等腰直角三角形旋转

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰直角三角形旋转

————————————————————————————————作者:————————————————————————————————日期:

2

- 3 - / 4

旋转的等腰直角三角形

【变式典型题】

原题:如图所示,△ABC 和△ADE 都是等腰直角三角形,点M 为EC 的中点,求证:MDB MBD ∠=∠.

变式1 如图所示,将等腰直角三角形ADE 绕A 点按逆时针方向旋转︒45,其余条件不变,结论MDB MBD ∠=∠还成立吗?

变式2 如图所示,将等腰直角三角形ADE 绕点A 按逆时针方向旋转︒90,其余条件不变,结论MDB MBD ∠=∠还成立吗?

变式3 如图所示,将等腰直角三角形ADE 绕点A 按逆时针方向旋转︒135,其余条件不变,结论MDB MBD ∠=∠还成立吗?

变式4 如图所示,将等腰直角三角形ADE 绕点A 按逆时针方向旋转︒180,其余条件不变,结论MDB MBD ∠=∠还成立吗?

变式5 如图所示,将等腰直角三角形ADE 绕点A 按逆时外方向旋转︒270,其余条件不变,结论MDB MBD ∠=∠还成立吗?

变式6 如图所示,将等腰直角三角形ADE 绕点A 按逆时外方向旋转︒315,其余条件不变,结论MDB MBD ∠=∠还成立吗?

【练习】

1.在ABC ∆中,︒=∠90ACB ,AC=BC .直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E . (1)当直线MN 绕点C 旋转到图1位置时,求证:①CEB ADC ∆≅∆;②BE AD DE +=;

(2)当直线MN 绕点C 旋转到图2位置时,试问:DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.

(3)当直线MN 绕点C 旋转到图3位置时,试问:DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.

A D E B

M C

A D E

B

C A

D

E B

M C B

M C A D

E

A D

E B

M

C A

D E

B

M

C A

D

E

B M

C A

O (G)

E B D C

F

l

图1

A

C

B

M 图2

N

E D

A

C

B

M 图3

N

E

D

- 4 - / 4

2.(1)如图1,若点P 为正方形ABCD 边上一点,以PA 为一边作正方形AEFP ,连BE 、DP ,并延长DP 交BE 于点H .求证:BE DH ⊥.

(2)如图2,将正方形AEFP 逆时针旋转,使点P 落在正方形ABCD 内,其余条件不变,(1)的结论是否成立?若成立,请给出证明;若不成立,请说明理由.

3.在ABC ∆中,AD 是中线,O 为AD 的中点,直线l 过O 点,过A 、B 、C 三点分别作直线l 的垂线,垂足分别为G 、E 、F ,当直线l 绕O 点旋转到与AD 垂直时(如图1)易证:BE+CF=2AG .

当直线l 绕O 点旋转到与AD 不垂直时,在图2、图3两种情况下,线段BE 、CF 、AG 又是怎样的数量关系?请写出你的猜想,并以图3的猜想给予证明.

思考题:

把两个全等的等腰直角三角板ABC 和EFG (其直角边长均为4)叠放在一起(如图1),且使三角板EFG 的直角顶点G 与三角形ABC 的斜边中点O 重合.现将三角板EFG 绕O 点按顺时针方向旋转(旋转角α满足条件:︒<<︒900α),四边形CHGK 是旋转过程中两三角板的重叠部分(如图2).

(1)在上述旋转过程中,BH 与CK 有怎样的数量关系?四边形CHGK 的面积有何变化?证明你发现的结论;

(2)连接HK ,在上述旋转过程中,设x BH =,

GKH ∆的面积为y ,求y 与x 之间的函数关系式,

并写出自变量x 的取值范围;

(3)在(2)的前提下,是否存在某一位置,使

GKH ∆的面积恰好等于ABC ∆面积的

16

5

?若存在,求出此时x 的值;若不存在,说明理由.

作 业 完成时间:30分钟

1、如图所示,在密度均匀的铁片中挖去一圆形铁片,现要将这一铁片分成重量相等的两块,请问你有怎样的分法?并说明作图的道理.

2、现有如图所示的方角铁片,工人师傅想用一条直线将其分割成面积相等的两部分,请你帮助工人师傅设计三种不同的分割方案.

3、如图所示,请将一直角梯形形状的地块,分成面积相等的两地,问如何

分.

4、如图所示的一块空地,︒=∠=∠90B A ,AE ∥BC ,AB ∥CD ,现要在这一空地上砌一堵墙(要求墙长最短),将这块地分成面积相等的两块.

思考题:如何把任意四边形面积两等分?

A

C E G(O)

B F 图1

A

C G(O) B

F

图2 K

H

A E F H

B C D P 图1

A

E F H B C D

P 图2

A

O

E

B

D

l

图2 A C

D E

B

N M

图1

·

A B

D

C

相关文档
最新文档