线性代数第一章第二节
线性代数第一章第二节
四、作业 P35 1(3) 2(4) 4 8(3) 12(1)(3)
思考题[*]
x
已知
1
1
2
1 f x 3 1
3
x 1 1 2 x 1 1 2x 1
求 x 的系数.
思考题解答
解 含 x 3 的项有两项,即
x 1 f x 3 1
对应于
t
1
1
2
x 1 1 2 x 1 1 2x 1
2. a14 a21a33 a44不是四阶行列式中的项 ,a12 a43a31a24是四阶 行列式中的项. a12 a43a31a24 a12 a24 a31a43
1t 2413 a12a24 a31a43a 13 a12a24 a31a43 a12a24 a31a43
t(53412) = 0+1+1+3+3=8 定理 2 n个自然数共有n!个n元排列,其中奇偶排 列各占一半。
二、n 阶行列式的定义
三阶行列式定义为
a 11 a 21 a 31
a 12 a 22 a 32
a 13 a 23 a 33
123 231 312 132 213 321 t(123)=0 t(231)=2 t(312)=2 t(132)=1 t(213)=1 t(321)=3
例 3 三阶行列式
例4 四阶行列式
1 2 3
12 3
3 4
例5 n 阶行列式
1 2
12 34
1 2
(1)
n( n 1 ) 2
12 n
n
a 11 a 21 an1
a 12 a 22 an 2
... a 1 n ... a 2 n t ( j1 j2 ......jn ) a1 j1 a2 j2 ......anj n (1) ... a nn
线性代数课件 第一章
1 0 (5)单位矩阵 单位矩阵 0 1 E = En = L L O 0 0
称为单位矩阵( 单位阵) 称为单位矩阵(或单位阵). 单位矩阵
L 0 O L 0 L L L 1
a11 a 21 A= L a m1
简记为
a12 a 22 L am1
L a1 n L a2n L L L a mn
矩阵A的 (m, n)元
A = Am×n = (aij )m×n = (aij ).
这m × n个数称为 A的元素 ,简称为元 . 简称为元
a11 x1 + a12 x2 + L + a1n xn = b1 a x + a x +L + a x = b 21 1 22 2 2n n 2 LLLLLLLLLLLL am1 x1 + am 2 x2 + L + amn xn = bm
, , 系数 aij ( i =1,2,L m, j =1,2,L n) , 常数项 bi (i = 1,2,L,n)
全为1 全为
(6)方阵 方阵 主对角线
a11 a12 a21 a22 A= L L 副对角线 an1 an1
简记为
L a1n L a2 n L L L ann
n× n
矩 A 阵 的
( n, n) 元
A = An× n = ( aij )
.
矩阵的转置
a11 a 21 A= L a m1
定义3 如果矩阵A经过有限次的初等变换变成B 定义3 如果矩阵A经过有限次的初等变换变成B, 就称矩阵A与矩阵B等价, 就称矩阵A与矩阵B等价,记作 A ~ B . 矩阵之间的等价具有自反性、对称性和传递性. 矩阵之间的等价具有自反性、对称性和传递性. 例如 用矩阵的初等行变换 解线性方程组
第1章线性代数
第一节 二阶、三阶行列式
第一章 行列式
hang lie shi
二阶、三阶行列式的概念在中学已有介绍,在此进一步复习巩固。
一、二阶行列式
对于二元线性方程组
aa1211xx11
a12 x2 a22 x2
b1 , b2 ,
由消元法得
((aa1111aa2222
a12a21 )x1 a12a21 )x2
第一章 行列式
第一章 行列式
行列式的概念是由解线性方程组 引入的,是线性代数中最基本的内容, 也是学习矩阵与线性方程组的理论基 础。本章主要包括行列式的概念、性 质、展开及应用——克莱姆法则。
目录
1 第一节 二阶、三阶行列式 2 第二节 n阶行列式 3 第三节 行列式的性质 4 第四节 行列式的展开 5 第五节 行列式的应用
研究问题的简捷,引入记号
第一章 行列式
hang lie shi
a11 a12 a13 D a21 a22 a23
a31 a32 a33
来表示变形方程(1-3)中 x1的系数,它是由未知量系数排成三行三列构成的,
称为三阶行列式,即
a11 a12 a13
D a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32
显然, D1 ,D2 可看作是以 b1 ,b2 为一列分别取代D中第1列、第2列得到。
于是,方程组的解可表示为
x1
D1 D
,
x2
D
.
由此,二元线性方程组可通过其未知量系数、常数项构成的二阶行列式
线性代数教案全(同济大学第六版)
线性代数教案第(1)次课授课时间()1.教学内容: 二、三阶行列式的定义;全排列及其逆序数;阶行列式的定义2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示.基本内容备注第一节 二、三阶行列式的定义一、二阶行列式的定义从二元方程组的解的公式,引出二阶行列式的概念。
设二元线性方程组 ⎩⎨⎧=+=+22222211212111b x a x a b x a x a用消元法,当021122211≠-a a a a 时,解得211222111212112211222112121221,a a a a b a b a x a a a a b a b a x --=--=令2112221122211211a a a a a a a a -=,称为二阶行列式 ,则如果将D 中第一列的元素11a ,21a 换成常数项1b ,2b ,则可得到另一个行列式,用字母1D 表示,于是有2221211a b a b D =按二阶行列式的定义,它等于两项的代数和: ,这就是公式(2)中 的表达式的分子。
同理将 中第二列的元素a 12,a 22 换成常数项b1,b2 ,可得到另一个行列式,用字母 表示,于是有2121112b a b a D =按二阶行列式的定义,它等于两项的代数和: ,这就是公式(2)中 的表达式的分子。
于是二元方程组的解的公式又可写为⎪⎪⎩⎪⎪⎨⎧==D D x D D x 2211 其中0≠D例1. 解线性方程组 .1212232121⎪⎩⎪⎨⎧=+=-x x x x 同样,在解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a 时,要用到“三阶行列式”,这里可采用如下的定义.二、三阶行列式的定义设三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a用消元法解得定义 设有9个数排成3行3列的数表333231232221131211a a a a a a a a a 记 333231232221131211a a a a a a a a a D =322113312312332211a a a a a a a a a ++=332112322311312213a a a a a a a a a ---,称为三阶行列式,则三阶行列式所表示的6项的代数和,也用对角线法则来记忆: 从左上角到右下角三个元素相乘取正号,从右上角到左下角三个元素取负号,即例2.计算三阶行列式 .(-14) 例3.求解方程 ( ) 例4.解线性方程组 解 先计算系数行列式573411112--=D 069556371210≠-=----+-= 再计算 321,,D D D515754101121-=--=D ,315534011222=--=D ,55730112123=---=D得 23171==D D x ,69312-==D D y ,6953-==D D z第( 2 )次课授课时间()第( 3 )次课授课时间()1.教学内容: 行列式按行(列)展开;2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;教学手段: 黑板讲解与多媒体演示.基本内容备注第5节 行列式按行(列)展开定义 在 阶行列式中, 把元素 所处的第 行、第 列划去, 剩下的元素按原排列构成的 阶行列式, 称为 的余子式, 记为;而 称为 的代数余子式.引理 如果 阶行列式中的第 行除 外其余元素均为零, 即: .则: .证 先证简单情形:再证一般情形:定理 行列式等于它的任意一行(列)的各元素与对应的代数余子式乘积之和, 即按行: 按列: 证:(此定理称为行列式按行(列)展开定理)nnn n ini i n a a a a a a a a a D212111211000000+++++++++=nnn n in n nnn n i n nn n n i n a a a a a a a a a a a a a a a a a a a a a 21112112121121121111211000000+++=).,2,1(2211n i A a A a A a in in i i i i =+++=例1 : . 解:例2: 21122112----=n D解: 21122112----=n D 211221100121---=+++nr r)()()()()()21331122213311n n n n n n n x x x x x x x x x x x -----, 并提出因子 )()2321111--n n n x x x x x x()1-n 阶范德蒙行列式(1n x x -行列式一行(列)的各元素与另一行(列)对应各元素的代数余子式乘积之和为零第( 4 )次课授课时间()1.教学内容: 克拉默法则;2.时间安排: 2学时;教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示.4.教学手段:黑板讲解与多媒体演示.基本内容备注第(5)次课授课时间()1.教学内容: 矩阵;矩阵的运算;2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示。
线性代数第一章行列式课件
a11
a12
a1n
a11 a12
a1n a11 a12
a1n
ai1 bi1 ai2 bi2
ain bin ai1 ai2
ain bi1 bi2
bin
an1
an2
ann
an1 an2
ann an1 an2
ann
性质5 将行列式的某一行(列)的所有元素同乘以 一个数 k 加到另外一行(列)上,行列式不变,即
a1,n1 a2,n1
a1n a2n
a11 a21
a12 a22
a1,n1 a2,n1
an1,1 0
an1,2 0
an1,n1 0
an1,n 1
a a n1,1
n1,2
an1,n1
其中等号左端的行列式是一个 n 阶行列式;等号右端
的行列式是左端 n 阶行列式的前 n-1 行前 n-1 列的元
素所组成的 n-1 阶行列式,即左端行列式第 n 行第 n
j 1, 2, , n
ann
a1n
(1)i j aij
ai 1,1 ai1,1
ai1, j1 ai1, j1
ai1, j1 ai1, j1
ai1,n ai1,n
an1
an, j1
an, j1
ann
定理4 设
a11 a12
a1n
D a21 a22
a2n
an1 an2
ann
是一个 n 阶行列式, Aij 为 D 的第 i 行第 j 列元素 aij 的代数余子式,则有
1
2
n ( n 1)
(1) 2 12 n
n
二、行列式的基本性质
定义6 设
1n阶行列式
0+1+0+2+4=7
故排列42531的逆序个数为7,即τ(42531)=7,
因而是奇排列.
返回
上一页 下一页
(2) 同理可得:
τ[135…(2n-1)246…(2n)]=0+(n-1)+(n-2)+…+2+1=
n(n 1) 2
所给排列当n=4k或4k+1时为偶排列,当n=4k+2或4k+3
时为奇排列.
把行列式
§3 行列式的性质
的行换成同序数的列,
称为行列式D的转置行列式。
返回
上一页 下一页
性质1 行列式与它的转置行列式相等 。
证: 记
即bij=aji
(i,j=1,2,…,n)
按行列式定义
返回
上一页 下一页
性质2 互换行列式的两行(列),行列式反号。 证
交换第p、q两列,得行列式
返回
上一页 下一页
同理可证
返回
上一页 下一页
代数余子式的重要性质(行列式按行(列)展开公式):
返回
上一页 下一页
例 计算n阶行列式 解法一
返回
上一页 下一页
例 计算n阶行列式
解法二(递推法) 由行列式Dn可知
将Dn按第1列展开
返回
上一页 下一页
这个式子对任何n(n2) 都成立,故有
返回
上一页 下一页
例 利用递推公式法计算 解:按第一行展开
Dn=
返回
上一页 下一页
例 证明
上面的行列式中,未写出的元素都是0。 证: 因为行列式的值为
而排列j1j2…jn只能是n(n-1)…21的排列, 故逆序数
线性代数目录
线性代数⽬录第⼀章 线性⽅程组与矩阵 1第⼀节 矩阵的概念及运算 1 ⼀、矩阵的定义 1 ⼆、矩阵的线性运算 3 三、矩阵的乘法 4 四、矩阵的转置 6习题1-1 7第⼆节 分块矩阵 8 ⼀、分块矩阵的概念 8 ⼆、分块矩阵的运算 10习题1-2 13第三节 线性⽅程组与矩阵的初等变换 14 ⼀、矩阵的初等变换 14 ⼆、求解线性⽅程组 18习题1-3 22第四节 初等矩阵与矩阵的逆矩阵 23 ⼀、⽅阵的逆矩阵 24 ⼆、初等矩阵 25 三、初等矩阵与逆矩阵的应⽤ 26习题1-4 29本章⼩结 31拓展阅读 32测试题⼀ 33第⼆章 ⽅阵的⾏列式 35第⼀节 ⾏列式的定义 35 ⼀、排列 35 ⼆、n 阶⾏列式 37 三、⼏类特殊的n 阶⾏列式的值 39习题2-1 41第⼆节 ⾏列式的性质 41 ⼀、⾏列式的性质 41 ⼆、⾏列式的计算举例 45 三、⽅阵可逆的充要条件 48习题2-2 50第三节 ⾏列式按⾏(列)展开 51 ⼀、余⼦式与代数余⼦式 52 ⼆、⾏列式按⾏(列)展开 52习题2-3 57第四节 矩阵求逆公式与克莱默法则 58 ⼀、伴随矩阵与矩阵的求逆公式 58 ⼆、克莱默法则 59习题2-4 62本章⼩结 63拓展阅读 64测试题⼆ 65第三章 向量空间与线性⽅程组解的结构 67第⼀节 向量组及其线性组合 67 ⼀、向量的概念及运算 67 ⼆、向量组及其线性组合 69 三、向量组的等价 71习题3-1 74第⼆节 向量组的线性相关性 74⼀、向量组的线性相关与线性⽆关 75⼆、向量组线性相关性的⼀些重要结论 77习题3-2 80第三节 向量组的秩与矩阵的秩 81 ⼀、向量组秩的概念 81 ⼆、矩阵秩的概念 82 三、矩阵秩的求法 83 四、向量组的秩与矩阵的秩的关系 85习题3-3 87第四节 线性⽅程组解的结构 88 ⼀、线性⽅程组有解的判定定理 88 ⼆、齐次线性⽅程组解的结构 90 三、⾮齐次线性⽅程组解的结构 94习题3-4 96第五节 向量空间 97 ⼀、向量空间及其⼦空间 97 ⼆、向量空间的基、维数与坐标 99 三、基变换与坐标变换 101习题3-5 103本章⼩结 105拓展阅读 106测试题三 107第四章 相似矩阵及⼆次型 109第⼀节 向量的内积、长度及正交性 109 ⼀、向量的内积、长度 109 ⼆、正交向量组 110 三、施密特正交化过程 112 四、正交矩阵 113习题4-1 115第⼆节 ⽅阵的特征值与特征向量 115 ⼀、⽅阵的特征值与特征向量的概念及其求法 116 ⼆、⽅阵的特征值与特征向量的性质 119习题4-2 121第三节 相似矩阵 122 ⼀、⽅阵相似的定义和性质 122 ⼆、⽅阵的相似对⾓化 123习题4-3 124第四节 实对称矩阵的相似对⾓化 125 ⼀、实对称矩阵的特征值和特征向量的性质 125 ⼆、实对称矩阵的相似对⾓化 126习题4-4 129第五节 ⼆次型及其标准形 129 ⼀、⼆次型及其标准形的定义 130 ⼆、⽤正交变换化⼆次型为标准形 131 三、⽤配⽅法化⼆次型为标准形 134习题4-5 135第六节 正定⼆次型与正定矩阵 136 ⼀、惯性定理 136 ⼆、正定⼆次型与正定阵 137习题4-6 138本章⼩结 139拓展阅读 140测试题四 141第五章 线性空间与线性变换 143第⼀节 线性空间的定义与性质 143 ⼀、线性空间的定义 143 ⼆、线性空间的性质 145 三、线性空间的⼦空间 146习题5-1 147第⼆节 维数、基与坐标 147 ⼀、线性空间的基、维数与坐标 147 ⼆、基变换与坐标变换 149习题5-2 150第三节 线性变换 151 ⼀、线性变换的定义 151 ⼆、线性变换的性质 153 三、线性变换的矩阵表⽰式 154习题5-3 158本章⼩结 161拓展阅读 162测试题五 163部分习题答案 165。
线性代数-第一章第2节-矩阵的运算
四、矩阵的转置
1. 定义
将矩阵 A m×n 的行换成同序数的列,列 换成同序数的行所得的 n×m 矩阵称为 A的转置矩阵,记作 AT 或 A'。
例如: A 1 0 2
4 3 0
则
AT
1 0
4 3
2 0
2)、转置矩阵的运算性质
1 AT T A;
2 A BT AT BT ;
阵,且HH T E.
证明 HT E 2XXT T ET 2 XXT T
E 2XXT H , H是对称矩阵.
HH T H 2 E 2XX T 2 E 4XXT 4 XXT XXT E 4XXT 4X XT X XT
E 4XX T 4XX T E.
1.55 2.1 2.6
C (cik )32, A (aij )32, B (bjk )22
•而
2
cik aijbjk j 1
• (即A的第i行与B的第k列对应相乘再相加)
三、矩阵与矩阵相乘 定义 设 A = ( aij ) m×s , B = ( bij ) s×n ,
则 A 与 B 的乘积 C=AB = ( cij ) m×n
A
a21
a22
am1
am 2
a1n
a2n
amn
b11 b12
B
b21
b22
bm1 bm2
b1n
b2n
bmn
a11 b11
A
B
a21
b21
am1 bm1
a12 b12 a22 b22
am2 bm2
a1n b1n
a2n
b2n
amn
bmn
说明 只有当两个矩阵是同型矩阵时,才能进 行加法运算.
线性代数知识点总结
线性代数知识点总结第一章 行列式第一节:二阶与三阶行列式把表达式11221221a a a a -称为11122122a a a a 所确定的二阶行列式,并记作11122112a a a a ,即1112112212212122.a a D a a a a a a ==-结果为一个数。
(课本P1) 同理,把表达式112233122331132132112332122133132231,a a a a a a a a a a a a a a a a a a ++---称为由数表111213212223313233a a a a a a a a a 所确定的三阶行列式,记作111213212223313233a a a a a a a a a 。
即111213212223313233a a a a a a a a a =112233122331132132112332122133132231,a a a a a a a a a a a a a a a a a a ++--- 二三阶行列式的计算:对角线法则(课本P2,P3) 注意:对角线法则只适用于二阶及三阶行列式的计算。
利用行列式计算二元方程组和三元方程组:对二元方程组11112212112222a x a xb a x a x b +=⎧⎨+=⎩设11122122a a D a a =≠1121222b a D b a =1112212.a b D a b =则1122221111122122b a b a Dx a a D a a ==,1112122211122122.a b a b Dx a a Da a ==(课本P2)对三元方程组111122133121122223323113223333a x a x a x b a x a x a x b a x a x a x b ++=⎧⎪++=⎨⎪++=⎩,设1112132122233132330a a a D a a a a a a =≠,1121312222333233b a a D b a a b a a =,1111322122331333a b a D a b a a b a =,1112132122231323a ab D a a b a a b =, 则11D x D =,22Dx D =,33D x D=。
线性代数第一章第二节 n阶行列式
4、 一阶行列式 a a 不要与绝对值记号相混淆;
t a a a 5、 1 p1 2 p2 npn 的符号为 1 .
17
例1 试判断 a14a23a31a42a56a65和 a32a43a14a51a25a66
是否都是六阶行列式中的项. 解
a14a23a31a42a56a65 下标的逆序数为
t 431265 0 1 2 2 0 1 6
所以 a14a23a31a42a56a65 是六阶行列式中的项.
a32a43a14a51a25a66 下标的逆序数为
t 452316 8
所以 a32a43a14a51a25a66 不是六阶行列式中的项.
例2 在六阶行列式中,下列两项各应带什么符号.
t ( 1 ) a1 j1 a2 j2 anjn .
a11 a21 记作 D an1
a12 a1n a22 a2 n an 2 ann
简记作det(aij ). 数 aij 称为行列式det(aij ) 的元素.
15
其中 j1 j2 jn 为自然数1, 2, ,n 的一个排列, t 为这个排列的逆序数.
注
i1i2 in
( 1)
t ( i1i2 in )
ai1 1ai2 2 ain n
行列式还有其它的定义方式 一般行列式不用定义来计算 主要利用行列式性质来计算
28
思考题
x 1 1 2
已知
3
1 f x 3 1
x 1 1 2 x 1 1 2x 1
求 x 的系数.
29
9
例5 求i,j使25i4j1为偶排列。
解:6元排列使i、j只能取3或6;由于
线性代数第一章第二讲
D = ∑ (− 1) a p1 1a p2 2 ⋯a pnn
t
的逆序数. 其中 t 为行标排列 p1 p2 ⋯ pn的逆序数.
黑河学院计算机系线性代数
二、行列式的性质
记
a11 a12 ⋯ a1n a11 a21 a21 a22 ⋯ a2n a12 a22 T D= D = ⋱ ⋮ ⋮ ⋮ an1 an2 ⋯ ann a1n a2n
四、应用举例
计算行列式常用方法:利用运算 ri + kr j 把行列式 计算行列式常用方法: 化为上三角形行列式,从而算得行列式的值. 化为上三角形行列式,从而算得行列式的值.
−1 2 −3 3 −7 例1 D = 2 0 4 1 3 4 −5 −4 7 10 −3 9 −2 − 14 − 10 1 ×3 −5 1 6 2
a11 ⋯ a1k ⋮ ⋮
0 b11 ⋯ b1n ⋮ ⋮ bn1 ⋯ bnn
黑河学院计算机系线性代数
2.对换与排列的奇偶性的关系 对换与排列的奇偶性的关系
定理1 一个排列中的任意两个元素对换,排列 定理1 一个排列中的任意两个元素对换, 改变奇偶性. 改变奇偶性. 对换的次数就是排列奇偶性的变化次数
思考: 思考: 奇排列调成标准排列的对换次数? 奇排列调成标准排列的对换次数? 偶排列调成标准排列的对换次数? 偶排列调成标准排列的对换次数?
黑河学院计算机系线性代数
1 0 r5 − 2r3 −0 0 0 1 0 r5 + 4r4 −0 0 0
−1 −2 0 0 0 −1 −2 0 0 0
2 1 1 0 0 2 1 1 0 0
−3 −5 −1 −1 4 −3 −5 −1 −1 0
1 3 2 0 ×4 ⊕ −6 1 3 2 = −(− 2)(− 1)(− 6) = 12. 0 −6
《线性代数》第1章-矩阵(张小向2014黑白打印版)
c 3
同型
20 16
50 20
30 16
与
20 50 30
16 20 16
不同型
5. 两个矩阵相等(equal)
大前提: 同型
A = (aij)m×n与B = (bij)m×n相等:
对∀1≤ i ≤ m, 1≤ j ≤ n, aij = bij都成立 记为A = B.
第一章 矩阵
§1.1 矩阵的基本概念
0 0
0 0
2
3
10 1 0
从i市经一次中转到达j市航线的条数=?
bij = ai1a1j + ai2a2j + ai3a3j + ai4a4j .
1
21 1 0
i
2
j
B = (bij) =
01 10
1 0
1 0
3 4
02 1 1
第一章 矩阵
§1.2 矩阵的基本运算
2. 定义: A = (aij)m×s与B = (bij)s×n的乘积(product)
a1
列向量(row vector):
a2 …
n–维
(n–dimensional)
an
第i分量 (ith component): ai (i = 1, …, n)
第一章 矩阵
§1.1 矩阵的基本概念
4. 同型(same-sized): 行数相等, 列数也相等
20 16
50 20
30 16
与
a 1
b 2
注: ① 设矩阵A = (aij)m×n , 记−A = (−aij)m×n , ——A的负矩阵(additive inverse of A).
② 设A, B是同型矩阵, 则它们的差
线性代数_课件
2020/3/1
22
五、关于等价定义的说明
对于行列式中的任一项
(1) a1p1...aipi ...a jpj ...anpn
(1)
其中 1...i... j...n为自然排列, 为列下标排
列 p1...pi...p j... pn 的逆序数。对换 (1) 中元
素a
与
ip i
a jp
j
成:
(1) a1p1...a jpj ...aipi ...anpn
解:∵ 排列p1 p2 p3…pn与排列 pn…p3 p2 p1的逆序
数之和等于1~ n 这 n 个数中任取两个数的组合
数即 :
(
p1 p2... pn )
(
pn
pn1... p1)
Cn2
n(n 1) 2
(
pn
pn1... p1)
n(n 1) 2
k
2020/3/1
9
例4 求排列(2k)1(2k 1)2(2k 2)...(k 1)k
a22 ...
... a2n ... ...
a11a22...ann
0 0 ... ann
2020/3/1
16
3) 次上三角行列式
a1,1 ... a1,n1 a1,n
a2,1 ... a2,n1 ... ... ...
0 ...
n ( n 1)
(1) 2 a1,na2,n1...an,n
例6 若 a13a2ia32a4k , a11a22a3ia4k , ai2a31a43ak 4 为四阶行列式的项,试确定i与k,使前两项带正号, 后一项带负号。
线性代数第一章1-2行列式的性质
思考题
解 答解: 第一行各元素的代数余子式之和可以表示成
1 1 A11+A12+ · · · +A1n 1 1 1 2 0 0 1 0 3 0 1 0 0 n
a12 ai 2
a1 n ain
a11 ai 1
a12 a1 n ai 2 ain ai 2 ain an 2 ann
相同
k kai 2 kain ai 1 an 2 ann a
0.
n1
性质1.2.4: 若行列式的某一列(行)的元素都是两数之和,
t
故结论成立.
思考: P26 第三题
性质1.2.5: 把行列式的某一列(行)的各元素乘以 同一数然后加到另一列(行)对应的元素上去, 行列式 不变. a11 a1i a1 j a1n 例如 a21 a2i a2 j a2n k an1 ani anj ann a11 (a1i ka1 j ) a1 j a1n a21 (a2i ka2 j ) a2 j a2n an1 (ani kanj ) anj ann
n
ij ij
其中
D 当i j 1 当 i j . a ki Akj D ij 0 当 i j . ij k 1 0 当 i j
1 2 3 n 1 2 0 0 设 n 阶行列式 Dn 1 0 3 0 1 0 0 n 求第一行各元素的代数余子式之和: A11+A12+ · · · +A1n .
故
D D .
证毕
说明 行列式中行与列具有同等的地位,因此行列 式的性质凡是对行成立的对列也同样成立. 性质1.2.2 互换行列式的两行(列),行列式变号. 证明: 由行列式
线性代数第一章-第二节
为这 n 个自然数旳一种排列,考虑元素 pi (i = 1, 2, … , n), 假如比 pi 大旳且排在 pi 前面旳元素有 ti 个,就说 pi 这个元素旳逆序数是 ti . 全体元素旳 逆序数之和
n
t t1 t2 tn ti , i 1
即是这个排列旳逆序数.
第二节 全排列及引例
引例 用1,2,3三个数字能够构成多少个没
有反复数字旳三位数?
引例 用1,2,3三个数字可以组成多少个没 有重复数字的三位数?
解 这个问题相当于说,把三个数字分别放在 百位、十位与个数上,有几种不同的放法?
显然,百位上可以从1,2,3三个数字中任选 一个,所以有3种放法; 十位上只能从剩下的两个 数字中选一个,所以有2种放法;而个位上只能放 最后剩下的一个数字,所以只有1种放法. 因此, 共有 3 2 1 = 6 种放法. 这六个不同的三位数是
在一个 n 阶排列 i1 1 i2 2 · · ·in n 中,
按照在排列中的顺序任取两个数,记作(ijj ,ik k),其 中 j < k ,称为排列的一个数对,若 ijj < ik k ,则称 这两个数构成顺序; 若 ijj >ik k ,则称这两个数构成 逆序. 一个 n 阶排列中逆序的个数称为这个排列 的逆 逆序 序数 数.
例 4 求排列 32541 旳逆序数.
本若请本本若若请请本若请节想本单若请节节想想本单单若请节想本单若内请结节击想本单若内内请结结节击 击想本单若内请结节击想本容单若束内请返结节击想本容容单若束束内请返 返结节击想本容单若束内请返结节已击想本本容单若回束内请返结节已 已击想本本本容单若回 回束内请返结节已击想本本容单若回束内结请返结堂节已击想按本本容单若回束内结 结请返结堂堂节已击想按 按本本容单若回束内结请返结堂节已击想按本本容束单若回束课内结请返结钮堂节已击想按本本容束 束单若回束课课内结请返结钮 钮堂节已击想按本本容束单若回束课内结请返结本钮堂若节已击想按本,请本 本 本容束单若 若 若回束.课内结!请 请 请返结钮堂节已击想按本,,容束单回束课..内结!!返结钮堂节已击想按本,容束单回束节课.想内结!返结钮堂单节 节 节已击想 想想按本,容束单 单 单回束课.内结!返结钮堂已击按本,容束回束课.内结!返结钮堂已击按本内,结容束回束课.击内 内 内结!返结 结结钮堂已击 击 击按本,容束回束课.结!返钮堂已按本,容束回束课.结!返钮堂容束已按本,返容 容 容束回束束 束课.结!返 返 返钮堂已按本,束回课.结!钮堂已按本,束回课.已本结!钮堂回已 已 已按本 本本,束回回回课.结!钮堂按,束课.结!钮堂按,结堂束课.按结结结!钮堂堂堂按按按,束课.!钮,束课.!钮束课,钮束束束课课课.!钮钮钮,.!,.,!.,,,!...!!!
华中《线性代数》PPT课件 第一章
这n个数的次序是可以任意交换的.一般地,n阶行列式
中的任意一个乘积项都可以写成
ai1j1ai2j2…ainjn
(1-12
其中i1i2…in;j1j2…jn是1,2,…,n的两个n级排列.下面
确定式(1-12)所带的符号.
第五节 行列式的性质
为了根据式(1-3)确定式(1-12)所带的符号,就 需要把这n个数,按行标从小到大的顺序进行重新排列, 也就是排成
(1-3)
其中
表示对所有n级排列的求和.通常把式
(1-3)等号右边的求和项称为行列式D的展开式.
第一节 行列式的概念
提示
在式(1-1)中,我们把aij(i,j=1,2,…,n)称为行 列式D的元素,元素aij的第一个下标i称为行标,表示其 处于第i行,第二个下标j称为列标,表示其处于第j列.有 时也把式(1-1)中的行列式简记成D=|aij|n1.
第一章 行列式
教学基本要求
(1)理解行列式的概念. (2)掌握行列式的基本性质. (3)会应用行列式的定义、性质和有关定理计算行列式. 行列式是一种特定的算式,它作为数学工具在数学的许多分 支中有着广泛的应用.其作为研究矩阵的有效工具之一,实质上是 一种特定的算式,它是对方阵按一定法则进行计算得到的一个数.
第五节行列式的性质性质15将行列式的某一行列的所有元素同乘以一个数k加到另外一行列上行列式丌变即第五节行列式的性质证将式121等号右端的行列式记为d则由性质14和性质13的推论13有第五节行列式的性质思考是否所有的行列式都可以按行列式的定义来计算
线性代数
第一章 行列式
第一节 行列式的概念 第二节 排列与逆序 第三节 二阶和三阶行列式 第四节 n阶行列式 第五节 行列式的性质 第六节 行列式的计算
线性代数课件第一章
逆序. 一个排列中所有逆序的总数叫做这个排列的逆 序数.
在一个 n 阶排列中,任何一个数对不是构成逆序 就是构成顺序.如果我们把顺序的个数称为顺序数,则 一个 n 阶排列的顺序数与逆序数的和为 n(n –1)/2 .
a12a21) a12a21)
x1 x2
b1a22 a11b2
a12b2 b1a21
, .
当 a11a22 – a12a21 0 时,求得方程组(1)的解为
x1
x2
b1a22
a11a22 a11b2
a11a22
a12b2
a12a21 b1a21
a12a21
, .
(2)
为了记忆该公式,引入记号
(为偶排列). 带负号的三项列标排列:132 , 213 , 321
(为奇排列). 故三阶行列式可以写成
a11 a12 a13
a21 a22 a23 (1)t a1p1 a2 p2 a3 p3 ,
a31 a32 a33
其中 t 为排列 p1p2p3 的逆序数, 表示对1,2,3 三个 数的所有排列 p1p2p3 求和.
a11 a21
a12 a22
a11a22 a12a21
并称之为二阶行列式.其中 aij 称为行列式的元素,
aij 的两个下标表示该元素在行列式中的位置,第一个下
标称为行标, 表示该元素所在的行,第二个下标称为列
标,表示该元素所在的列,常称 aij 为行列式的(i , j ) 元1由a11成a11baaa1a1111b122二12二aaa22122b222阶22阶22ba1abaa行行11112aa22baa22ba11a1列12列22a22122baaa112式12式1222,.1b12的,,. 定即bb12 义aa,12(22 ,(22a)11b)2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.3 n阶行列式的定义 定义1.1.4 由n2个元素排成 n行n列,以
a11 a 21 a n1 a12 a1n a 22 a 2 n a n 2 a nn
记之,称其为 n阶行列式,它代表一个数值. 此数值是取自上式中不同行不同列的n个 元素 a1 j a2 j anj 乘积的代数和,其中
1.1.2 二阶与三阶行列式 本段的目的是叙述行列式这个概念的 形成,这需要从解线性方程组谈起. 设二元一次线性方程组 a11 x1 a12 x 2 b1 , a 21 x1 a 22 x 2 b2 .
(1.1.6)
用消元法去解此方程组.先分别用a22和-a12 去乘(1.1.6)式的一式和二式的两端,然 后再将得到的两式相加,得
定义1.1.2 在一个排列中,若一个较 大的数排在一个较小的数的前面,则称这 两个数构成一个逆序. 一个排列中所有逆 序的总数称为这个排列的逆序数.用 (j1,j2,…,jn)表示排列j1,j2,…,jn的逆序数. 逆序数是偶数的排列称为偶排列,逆序数 是奇数的排列称为奇排列.
对一个n阶排列 j1,j2,…,jn ,如何求它 的逆序数呢?设这个排列中排在j1后面比
i k1 k 2 k s j
(1.1.3)
经过i与j的对换变成
j k1 k 2 k s i (1.1.4) 由排列(1.1.3)变为排列(1.1.4)可以通 过一系列两两相邻的对换来实现.先将i依次 与 k1,k2,…,ks,j经过 s+1次相邻对换后将 (1.1.3)变为
k1 k 2 k s j i
n( n 1) 2
新的排列,这种变换称为排列的一个对换. 如果将排列32514中的2与4对调,则 得到的新排列34512,它的逆序数 ( 34512 )=2+2+2+0=6,为偶排列.这说明, 奇排列32514经过一次对换得到偶排列 34512。一般地,我们有 定理1.1.1 一次对换改变排列奇偶性.
1 2 n
j1,j2,…,jn是数字1,2,…,n的某一个排列,故 共有n!项。每项前的符号按下列规定:当 j1,j2,…,jn为偶排列时取正号,当 j1,j2,…,jn为 奇排列时取负号,即
a11 a12 a1n a 21 a 22 a 2 n D a n1
j1 j2 jn
(n(n 1)321 )
(n 1) (n 2) 2 1 0
排列32514为奇排列;排列n(n-1) …321, 当n=4k,4k+1时为偶排列;当n=4k+2,4k+3时 为奇排列. 定义1.1.3 把一个排列中某两个数的 位置互换,而其余的数不动,就得到一个
证 分两种情况考虑.
1.相邻两个数对换的情况. 设排列为
ij
经过i与j的对换变成
(1.1.1)
(1.1.2) 这里“…”表示对换前后排列中不变的数. 由于这两个排列只交换i,j两个数的位置,
ji
其余的数的位置没有改变,所以各数的逆 序数中只有 (i) 和 (j)可能有变化,其余
数的逆序数不变.当i<j时,排列(1.1.2)的 逆序数比排列(1.1.1)增加1;如果 i>j , 排列(1.1.2)的逆序数比排列(1.1.1)减 少1.因此排列(1.1.1)与(1.1.2)的奇偶 性相反. 2.一般情况. 设某个排列
为该行列式之值. 二阶行列式有2!项,三阶 行列式有3!项. (2) 代数和中每一项前的符号有以下规 律:行指标取成标准排列时,由列指标组 成排列的奇偶性决定每项前的正负号,偶者 为正,奇者为负. 综上,我们有
a11 a 21 a12 a 22
( 1 )
j1 j2
( j1 j2 )
a1 j1 a2 j2
(a11a22-a12a21)x2=a22b1-a12b2, 用类似方法,从(1.1.6)中消去x1 (a11a22-a12a21)x2=a11b2-b1a21, 当a11a22-a12a21≠0时,方程组(1.1.6)有 唯一解
b1 a 22 a12 b2 x1 , a11 a 22 a12 a 21 a11b 2 b1 a 21 x2 . a11 a 22 a12 a 21
a n 2 a nn
1 2 n 1 2
(1.1.11)
a njn
1 j j j a1 j a 2 j
其中
j1 j2 jn
表示对 1,2,…,n这n个数组成的所
有排列 j1,j2,…,jn取和. 当n=1时, 即为一阶行列式,我们规定
|a|=a;n=2,3时,即为前面定义的二阶、三阶
a11 a 21
b1 b2
a11b2 b1a21
于是,当D≠0时,二元一次线性方程组 (1.1.6)的解可用二阶行列式表示成
D1 D2 x1 x2 D D 同理,考虑三元一次线性方程组
a11 x1 a12 x 2 a13 x3 b1 , a 21 x1 a 22 x 2 a 23 x3 b2 , a x a x a x b 32 2 33 3 3. 31 1
a11 a 21 a31
a12 a 22 a32
a13 a 23 a33
( 1 )
j1 j2 j3
( j1 j2 j3 )
a1 j1 a2 j2 a3 j3
这里 排列取和, 排列取和.
表示对1,2这两个数的所有
j1 j2
表示对1,2,3这三个数的所有
j1 j2 j3
推而广之,我们可以定义n阶行列式.
式的展开式中,只有下列一项不为零,
a1n a2,n1 an1,2 an1
这一项列指标排列的逆序数为
n(n 1) (n(n 1) 321) 2
故
Dn (1)
n ( n1) 2
a1n a2,n1 an1, 2 an1
在行列式的定义中,我们规定n个元素
相乘时,元素的行指标按标准排列,由列指 标排列的逆序数决定各项前的正负号.那么
行列式. 为了书写方便,n阶行列式也可记为
Dn=|aij|n. 例1.1.2 计算n阶下三角形行列式
a11 a 21 a n1
0 a 22 an2
0 0 a nn
解 由 n阶行列式的定义,展开式的一般 项为 a1 j a2 j anj 1 2 n 要计算该行列式的值,只需把其中的非零项
(1.1.9)
应用消元法先后消去x1和x2,得到
(a11a22 a33 a12a23a31 a13a21a32 a11a23 a32 a12 a21a33 a13a22a31)x1
b1a22a33 a12a23b3 a13b2a32 a13 a22 b3 a12 b2 a33 b1a23b2 a32
a 22 a 2 n
特别地,对于对角形行列式,有
d1 0 0 0 0 0 dn d2 0
d1d 2 d n
例1.1.3 计算n阶行列式
0 0 0 a2 ,n1 a1n a2 n ann
Dn
.
an1 an ,n 1
解 用类似于例1.1.2的方法,该行列
j1小的数的个数为 (j1) ,排在j2后面比 j2 小的数的个数为 (j2) , …,排在jn-1后面比 jn-1小的数的个数为 (jn-1) ,则排列 j1,j2,…,jn的逆序数为
( j1,j2,…,-1)
例1.1.1 求排列32514与n(n-1) …321的 逆序数. 解 ( 32514 ) = 2+1+2+0+0=5;
其逆序数为零,所以取正号,故
a11 a 21 a n1 0 0 a 22 0 a n 2 a nn
a11a22 ann
即下三角形行列式的值等于主对角线
上元素的乘积.
同理,对于上三角形行列式,有
a11 0 0
a12 0
a1n a nn a11 a 22 a nn .
(1.1.7)
为了便于记忆,引入记号
D a11 a 21 a12 a 22
a11 a22 a12 a21
(1.1.8)
我们把(1.1.8)式称为二阶行列式.D中横写 的称为行,竖写的称为列.D中共有两行两 列,其中数aij称为行列式的元素,它的第一个 下标i表示这个元素所在的行,称为行指标, 第二个下标 j表示这个元素所在的列,称 为列指标.例如 a21就是位D中第二行,第一 列上的元素.
能否在定义中 n个元素的相乘项里把元素
的列指标排列按标准排列,而由行指标排列
的逆序数决定各项前的正负号呢? 下面的
把x1的系数记为
a11 D a 21 a31 a12 a 22 a32 a13 a 23 a33
a11a22a33 a12a23a31 a13 a21 a32
a11a23a32 a12 a21a33 a13 a22 a31 . (1.1.10) 由于D中共有三行三列,我们把它称为
三阶行列式.因为它由方程组(1.1.9)中变元 的系数组成,又称其为方程组(1.1.9)的系数 行列式.如果 D≠0,容易算出方程组(1.1.9)有 唯一解:
D1 x1 D D2 x2 D D3 x3 D
其中Dj(j=1,2,3)分别是在D中把第 j列的元
素换成方程组(1.1.9)右端的常数项b1,b2,b3 得到. 三阶行列式是六项的代数和,其中每一 项都是 D中不同行不同列的三个元素的乘 积冠以正负号.为了便于记忆,可写成
(1.1.5)
再将j依次与 ks,ks-1,…,k1,j经过 s次相邻对 换,把(1.1.5)变成(1.1.4).于是排列 (1.1.3)化为排列(1.1.4)总共作了