火焰钎焊中火焰控制

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

火焰钎焊中火焰控制
鲜萌
火焰钎焊是一种最古老的连接方法。

我国早在公元前三千年前就已应用在金属构件的连接了,三星堆出土的青铜构件里就有火焰钎焊的连接件。

现在火焰钎焊虽比起古人的方法和形式有了很大的变化,终究还是以火焰为钎焊的热源。

当代钎焊的方法很多,作为最古老的焊接方法,火焰钎焊不但不能被淘汰,甚至不能被替代。

作为既是手艺,又是科学技术的火焰钎焊,依然会伴随在我们工业发展的道路上。

学习和应用火焰钎焊的技术,也就成了焊接工作者必须掌握的东西。

了解火焰钎焊,就先从其原理开始,火焰钎焊顾名思义就是用火焰作为加热焊接件的热源,使焊接母材达到焊接温度,钎料熔化后对母材进行的连接。

与所有钎焊一样它有这几个重要的要素;钎料、焊接母材、钎剂、焊接温度、表面清洁、装配间隙。

这些要素一样不对都会影响焊接质量。

火焰钎焊只是焊接温度中的一种加热方法。

我们先了解一下火焰的性质和分类;
气体火焰包括氧-乙炔焰、氢氧焰及液化石油气体[丙烷(C3H8)含量占50%~80%,此外还有丁烷(C4H10)、丁烯(C4H8)等]燃烧的火焰。

乙炔与氧混合燃烧形成的火焰,称为氧-乙炔焰。

氧-乙炔焰具有很高的温度(约3200℃),加热集中,因此,是气焊中主要采用的火焰。

氢与氧混合燃烧形成的火焰,称为氢氧焰。

氢氧焰是最早的气焊利用的气体火焰,由于其燃烧温度低(温度可达2770℃),且容易发生爆炸事故,未被广泛应用于工业生产,目前主要用于铅的焊接及水下火焰切割等。

液化石油气燃烧的温度比氧-乙炔火焰要低,丙烷在氧气中燃烧温度为2000~2850℃。

液化石油气体燃烧的火焰主要用于金属切割,用于气割时,金属预热时间稍长,但可以减少切口边缘的过烧现象,切割质量较好,在切割多层叠板时,切割速度比使用乙炔快20%~30%。

液化石油气体燃烧的火焰除越来越广泛地应用于钢材的切割外,还用于焊接有色金属。

国外还有采用乙炔与液化石油气体混合,作为焊接气源。

乙炔(C2H2)在氧气(O2)中的燃烧过程可以分为两个阶段,首先乙炔在加热作用下被分解为碳(C)和氢(H2),接着碳和混合气中的氧发生反应生成一氧化碳(CO),形成第一阶段的燃烧;随后在第二阶段的燃烧是依靠空气中的氧进行的,这时一氧化碳和氢气分别与氧发生反应分别生成二氧化碳(CO2)和水(H2O)。

上述的反应释放出热量,即乙炔在氧气中燃烧的过程是一个放热的过程。

氧一乙炔火焰根据氧和乙炔的不同比例,可分为中性焰、碳化焰和氧化焰三种类型,其构造和形状如图4—1所示。

二、中性焰
中性焰是氧与乙炔容积的比值(O2/C2H2)为1.1~1.2的混合气燃烧形成的气体火焰,中性焰在第一燃烧阶段既无过剩的氧又无游离的碳。

当氧与丙烷容积比值(O2/C3H8)为3.5时,也可得到中性焰。

中性焰有三个显著区别的区域,分别为焰芯、内焰和外焰。

(一)焰芯中性焰的焰芯呈尖锥形,色白而明亮,轮廓清楚。

焰芯由氧气和乙炔组成,焰芯外表分布有一层由乙炔分解够所生成的碳素微粒,由于炽热的碳粒发出明亮的白光,因而有明亮而清楚的轮廓。

在焰芯内部进行着第一阶段的燃烧。

焰芯虽然很亮,但温度较低(800~1200℃),这是由于乙炔分解而吸收了部分热量的缘故。

(二)内焰内焰主要由乙炔的不完全燃烧产物,即来自焰芯的碳和氢气与氧气燃烧的生成物一氧化碳和氢气所组成。

内焰位于碳素微粒层外面,呈蓝白色,有深蓝色线条。

内焰处在焰芯前2~4mm部位,燃烧最激烈,温度最高,可达3100~3150℃。

气焊时,一般就利用这个温度区域进行焊接,因而称为焊接区。

由于内焰中的一氧化碳(CO)和氢气(H2)能起还原作用,所以焊接碳钢时都在内焰进行,将工件的焊接部位放在距焰芯尖端2~4mm处。

内焰中的气体中一氧化碳的含量约占60%~66%,氢气的含量约占30%~34%,由于对许多金属的氧化物具有还原作用,所以焊接区又称为还原区。

(三)外焰处在内焰的外部,外焰的颜色从里向外由淡紫色变为橙黄色。

在外焰,来自内焰燃烧生成的一氧化碳和氢气与空气中的氧充分燃烧,即进行第二阶段的燃烧。

外焰燃烧的生成物是二氧化碳和水。

外焰温度为1200~2500℃。

由于二氧化碳(CO2)和水(H2O)在高温时容易分解,所以外焰具有氧化性。

中性焰应用最广泛,一般用于焊接碳钢、紫铜和低合金钢等。

中性焰的温度是沿着火焰轴线而变化的,如图4—2所示。

中性焰温度最高处在距离焰芯末端2~4mm的内焰的范围内,此处温度可达3150℃,离此处越远,火焰温度越低。

此外,火焰在横断面上的温度是不同的,断面中心温度最高,越向边缘,温度就越低。

由于中性焰的焰芯和外焰温度较低,而且内焰具有还原性,内焰不但温度最高还可以改善焊缝金属的性能,所以,采用中性焰焊接大多数的金属及其合金时,都利用内焰。

三、碳化焰
碳化焰是氧与乙炔的容积的比值(O2/C2H2)小于1.1时的混合气燃烧形成的气体火焰,因为乙炔有过剩量,所以燃烧不完全。

碳化焰中含有游离碳,具有较强的还原作用和一定的渗碳作用。

碳化焰可分为焰芯、内焰和外焰三部分,如图4—1b所示。

碳化焰的整个火焰比中性焰长而柔软,而且随着乙炔的供给量增多,碳化焰也就变得越长、越柔软,其挺直度就越差。

当乙炔的过剩量很大时,由于缺乏使乙炔完全燃烧所需要的氧气,火焰开始冒黑烟。

碳化焰的焰芯较长,呈蓝白色,由一氧化碳(CO)、氢气(H2)和碳素微粒组成。

碳化焰的外焰特别长,呈橘红色,由水蒸汽、二氧化碳、氧气、氢气和碳素微粒组成。

碳化焰的最高温度为2700~3000℃。

由于在碳化焰中有过剩的乙炔,它可以分解为氢气和碳,在焊接碳钢时,火焰中游离状态的碳会渗到熔池中去,增高焊缝的含碳量,使焊缝金属的强度提高而使其塑性降低。

此外,过多的氢会进入熔池,促使焊缝产生气孔和裂纹。

因而碳化焰不能用于焊接低碳钢及低合金钢。

但轻微的碳化焰应用较广,可用于焊接高碳钢、中合金钢、高合金钢、铸铁、铝和铝合金等材料。

四、氧化焰
氧化焰是氧与乙炔的容积的比值(O2/C2H2)大于1.2时的混合气燃烧形成的气体火焰,氧化焰中有过剩的氧,在尖形焰芯外面形成了一个有氧化性的富氧区,其构造和形状如图4—1c所示。

氧化焰由于火焰中含氧较多,氧化反应剧烈,使焰芯、内焰、外焰都缩短,内焰很短,几乎看不到。

氧化焰的焰芯呈淡紫蓝色,轮廓不明显;外焰呈蓝龟,火焰挺直,燃烧时发出急剧的“嘶嘶”声。

氧化焰的长度取决于氧气的压力和火焰中氧气的比例,氧气的比例越大,则整个火焰就越短,噪声也就越大。

氧化焰的最高温度可达3100~3400℃左右。

由于氧气的供应量较多,使整个火焰具有氧化性。

如果焊接一般碳钢时,采用氧化焰就会造成熔化金属的氧化和合金元素的烧损,使焊缝金属氧化物和气孔增多并增强熔池的沸腾现象,从而较大地降低焊接质量。

所以,一般材料的焊接,绝不能采用氧化焰。

但在焊接黄铜和锡青铜时,利用轻微的氧化焰的氧化性,生成的氧化物薄膜覆盖在熔池表面,可以阻止锌、锡的蒸发。

由于氧化焰的温度很高,在火焰加热时为了提高效率,常使用氧化焰。

气割时,通常使用氧化焰。

相关文档
最新文档