

第6章自动控制系统的校正

比例,积分、微分(PID)调节器(相位滞后-超前校正)
PID调节器
R(s)

E (s)
Kp
KI

M (s)
G0 (s)
C (s)


s
KDs
PID调节器的运动方程为:
de(t) m(t) K p e(t) K I e(t)dt K D dt
写成传递函数形式
K Ds 2 K ps K I KI M(s) G e (s) Kp K Ds E(s) s s
式中 KC=R1/R0 ——比例放大倍数 T1=R1C1——积分时间常数
PI调节器的Bode图
其Bode图如图所示。从图可见, PI 调节器提供了负的相位角,所 以 PI 校正也称为滞后校正。并且 PI 调节器的对数渐近幅频特性在 低频段的斜率为-20dB/dec。因而 将它的频率特性和系统固有部分 的频率特性相加,可以提高系统 的型别,即提高系统的 稳态精度 。
6.1.2 有源校正装置 有源校正装置是由运算放大器组成的调节器。有 源校正装置本身有增益,且输入阻抗高,输出阻抗低, 所以目前较多采用有源校正装置。缺点是需另供电源。
有源校正装置
6.2 串联校正 6.2.1 比例(P)校正
RS
比例校正GC(S) 系统固有部分G1(S)
35 s0.3s 10.01s 1
第6章 自动控制系统的校正
一、校正的概念
当控制系统的稳态、静态性能不能满足实 际工程中所要求的性能指标时,首先可以考虑 调整系统中可以调整的参数;若通过调整参数 仍无法满足要求时,则可以在原有系统中增添 一些装置和元件,人为改变系统的结构和性能, 使之满足要求的性能指标,我们把这种方法称 为校正。增添的装置和元件称为校正装置和校 正元件。系统中除校正装置以外的部分,组成 了系统的不可变部分,我们称为固有部分。

自动控制原理(第三版)第6章 控制系统的校正

自动控制原理(第三版)第6章 控制系统的校正
如果通过调整控制器增益后仍然不能全面满 足设计要求的性能指标,就需要在系统中增加一 些参数及特性可按需要改变的校正装置,使系统 全面满足设计要求。
在研究系统校正装置时,为了方便,将系统 中除了校正装置以外的部分,包括被控对象及控 制器的基本组成部分一起称为“固有部分”。
因此控制系统的校正,就是按给定的固有部 分和性能指标,设计校正装置。
KPLeabharlann e(t) 1 TI
t
e(t)dt
0
TD
de(t) dt
u(t为) 控制器的输出; e(为t) 系统给定量与输出量的偏差
K为P 比例系数; T为I 积分时间常数; TD 为微分时间常数
相应的传递函数为
Gc
(s)
K
P
1
1 TI s
TD
s
KP
KI s
KDs
KP 为比例系数;K I为积分系数;KD 为微分系数。
(1) 原理简单,使用方便。
(2) 适应性强,可广泛应用于各种工业生产部 门,按PID控制规律进行工作的控制器早已商品化, 即使目前最新式的过程控制计算机,其基本控制 功能也仍然是PID控制。
(3) 鲁棒性强,即其控制品质对被控对象特性 的变化不太敏感。
自动控制原理
基本PID控制规律可以描述为
u(t)
自动控制原理
2. 频域性能指标
频域性能指标,包括开环频域指标和闭环频 域指标。 (1) 开环频域指标 一般要画出开环对数频率特性,并给出开环频域 指标如下:开环剪切频率c 、相位裕量 和幅值 裕量K g 。 (2) 闭环频域指标 一般给出闭环幅频特性曲线,并给出闭环频域指 标如下:谐振频率 r 、谐振峰值 M r 和频带宽度b 。

自动控制理论第六章控制系统的校正与设计

自动控制理论第六章控制系统的校正与设计

第一节 系统校正的一般方法
幅相频率特性曲线:
Im
Gc(s)=
1+aTs 1+Ts

dφ(ω) dω
=0

ωm=
1 Ta
=
1 T
·aT1
0
φm 1ω=0 α+1
2
ω=∞
α Re
两个转折频率的几何中点。
最大超前相角:
sinφm=1+(a(a––11)/)2/2
=
a–1 a+1
φm=sin-1
a–1 a+1
滞后校正部分:
(1+ T1S) (1+αT1S)
超前校正部分:
(1+ T2S)
(1+
T2 α
S)
L(ω)/dB
1
1
0 α T1
T1
-20dB/dec
φ(ω)
0

T2
T2
ω
+20dB/dec
ω
第一节 系统校正的一般方法
(2) 有源滞后—超前
R2
校正装置 传递函数为:
ur R1
GGcc(式(ss))中==K:(K1(cc1(+(1+1aK+T+TTcT01=S1S1S)SR)()()12(1R(+1+1+1+RT+TaT33T2S2S2S)S))) T1=
a=
1+sinφm 1–sinφm
第一节 系统校正的一般方法
(2) 有源超前校正装置
R2 C
R3
Gc(s)=
R3[1+(R1+R2)Cs] R1(1+R2Cs)

自动控制原理频率法串联校正

自动控制原理频率法串联校正

自动控制原理
电子信息学院
14 / 37
串联滞后校正
串联滞后校正:滞后校正分析
(1) 幅频高频衰减特性,使原系统截止频率 ωc 左移减小,相角裕度提 高。适用于 ωc 有余,相角裕度不足时; (2) 相位滞后,会减小原系统相角裕度,应附加相角 5 ∼ 12◦ ,并力求 避免 ωm 出现在 ωc 附近,一般取
2
3
4
5
6
第六章 频率法串联校正
自动控制原理
电子信息学院
2 / 37
引言
引言
控制目标——性能指标 时域 性能指标 { 频域 超调量σ % 调节时间ts 稳态误差ess 稳定裕量(h, γ ), 截止频率ωc 谐振峰值Mr , 频带宽ωb
. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
第六章 频率法串联校正
自动控制原理
电子信息学院
9 / 37
串联超前校正
串联超前校正:超前网络特性
{
−1 ψm = arctan a a+1 sin ψm a = 1+ 1−sin ψm
sin ψm (3) 确定 ψm = γ ∗ − γ0 + (5◦ ∼ 10◦ ){a = 1+ 1−sin ψm , 10 log a} √ (4) 作图确定 ωc (ωm ) → ω1 (ωm a) → ω2 (aω1 ) → Gc (s)
(5) G(s) = Gc (s) · G0 (s) 验算 {ωc , γ } 是否满足要求
ω2 = 1/bT = (0.1 ∼ 0.2)ωc { 相角迟后:是不利因素,应当避免 幅值衰减:是有利因素,应当利用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为使校正后的系统 L"(c") 0dB
应使 L'(c") Lc (m ) 0
即 Lc (m ) 6dB
Lc (m) 10lg a
a 100.6 4
15
再根据 m T 1 a 得 T 1 1 0.114 m a 4.4 4
超前校正网络传函为(补偿增益衰减,放大4倍)
4Gc (s)
自控原理
第6章 线性系统校正
6.3 频率法串联校正
1
6.3 频率法串联校正 6.3.1 频率响应法校正设计 6.3.2 串联超前校正 6.3.3 串联滞后校正
2
6.3 频率法串联校正
系统设计要求以频域指标,如稳态误差、开 环截止频率、相角裕度等给出时,可采用频域校 正设计方法
6.3.1 频率响应法校正设计
5
6.3.2 串联超前校正
一般采用PD控制器
L() dB
或超前网络进行串联 10lg a
超前校正
0
20dB/dec
aG( j) 1 jaT 1 jT
1 T
() (度)
90º
m
1
T
20 lg a (dB)
相位超前校正对系统性
能的影响

(m)
m
1)校正后系统截止频率上升,通频带变宽,提高了 系统的快动作性。
-80
-1
0
1
2
10
10
10
10
Frequency (rad/sec)
待校正系统 c' 3.1 相位裕度 180 90 arctgc' 17.9
13
40
[20]
Bode Diagram
20
Magnitude (dB)
0
[40]
-20
-40
L' ( )
-60
-80
-1
0
1
2
10
10
10
10
0
Phase (deg)
-45
-90
-135
-180
-1
10
0
1
10
10
Frequency (rad/sec)
校正前 17.9 校正后 " 49.7 45
Exam6_3_11.m
2
10
h
17
% 例6.3.1 串联超前校正 w=logspace(-1,2);
num=10; den=[1,1,0]; sys1=tf(num,den);% 待校正的系统
两种设计方法: 1)分析法(试探法):根据经验不断试探 2)综合法(期望特性法):根据性能要求设
计校正装置
两种方法都仅针对最小相位系统
3
对于开环频率特性曲线 1)低频段表征了闭环系统的稳态性能 2)中频段表征了闭环系统的动态性能 3)高频段表征了闭环系统的复杂性和噪声抑 制功能
4
频域响应设计的实质就是加入形状合适的校 正装置,使开环频率曲线变成期望的形状: 1)低频增益足够大,保证稳态误差要求 2)中频段对数幅频曲线斜率一般为-20dB/dec, 并占据充分宽的频带,以保证适当的相角裕度 3)高频增益尽快减小,以削弱噪声影响
T
m a
m T 1a
4)验算已校正系统的相角裕度 " 是否满足要求。 如果不满足要求,需重选 m ,一般使其增大
" m (c")
m
arcsin
a 1 a 1
9
【例6.3.1】系统如图,要求系统在单位斜坡输入
下稳态误差 ess 0.1
R(s)
开环截止频率 c" 4.4
-
K C(s) s(s 1)
Phase (deg)
-135
-180
-1
10
0
10
c'
1
10
2
10
Frequency (rad/sec)
幅值裕度无穷大,所以,只需要考虑相位裕度
12
待校正系统幅频曲线 L'()
Bode Diagram
40
[20]
20
Magnitude (dB)
0
[40]
-20
-40
L' ( )
-60
c' 3.1
() 90 arctg
11
待校正系统Bode图
Magnitude (dB)
w=logspace(-1,2);
% 待校正的系统
50
num=10;
den=[1,1,0];
0
bode(num,den,w)
grid on
-50
-100
Exam6_3_10.m
-90
G( j) 10 j( j 1)
Bode Diagram
相角裕度 " 45
幅值裕度 h" 10dB
要求设计串联无源校正网络
解:1)系统开环传递函数为
G(s) K s(s 1)
10
开环传函的 v 1
根据单位斜坡输入下的稳态误差要求
essLeabharlann 1 K0.1K 10
所以,开环传函为 G(s) 10 s(s 1)
G( j) 10 j( j 1)
L'() 20 lg 10 12
1 aTs 1 Ts
1 1
0.456s 0.114s
串联补偿网络后的开环传函为
10(1 0.456s) Gc (s)G(s) s(1 s)(1 0.114s)
16
40
c ' 3.1
20
0
Bode Diagram
Magnitude (dB)
c " 4.4
-20
-40
校正前
补偿网络
-60
校正后
-80 45
Frequency (rad/sec)
c' 3.1 c" 4.4
17.9 45
相位裕度小,是因为中频段斜率-40dB/dec。应
采用超前校正抬升中频段斜率和相位
14
2)设计超前校正网络
选 m c" 4.4
由待校正系统幅频特性,得
L'(c") 6dB
L'() 20 lg 10 12
numc=[0.456,1]; denc=[0.114,1]; sys2=tf(numc,denc);%补偿网络
num2=10*numc; den2=conv(den,denc); sys3=tf(num2,den2);% 校正后
bode(sys1,sys2,sys3,w) legend('校正前','补偿网络','校正后') title('例6.3.1 超前校正')
6
L() dB
2)由于相位超前作
用,校正后抬升系统 10lg a
相位, 增大,提高
0
了系统的相对稳定性。
() (度)
90º
20dB/dec
1 T
m

m
20lg a (dB)
1 T
(m)
为使校正装置更有效地提高系统的相对稳定性, 通常应选取 m 在校正后系统的截止频率处。
7
选择校正网络的交接频率1/aT和1/T在期望截 止频率两旁,并选择合适的参数a和T
设计步骤:
1)根据稳态误差要求,确定开环增益K
2)利用已确定的开环增益,计算待校正系统的相 角裕度
3)根据截止频率
'' c
的要求,计算超前网络的参数
a和T。关键是选择 m c"
L'(c'' ) Lc (m ) 10 lg a
’(单引号)表示待校正系统,’’(双引号)表示期望特 性
8
确定a后,再由下式确定T 1
相关文档
最新文档