2020年辽宁省高考数学试卷(理科)
2020年辽宁省高考数学(理科)模拟试卷(10)
故选: C.
6.( 5 分)中国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量, 即“结绳计数” .如图,一位古人在从右到左依次排列的绳子上打结,满五进一,用来记
录捕鱼条数,由图可知,这位古人共捕鱼(
)
A .89 条
B .113 条
【解答】 解:该图的五进制数为 324,
C. 324 条
B.若 m∥ β, β⊥ α,则 m⊥ α
C.若 m⊥ n, n⊥ β, β⊥α,则 m⊥ α
D.若 m⊥ β, n⊥ β, n⊥ α,则 m⊥ α
9.( 5 分)已知 tan( α+?4?)=﹣ 2,则 sin2α=(
)
3 A.
10
3 B.
5
6 C. - 5
12 D.- 5
10.( 5 分)将函数
2.( 5 分)复数 a+bi( a, b∈R)的平方是一个实数的充要条件是(
)
A .a= 0 且 b≠ 0
B .a≠ 0 且 b= 0
C. a= 0 且 b= 0
→
→
→
3.( 5 分)设向量前 ????= ( 3,﹣ 2), ????= ( 0, 6),则 |???|?等于(
D.a=0 或 b=0 )
→
∴ |???|?= √32 + 42 = 5.
故选: B.
4.( 5 分) a= log 25, b=0.51.2, c= 20.9,则(
)
A .a< b< c
B .b< c< a
C. b< a< c
【解答】 解:∵ a> 2, 0<b< 1, 1< c< 2.
∴ b< c< a.
故选: B.
D.6 D. c< a< b
2020年高考辽宁卷(理)含答案
2020年普通高等学校招生全国统一考试(辽宁卷)含答案数 学(理)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数的11Z i =-模为 (A )12(B )22(C )2 (D )2 2.已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则A .()01,B .(]02,C .()1,2D .(]12,3.已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为(A )3455⎛⎫ ⎪⎝⎭,- (B )4355⎛⎫ ⎪⎝⎭,- (C )3455⎛⎫- ⎪⎝⎭, (D )4355⎛⎫- ⎪⎝⎭, 4.下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列;其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p 5.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是(A )45 (B )50 (C )55 (D )606.在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠=A .6π B .3πC .23π D .56π7.使得()13nx n N n x x +⎛⎫+∈ ⎪⎝⎭的展开式中含有常数项的最小的为 A .4 B .5 C .6 D .7 8.执行如图所示的程序框图,若输入10,n S ==则输出的A .511B .1011C .3655D .72559.已知点()()()30,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有A .3b a = B .31b aa=+C .()3310b a b aa ⎛⎫---= ⎪⎝⎭ D .3310b a b a a-+--=10.已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为A .3172B .210 C .132D .310 11.已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=(A )2216a a -- (B )2216a a +- (C )16- (D )1612.设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时,(A )有极大值,无极小值 (B )有极小值,无极大值 (C )既有极大值又有极小值 (D )既无极大值也无极小值二、填空题:本大题共4小题,每小题5分.13.某几何体的三视图如图所示,则该几何体的体积是 .14.已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S = .15.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于,A B两点,连接,AF BF ,若410,6,cos ABF 5AB AF ==∠=,则C 的离心率e = .16.为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)设向量()()3sin ,sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I )若.a b x =求的值; (II )设函数()(),.f x a b f x =求的最大值18.(本小题满分12分)如图,AB是圆的直径,PA 垂直圆所在的平面,C 是圆上的点。
2020辽宁省高考数学试题(理数)
2020年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用) 注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8}, 则()()U U A B ⋂=(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} (2)复数22ii -=+ (A)3455i - (B)3455i + (C) 415i - (D) 315i +(3)已知两个非零向量a ,b 满足|a+b|=|a -b|,则下面结论正确的是 (A) a ∥b (B) a ⊥b (C){0,1,3} (D)a+b=a -b (4)已知命题p :∀x 1,x 2∈R ,(f(x 2)-f(x 1)(x 2-x 1)≥0,则⌝p 是 (A) ∃x 1,x 2∈R ,(f(x 2)-f(x 1)(x 2-x 1)≤0 (B) ∀x 1,x 2∈R ,(f(x 2)-f(x 1)(x 2-x 1)≤0(C) ∃x 1,x 2∈R ,(f(x 2)-f(x 1)(x 2-x 1)<0 (D) ∀x 1,x 2∈R ,(f(x 2)-f(x 1)(x 2-x 1)<0(5)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为 (A)3×3! (B) 3×(3!)3 (C)(3!)4 (D) 9! (6)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11= (A)58 (B)88 (C)143 (D)176 (7)已知sin cos 2αα-=,α∈(0,π),则tan α= (A) -1 (B) 22-(C) 22(D) 1 (8)设变量x ,y 满足10,020,015,x y x y y -⎧⎪+⎨⎪⎩则2x+3y 的最大值为(A) 20 (B) 35 (C) 45 (D) 55(9)执行如图所示的程序框图,则输出的S 的值是 (A) -1 (B)23(C) 32(D) 4(10)在长为12cm 的线段AB 上任取一点C.现作一矩形,领边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 3的概率为(A) 16 (B) 13 (C) 23 (D) 45(11)设函数f(x)()x R ∈满足f(x -)=f(x),f(x)=f(2-x),且当[0,1]x ∈时,f(x)=x 3.又函数g(x)=|xcos ()x π|,则函数h(x)=g(x)-f(x)在13[,]22-上的零点个数为(A)5 (B)6 (C)7 (D)8 (12)若[0,)x ∈+∞,则下列不等式恒成立的是 (A)21x e x x ++211124x x <-+(C)21cos 12x x - (D)21ln(1)8x x x +-第Ⅱ卷本卷包括必考题和选考题两部分。
2020年辽宁省高考数学(理科)模拟试卷(9)
3, 4,5)的数据进行了统计,得到如下数表:
月销售单价 x i(元 / 件)
8
8.5i(万件)
11
10
8
6
5
( 1)建立 y 关于 x 的回归直线方程;
( 2)该公司年底开展促销活动, 当月销售单价为 7 元 / 件时,其月销售量达到 14.8 万件,
若由回归直线方程得到的预测数据与此次促销活动的实际数据之差的绝对值不超过
国天文学家普森( M .R.Pogson)又提出了衡量天体明暗程度的亮度的概念,天体的明
暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足
m1﹣ m2=2.5( lgE 2﹣lgE 1),
其中星等为 mk 的星的亮度为 Ek( k= 1,2)已知“心宿二”的星等是 1.00,“天津四”的
星等是 1.25,“心宿二”的亮度是“天津四”的 r 倍,则与 r 最接近的是(当 |x|较小时,
4πR3= 3
92π.
6.( 5 分)天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(
Hipparchus ,又
名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;
星等的数值越大它的光就越暗.到了 1850 年,由于光度计在天体光度测量中的应用,英
故选: B.
2.( 5 分)已知 i 是虚数单位, m,n∈R,则“ m= n=1”是“ m2﹣ 1﹣ 2ni=﹣ 2i”的(
)
A .充分不必要条件
B.必要不充分条件
C .充要条件
D .既不充分也不必要条件
【解答】 解:由 m, n∈R, m2﹣1﹣ 2ni =﹣ 2i,可得 { ??2 - 1 = 0,解得 n= 1, m=± 1. -2?? = -2
2020年辽宁省高考数学(理科)模拟试卷(12)
1
1
( 2)设曲线 C1 与曲线 C2 相交于 A,B 两点,求
+
的值.
|????| |????|
五.解答题(共 1 小题)
23.已知函数 f( x)= |x﹣ 3|+|x﹣ 1|.
( 1)求不等式 f( x)≤ 6 的解集; ( 2)设 f( x)的最小值为 M ,正数 a, b 满足 a2+4b2= M ,证明: a+2b≥ 4ab.
C. { x|﹣ 1< x≤ 1} D. { x|﹣ 5≤ x< 4}
【解答】 解:集合 M ={ x|﹣ 1< x< 4} , N= { x|x2+3x﹣ 10≤0} = { x|﹣ 5≤ x≤2} ,则 M ∩N
= { x|1< x≤ 2} ,
故选: B.
2.( 5 分)若 ??=
?2?020 +3??,则 1+??
→→
→
→
→→
??,??满足 |??|= 3|??|,cos<??,??>
=
1 3
→
,?(?
→
??-
→
→
??)= 16,则 |??|=(
)
A .√2
B .√3
C. 2
D. √5
??2 ??2
6.( 5 分)已知双曲线 C 与双曲线 -
= 1有公共的渐近线,且经过点
26
??(-2 , √3) ,则
双曲线 C 的离心率为(
26
??2 ??2
的方程为 -
= ?,?( t≠ 0),
26
又由双曲线
C 经过点
P(﹣ 2,√3),则有
2-
1 2
= t,则
辽宁省2020版高考数学一模试卷(理科)(II)卷
辽宁省2020版高考数学一模试卷(理科)(II)卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)(2020·长春模拟) 复数,则它的共轭复数在复平面内对应的点位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. (2分)(2020·榆林模拟) 设集合,则()A .B .C .D .3. (2分)若向量与不共线,,且,则向量与的夹角为()A . 0B .C .D .4. (2分)直线与圆的位置关系是()A . 相离B . 相切C . 相交过圆心D . 相交不过圆心5. (2分)(2019·黄冈模拟) 黄冈市有很多处风景名胜,仅级景区就有10处,某单位为了鼓励职工好好工作,准备组织5名优秀的职工到就近的三个景区:龟峰山、天堂寨、红安红色景区去旅游,若规定每人限到一处旅游,且这三个风景区中每个风景区至少安排1人,则这5名职工共有种安排方法A . 90B . 60C . 210D . 1506. (2分) (2015高三上·合肥期末) 一个三棱锥的三视图如图所示,则该三棱锥的体积为()A .B .C . 4D . 27. (2分) (2019高二下·南充月考) 将函数的图象上所有的点向右平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得图象的解析式为()A .B .C .D .8. (2分)(2016·南平模拟) 一个算法的程序框图如图所示,若该程序输出的结果为10,则判断框中应填入的条件是()A . k≥﹣3B . k≥﹣2C . k<﹣3D . k≤﹣39. (2分)已知则的值是()A .B .C .D .10. (2分) (2020高二上·南宁月考) 三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实,黄实,利用2 勾股 (股-勾)2 朱实黄实弦实,化简,得勾2 股2=弦2 ,设勾股中勾股比为,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为()A . 866B . 500C . 300D . 13411. (2分) (2017·重庆模拟) 设双曲线的半焦距为C,直线L过(a,0),(0,b)两点,已知原点到直线L的距离为,则双曲线的离心率为()A . 2B . 2或C .D .12. (2分) (2016高一上·菏泽期中) 下列函数中,是偶函数,且在区间(0,1)上为增函数的是()A . y=|x|B . y=1﹣xC . y=D . y=﹣x2+4二、填空题: (共4题;共4分)13. (1分) (2017高二上·江苏月考) 已知互不重合的直线,互不重合的平面,给出下列四个命题,其中错误的命题是________.①若,,则②若,,则③若,,则④若,,则14. (1分)(2018·内江模拟) 甲、乙、丙三位同学中有一人申请了北京大学的自主招生考试,当他们被问到谁申请了北京大学的自主招生考试时,甲说:丙没有申请;乙说:甲申请了;丙说:甲说对了.如果这三位同学中只有一人说的是假话,那么申请了北京大学的自主招生考试的同学是________.15. (1分)已知椭圆C:+=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,若直线l的倾斜角为,且恰好经过椭圆的右顶点,则椭圆离心率为________16. (1分)已知f(x)=x3+bx2+cx+d在(﹣∞,0]上是增函数,在[0,2]上是减函数,且f(x)=0有三个根α,2,β(α≤2≤β),则|β﹣α|的取值范围是________.三、解答题: (共7题;共70分)17. (5分) (2017高一下·双流期中) 已知等差数列{an}中,a5=9,a7=13,等比数列{bn}的通项公式bn=2n ﹣1 ,n∈N* .(Ⅰ)求数列{an}的通项公式;(Ⅱ)求数列{an+bn}的前n项和Sn .18. (15分) (2020高二下·宁波期中) 某客户准备在家中安装一套净水系统,该系统为二级过滤,使用寿命为十年如图所示两个二级过滤器采用并联安装,再与一级过滤器串联安装.其中每一级过滤都由核心部件滤芯来实现在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立).若客户在安装净水系统的同时购买滤芯,则一级滤芯每个160元,二级滤芯每个80元.若客户在使用过程中单独购买滤芯则一级滤芯每个400元,二级滤芯每个200元.现需决策安装净水系统的同时购买滤芯的数量,为此参考了根据100套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中表1是根据100个一级过滤器更换的滤芯个数制成的频数分布表,图2是根据200个二级过滤器更换的滤芯个数制成的条形图.表1:一级滤芯更换频数分布表一级滤芯更换的个数89频数6040图2:二级滤芯更换频数条形图以100个一级过滤器更换滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以200个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率.(1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16的概率;(2)记表示该客户的净水系统在使用期内需要更换的二级滤芯总数,求的分布列及数学期望;(3)记分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.若,且,以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定的值.19. (10分)在三棱锥P﹣ABC中,PA⊥平面ABC,△ABC是直角三角形,AC⊥CB,PA=2,CA=2 ,CB=2,E为BC的中点,CF⊥AB于点F,CF交AE于点M.(1)求二面角P﹣CF﹣B的余弦值;(2)求点M到平面PBC的距离.20. (10分)(2017·菏泽模拟) 已知焦距为2 的椭圆C: + =1(a>b>0)的右顶点为A,直线y= 与椭圆C交于P、Q两点(P在Q的左边),Q在x轴上的射影为B,且四边形ABPQ是平行四边形.(1)求椭圆C的方程;(2)斜率为k的直线l与椭圆C交于两个不同的点M,N.(i)若直线l过原点且与坐标轴不重合,E是直线3x+3y﹣2=0上一点,且△EMN是以E为直角顶点的等腰直角三角形,求k的值(ii)若M是椭圆的左顶点,D是直线MN上一点,且DA⊥AM,点G是x轴上异于点M的点,且以DN为直径的圆恒过直线AN和DG的交点,求证:点G是定点.21. (10分) (2016高三上·金山期中) 已知函数f(x)=lnx+x2﹣ax,a∈R(1)若f(x)在P(x0 , y0)(x∈[ ))处的切线方程为y=﹣2,求实数a的值;(2)若x1 , x2(x1<x2)是函数f(x)的两个零点,f′(x)是函数f(x)的导函数,证明:f′()<0.22. (10分)(2017·沈阳模拟) 已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.23. (10分)(2017·武汉模拟) 已知函数f(x)=|2x﹣a|+|x﹣1|.(1)当a=3时,求不等式f(x)≥2的解集;(2)若f(x)≥5﹣x对∀x∈R恒成立,求实数a的取值范围.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题: (共7题;共70分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、。
2020年辽宁省高考数学押题试卷(理科)(5月份)(含答案解析)
2020年辽宁省高考数学押题试卷(理科)(5月份)一、选择题(本大题共12小题,共60.0分)1.已知集合,,则A. B. 0,1,C. 0,1,D. 1,2.已知i为虚数单位,若复数在复平面内对应的点在第四象限,则t的取值范围为A. B. C. D.3.下列函数中,既是偶函数,又在内单调递增的为A. B. C. D.4.已知双曲线与双曲线,给出下列说法,其中错误的是A. 它们的焦距相等B. 它们的焦点在同一个圆上C. 它们的渐近线方程相同D. 它们的离心率相等5.在等比数列中,“,是方程的两根”是“”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.执行如图所示的程序框图,则输出的S值为A. 1009B.C.D. 10087.已知一几何体的三视图如图所示,则该几何体的体积为A. B. C. D.8.已知函数的部分图象如图所示,则函数图象的一个对称中心可能为A. B. C. D.9.几何原本卷2的几何代数法以几何方法研究代数问题成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F在半圆O上,点C在直径AB上,且,设,,则该图形可以完成的无字证明为A. B.C. D.10.为迎接中共十九大,某校举办了“祖国,你好”诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名学生中至少有1人参加,且当这 3名学生都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为A. 720B. 768C. 810D. 81611.焦点为F的抛物线C:的准线与x轴交于点A,点M在抛物线C上,则当取得最大值时,直线MA的方程为A. 或B.C. 或D.12.定义在R内的函数满足,且当时,,对,,使得,则实数a的取值范围为A. B.C. D.二、填空题(本大题共4小题,共20.0分)13.已知,若向量与共线,则在方向上的投影为______.14.已知实数x,y满足不等式组且的最大值为a,则______.15.在中,角A,B,C的对边分别为a,b,c,,且,的面积为,则的值为______.16.已知球O是正三棱锥底面为正三角形,顶点在底面的射影为底面中心的外接球,,点E在线段BD上,且,过点E作球O的截面,则所得截面圆面积的取值范围是__________.三、解答题(本大题共7小题,共84.0分)17.已知的展开式中x的系数恰好是数列的前n项和.求数列的通项公式;数列满足,记数列的前n项和为,求证:.18.如图,点C在以AB为直径的圆O上,PA垂直于圆O所在的平面,G为的重心.求证:平面平面PAC;若,求二面角的余弦值.19.2017年存节期间,某服装超市举办了一次有奖促销活动,消费每超过600 元含600元,均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球其中红球3个,黑球7个的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸到2个红球,则打6折;若摸到1个红球,则打7折;若没摸到红球,则不打折.方案二:从装有10个形状、大小完全相同的小球其中红球3个,黑球7个的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.若两个顾客均分别消费了 600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算.20.已知椭圆的长轴长为6,且椭圆C与圆的公共弦长为.求椭圆C的方程;过点作斜率为的直线l与椭圆C交于两点A,B,试判断在x轴上是否存在点D,使得为以AB为底边的等腰三角形,若存在,求出点D的横坐标的取值范围;若不存在,请说明理由.21.已知函数.讨论函数的单调性;当时,若函数的导函数的图象与x轴交于A,B两点,其横坐标分别为,,线段AB的中点的横坐标为,且,恰为函数的零点.求证.22.已知直线l的参数方程为为参数,以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,圆C的极坐标方程为,直线l与圆C交于A,B两点.求圆C的直角坐标方程及弦AB的长;动点P在圆C上不与A,B重合,试求的面积的最大值.23.已知函数.求函数的值域M;若,试比较,,的大小.-------- 答案与解析 --------1.答案:B解析:解:集合0,1,2,3,,,则0,1,.故选:B.化简集合A、B,根据交集的定义写出.本题考查了集合的化简与运算问题,是基础题.2.答案:B解析:【分析】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.利用复数的运算法则转化为一般形式,再根据复数的几何意义,令z的实部大于0,虚部小于0,解不等式组即可得出t的范围.【解答】解:复数,在复平面内对应的点在第四象限,,解得.则实数t的取值范围为.故选:B.3.答案:D解析:解:对于A,不是偶函数,不合题意;对于B,时,函数递减,不合题意;对于C,函数是奇函数,在内单调递减,不合题意,对于D,函数是偶函数,时,,是增函数,符合题意,故选:D.根据函数的单调性和奇偶性判断即可.本题考查了函数的单调性、奇偶性问题,是一道基础题.4.答案:D解析:解:根据题意,双曲线,其中,,则,则其焦距,焦点坐标为,渐进线为,离心率;双曲线,其标准方程为,其中,,则,则其焦距,焦点坐标为,渐进线为,离心率;据此依次分析选项:对于A、两个双曲线的焦距都为,A正确;对于B、双曲线焦点坐标为,双曲线焦点坐标为,都在圆上,B正确;对于C、两个双曲线的渐进线为,C正确;对于D、双曲线离心率为,双曲线的离心率为,不正确;故选:D.根据题意,由两个双曲线的方程计算出两个双曲线的焦点坐标、焦距、渐进性方程以及离心率,进而分析选项即可得答案.本题考查双曲线的标准方程,注意将双曲线的方程变形为标准方程.5.答案:A解析:解:,是方程的两根,,,和均为负值,由等比数列的性质可知为负值,且,,故“,是方程的两根”是“”的充分不必要条件,故选:A.由韦达定理可得,和均为负值,由等比数列的性质可得.本题考查等比数列的性质和韦达定理,注意等比数列隔项同号,本题易得错误答案,属易错题.6.答案:B解析:解:模拟程序的运行,可得程序框图的功能是计算并输出的值,由于.故选:B.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.7.答案:C解析:解:由三视图可知:该几何体由一个三棱锥与一个圆锥的组成.该几何体的体积.故选:C.由三视图可知:该几何体由一个三棱锥与一个圆锥的组成.本题考查了四棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于中档题.8.答案:C解析:【分析】本题主要考查由函数的部分图象求解析式,属于基础题.由函数的图象的顶点坐标求出A,由周期求出,由特殊点的坐标求出的值,可得的解析式,再利用余弦函数的图象的对称性,求得函数图象的一个对称中心.【解答】解:根据函数的部分图象,可得,,,再根据函数的图象经过点,结合图象可得,,,,则函数,令,解得,,当,可得图象的一个对称中心为,故选:C.9.答案:D解析:解:由图形可知:,.在中,由勾股定理可得:.,.故选:D.由图形可知:,在中,由勾股定理可得:利用即可得出.本题考查了圆的性质、勾股定理、三角形三边大小关系,考查了推理能力与计算能力,属于中档题.10.答案:B解析:解:根据题意,在7名学生中选派4名学生参加诗歌朗诵比赛,有种情况,其中甲、乙、丙都没有参加,即选派其他四人参加的情况有种,则甲、乙、丙这3名学生中至少有1人参加的情况有种;其中当甲乙丙都参加且甲和乙相邻的情况有种,则满足题意的朗诵顺序有种;故选:B.根据题意,用间接法分析:首先计算在7名学生中选派4名学生参加诗歌朗诵比赛的选法数目,在排除计算其中甲、乙、丙都没有参加的情况,即可得甲、乙、丙这3名学生中至少有1人参加的情况数目,再计算当甲乙丙都参加且甲和乙相邻的情况数目,用“甲、乙、丙这3名学生中至少有1人参加的情况数目”减去“甲乙丙都参加且甲和乙相邻的情况数目”即可得答案.本题考查排列、组合的综合应用,注意使用间接法分析,避免分类讨论.11.答案:A解析:【分析】本题考查抛物线的性质,直线与抛物线的位置关系,考查数形结合思想,属于中档题.由题意可知则当取得最大值,则必须取得最大值,此时AM与抛物线相切,设直线l的方程,代入抛物线方程,由,考虑求得MA的方程.【解答】解:如图,过M做MP与准线垂直,垂足为P,则,则当取得最大值,必须取得最小值,必须取得最大值,此时AM与抛物线相切,设切线方程为,则化简得,由,得,则,则直线方程或,故选:A.12.答案:D解析:解:当时,,可得在上单调递减,在上单调递增,在上的值域为,在上的值域为,在上的值域为,,,在上的值域为,当时,为增函数,在上的值域为,,解得;当时,为减函数,在上的值域为,,解得;当时,为常数函数,值域为,不符合题意;综上,a的范围是或.故选:D.求出在上的值域,利用的性质得出在上的值域,再求出在上的值域,根据题意得出两值域的包含关系,从而解出a的范围本题考查了分段函数的值域计算,集合的包含关系,属于中档题.13.答案:解析:解:,与共线,,即.,在方向上的投影为.故答案为:.根据向量共线求出,计算,代入投影公式即可.本题考查了平面向量的数量积运算,属于基础题.14.答案:解析:解:作出不等式组对应的平面区域如图:阴影部分.由得,平移直线,由图象可知当直线经过点B时,直线的截距最小,此时z最大.由,得,即即,则,故答案为:.作出不等式组对应的平面区域,利用目标函数的几何意义,利用平移法进行求解得a的值,结合函数的积分公式进行求解即可.本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想以及函数的积分公式是解决此类问题的基本方法.15.答案:解析:解:在中,由正弦定理可得,,,,,,解得,;,由余弦定理可得:,的面积为,可得:,联立可得:.故答案为:.由正弦定理和三角函数公式化简已知式子可得cos A的值,由余弦定理可求,利用三角形面积公式可求,联立即可得解的值.本题考查正、余弦定理解三角形,涉及同角三角函数基本关系和三角形的面积公式,属于基础题.16.答案:解析:【分析】本题考查了正三棱锥与外接球,过球内一点作球的截面面积的取值范围问题,涉及余弦定理,属较难题.画出图形,利用正三角形性质及勾股定理建立方程求得外接球半径,进而求得E到球心O的距离,根据过球O内一点E的截面中,与OE垂直的截面面积最小,过球心的截面面积最大即可得解.【解答】解:如图,设的中心为,球O的半径为R,连接,OD,,OE,则,,则,,在中,,解得,,,在中,,,过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,此时截面圆的半径为,最小面积为.当截面过球心时,截面面积最大,最大面积为.故答案为.17.答案:解:的展开式中x的系数为,即,所以当时,.当时,也适合上式.所以数列的通项公式为.证明:,所以,所以.解析:根据二项式定理可得,继而求出数列的通项公式;根据“裂项求和“即可证明.本题考查了二项式定理,前n项和公式、“裂项求和”、递推式的应用,考查了推理能力与计算能力,属于中档题.18.答案:解:证明:如图,延长OG交AC于点M.因为G为的重心,所以M为AC的中点.因为O为AB的中点,所以.因为AB是圆O的直径,所以,所以.因为平面ABC,平面ABC,所以.又平面PAC,平面PAC,,所以平面PAC.即平面PAC,又平面OPG,所以平面平面PAC.解:以点C为原点,方向分别为x,y,z轴正方向建立空间直角坐标系Cxyz,则0,,,则.平面OPG即为平面OPM,设平面OPM的一个法向量,则令,得.过点C作于点H,由平面ABC,易得,又,所以平面PAB,即CH为平面PAO的一个法向量.在中,由,得,则.所以,所以.设二面角的大小为,则即二面角的余弦值为.解析:延长OG交AC于点可得由AB是圆O的直径,得.由平面ABC,可得平面即平面PAC,证得平面平面PAC.以点C为原点,方向分别为x,y,z轴正方向建立空间直角坐标系Cxyz,则0,,利用向量法求解.本题考查了空间面面垂直的判定,向量法求二面角,考查了转化思想、计算能力,属于中档题.19.答案:解:选择方案一,若享受到免单优惠,则需要摸出3个红球,设顾客享受到免单优惠为事件A,则,所以两位顾客均享受到免单的概率为;若选择方案一,设付款金额为X元,则X可能的取值为0,600,700,1000;计算,,故X的分布列为:X06007001000P所以元;若选择方案二,设摸到红球的个数为Y,付款金额为Z元,则,由已知可得,故,所以元,因为,所以该顾客选择第一种抽奖方案更合算.解析:选择方案一,利用积事件的概率公式计算两位顾客均享受到免单的概率值;选择方案一,计算所付款金额X的分布列和数学期望值,选择方案二,计算所付款金额Z的数学期望值,比较得出结论.本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题.20.答案:解:由题意可得,所以,由椭圆C与圆的公共弦长为,恰为圆M的直径,可得椭圆C经过点,所以,解得,所以椭圆C的方程为;直线l的解析式设为,设,,AB的中点为假设存在点,使得为以AB为底边的等腰三角形,则.联立和,得,故,所以,,因为,所以,即,所以,当时,,所以.综上所述,在x轴上存在满足题目条件的点E,且点D的横坐标的取值范围为.解析:由题意可得,由题意可得公共弦长为直径,求得b,进而得到所求椭圆方程;直线l的解析式设为,设,,AB的中点为,联立直线方程和椭圆方程,运用韦达定理和两直线垂直的条件:斜率之积为,化简整理,结合基本不等式即可得到存在和D的横坐标的范围.本题考查椭圆方程的求法,注意运用直线和圆的弦长公式和椭圆的长轴长,考查存在性问题解法,注意运用等腰三角形的性质和联立直线方程和椭圆方程,运用韦达定理和两直线垂直的条件:斜率之积为,考查运算能力,属于中档题.21.答案:解:由于的定义域为,.对于方程,其判别式.当,即时,恒成立,故在内单调递增.当,即,方程恰有两个不相等是实根,令,得或,此时单调递增;令,得,此时单调递减.综上所述,当时,在内单调递增;当时,在内单调递减,在,内单调递增.证明:由知,,所以的两根,即为方程的两根.因为,所以,,.又因为,为的零点,所以,,两式相减得,得而,所以.令,由得,因为,两边同时除以,得,因为,故,解得或,所以.设,所以,则在上是减函数,所以,即的最小值为.所以.解析:求出函数的导数,通过讨论m的范围,求出函数的单调区间即可;求出函数的导数,表示出b,令,由得,得,根据函数的单调性证明即可.本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,考查不等式的证明,是一道综合题.22.答案:解:由得,所以,所以圆C的直角坐标方程为.将直线l的参数方程代入圆C:,并整理得,解得,.所以直线l被圆C截得的弦长为.直线l的普通方程为.圆C的参数方程为为参数,可设曲线C上的动点,则点P到直线l的距离,当时,d取最大值,且d的最大值为.所以,即的面积的最大值为.解析:本题考查了极坐标方程以及普通方程的转化,考查点到直线的距离以及三角函数的性质,是一道中档题.根据极坐标以及直角坐标方程的关系求出圆C的直角坐标方程即可,联立直线的参数方程和圆的方程,求出弦长即可;求出直线的普通方程以及圆的参数方程,可设曲线C上的动点,求出点P 到直线l的距离,结合三角函数的性质求出的面积的最大值.23.答案:解:,根据函数的单调性可知,当时,.所以函数的值域;因为,所以,所以,,所以,因为,又由,知,,所以,所以,所以.解析:本题考查了解绝对值不等式问题,考查分类讨论思想,转化思想,是一道中档题.求出函数的分段函数的形式,求出的最小值,从而求出函数的值域即可;根据绝对值的性质,求出a的范围,根据作差法比较即可.。
辽宁省2020年高考数学 第20题优美解
2020年高考数学(辽宁)第20题(理)试题优美解试题(辽宁、 理科20)如图,椭圆()22022:+=1>b>0,a,b x y C a a b 为常数,动圆222111:+=,<<C x y t b t a .点12,A A 分别为0C 的左、右顶点,1C 与0C 相交于,,,A B C D 四点(1)求直线1AA 与直线2A B 交点M 的轨迹方程;(2)设动圆22222:+=C x y t 与0C 相交于',',','A B C D 四点,其中2<<b t a ,12t t ≠.若矩形ABCD 与矩形''''ABCD 的面积相等,证明:2212+t t 为定值解法设()()1111,,,-A x y B x y ,又知()()12-,0,,0A a A a ,则直线1A A 的方程为 ()11=++y y x a x a ① 直线2A B 的方程为()11-=--y y x a x a ② 由①②得 ()22221221-=--y y x a x a③ 由点()11,A x y 在椭圆0C 上,故可得221122+=1x y a b ,从而有222112=1-x y b a ⎛⎫ ⎪⎝⎭,代入③得 ()2222-=1<-,<0x y x a y a b(2)证明:设()22',A x y ,由矩形ABCD 与矩形''''ABCD 的面积相等,得 2222112211224=4,=x y x y x y x y ∴,因为点,'A A 均在椭圆上,所以2222221212221-=1-x x b x b x a a ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭由12t t ≠,知12x x ≠,所以22212+=x x a 。
从而22212+=y y b ,因而222212+=+t t a b 为定值试题或解法赏析.本题主要考查圆的方程、椭圆方程、轨迹求法、解析几何中的定值问题,考查转化与化归能力、运算求解能力,是难题.。
辽宁省2020年高考理科数学质量检测试题及答案
辽宁省2020年高考理科数学质量检测试题及答案(满分150分,考试时间120分钟)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 设集合{}2|20A x x x =--<,{}2|log 0B x x =<,则AB =A. (1,2)-B. (0,1)C. (,2)-∞D. (1,1)-2. 设11iz i+=-,z 是z 的共轭复数,则z z ⋅= A. -1B. iC. 1D. 43. 已知向量()2,1m x =,(),2n x =,命题1:2p x =,命题:q 0,λ∃>使得m n λ=成立,则命题p 是命题q 的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 非充分非必要条件4. 某三棱锥的三视图如图所示,则该三棱锥最长的棱的棱长为A. 3B. 12x xD. 25. 已知随机变量ξ服从正态分布(0,1)N ,如果(1)0.8413P ξ≤=,则(10)P ξ-<≤= A. 0.3413B. 0.6826C. 0.1587D. 0.07946.已知点(A 在双曲线()2221010x y b b-=>上,则该双曲线的离心率为A.3B.2D.7. 若函数()cos (0)f x x x ωωω=+>,且()2,()0,f f αβαβ==-的最小值是2π,则()f x 的单调递增区间是A. 5[2,2]()66k k k z ππππ-+∈ B. 2[2,2]()33k k k z ππππ-+∈ C. [,]()36k k k z ππππ-+∈D. 5[,]()1212k k k z ππππ-+∈ 8. 《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则芒种日影长为 A. 1.5尺B. 2.5尺C. 3.5尺D. 4.5尺9. 宋元时期数学名着《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n =A. 5B. 4C. 3D. 210.已知抛物线214y x =的焦点F 是椭圆22221(0)y x a b a b+=>>的一个焦点,且该抛物线的准线与椭圆相交于A 、B 两点,若FAB ∆是正三角形,则椭圆的离心率为1-111.已知三棱锥S ABC -所有顶点都在球O 的球面上,且SC ⊥平面ABC ,若1SC AB AC ===,0120BAC ∠=,则球O 的表面积为A .52πB .5πC .4πD .53π 12.已知为偶函数,对任意,恒成立,且当时,.设函数,则的零点的个数为A. B. C. D.二、填空题(本题共4小题,每小题5分,共20分。
2020年普通高等学校招生全国统一考试数学理(辽宁卷,解析版)
2020年普通高等学校招生全国统一考试数学理(辽宁卷,解析版)一- 选择题(每小题5分,共60分)(1)已知集合M={x|-3<x ≤5},N={x|-5<x<5},则M ∩N=(A) {x|-5<x <5} (B) {x|-3<x <5} (C) {x|-5<x ≤5} (D) {x|-3<x ≤5}【解析】直接利用交集性质求解,或者画出数轴求解. 【答案】B(2)已知复数12z i =-,那么1z= (A )52555i + (B )52555i - (C )1255i + (D )1255i - 【解析】211121212(12)(12)12i i i i i z --===++-+=1255i - 【答案】D(3)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b += (A )3 (B) 23 (C) 4 (D)12 【解析】由已知|a|=2,|a +2b|2=a 2+4a ·b +4b 2=4+4×2×1×cos60°+4=12 ∴2a b +=23【答案】B(4) 已知圆C 与直线x -y=0 及x -y -4=0都相切,圆心在直线x+y=0上,则圆C 的方程为(A )22(1)(1)2x y ++-= (B) 22(1)(1)2x y -++= (C) 22(1)(1)2x y -+-= (D) 22(1)(1)2x y +++=【解析】圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可. 【答案】B(5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A )70种 (B ) 80种 (C ) 100种 (D )140种【解析】直接法:一男两女,有C 51C 42=5×6=30种,两男一女,有C 52C 41=10×4=40种,共计70种间接法:任意选取C 93=84种,其中都是男医生有C 53=10种,都是女医生有C 41=4种,于是符合条件的有84-10-4=70种. 【答案】A(6)设等比数列{ n a }的前n 项和为n S ,若63S S =3 ,则 69SS =(A ) 2 (B )73 (C ) 83(D )3 【解析】设公比为q ,则36333(1)S q S S S +==1+q 3=3 ⇒ q 3=2 于是63693112471123S q q S q ++++===++ 【答案】B (7)曲线y=2xx -在点(1,-1)处的切线方程为 (A )y=x -2 (B) y=-3x+2 (C)y=2x -3 (D)y=-2x+1 【解析】y ’=2222(2)(2)x x x x ---=--,当x =1时切线斜率为k =-2 【答案】D(8)已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f = (A )23-(B) 23 (C)- 12 (D) 12【解析】由图象可得最小正周期为2π3于是f(0)=f(2π3),注意到2π3与π2关于7π12对称所以f(2π3)=-f(π2)=23【答案】B(9)已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是 (A )(13,23) (B) [13,23) (C)(12,23) (D) [12,23) 【解析】由于f(x)是偶函数,故f(x)=f(|x|)∴得f(|2x -1|)<f(13),再根据f(x)的单调性 得|2x -1|<13 解得13<x <23【答案】A10)某店一个月的收入和支出总共记录了 N 个数据1a ,2a ,。
2020年辽宁省高考数学(理科)模拟试卷(4) 含详细答案解析
一.选择题(共 12 小题,满分 60 分,每小题 5 分)
1.( 5 分)设集合 A= { x|﹣1< x≤ 2} , B={ ﹣ 1,0, 1, 2, 3} ,则 A∩B=(
)
A .{ ﹣ 1, 0, 1, 2}
B. {0 , 1, 2}
C. {0 , 1}
.2020 年春节前夕,某市
质检部门随机抽取了 100 包某品牌的速冻水饺,检测某项质量指标,检测结果如频率分
布直方图所示.
( 1)求所抽取的 100 包水饺该项质量指标值的样本平均数.
( 2)由直方图可以认为,水饺的该项质量指标值
Z 服从正态分布 N( μ,σ 2),其中 μ
近似为样本平均数, 经计算得σ = √142.75 ≈11.95,求 Z 落在( 14.55,38.45)内的概率. ( 3)将频率视为概率, 若某人买了 3 包该品牌水饺, 记这 3 包水饺中质量指标值位于 ( 10,
Gini =
1. 2
其中不正确的是(
)
A .①④
B .②③
C. ①③④
D. ①②④
11.(5 分)已知抛物线 C: y2= 2px( p> 0)的焦点为 F,准线与 x 轴交于点 K,过点 K 作
圆 (??-
?2?) 2 + ??2 =
??2的切线,切点分别为 4
A, B.若 |????=| √3 ,则 p 的值为(
8.( 5 分)设复数 z 满足 |z﹣i |+|z+i|= 4, z 在复平面内对应的点为( x, y),则(
)
??2 A. -
4
??2 C. -
4
??2 =1
辽宁省2020届高三考试精品试卷数学理版含答案
辽宁师范大学附属中学高三精品卷测试数学(理)命题人:高三数学备课组第Ⅰ卷( 60分)一.选择题:(本大题共10小题,每小题4分,共40分。
每题只有一个正确答案,将正确答案的序号涂在答题卡上.) 1.设集合2222⎧⎫⎪⎪=≤≤⎨⎬⎪⎩⎭x A x,{}ln 0B x x =<,则A B =( ) A .11(,)22-B.1(0,)2 C .1[,1)2 D .1(0,]22. 复数1z ,2z 在复平面内对应的点关于直线y x =对称,且132z i =+,则12z z ⋅=( ) A. 13i B. 13i - C. 1312i +D. 1213i +3.已知x ,y 满足约束条件 则目标函数2z x y =-的最大值为( )A .12- B .1 C .4 D .5 4.已知命题p:函数()1xf x x =-的图象的对称中心坐标为(1,1);命题q :若函数()g x 在区间[],a b 上是增函数,且()g x >0,则有()()()()()bag a b a g x dx g b b a -<<-⎰成立.下列命题为真命题的是( )A.p q ∧B.p q ⌝∧C.p q ∧⌝D.p q ⌝∧⌝ 5.中国古代数学名著《九章算术》中记载了公元前344年 商鞅督造一种标准量器——商鞅铜方升,其三视图如图 所示(单位:寸),若π取3,其体积为12.6(立方寸),则 图中的x 为( )A .1.2B .1.6C .1.8D .2.46. 按右图所示的程序框图,若输入110011a =,则输出的b =A. 45B. 47C. 49D. 517.高考临近,学校为丰富学生生活,缓解高考压力, 特举办一场高三学生队与学校校队的男子篮球比赛. 由于爱好者众多,高三学生队队员指定由1班的6人、 2班的8人、5班的10人按分层抽样构成一个12人的 篮球队.首发阵容有5人组成,要求每个班至少1人,至多2人,则首发方案数为( ) A .720 B .270C .390D .3008.在△ABC 中,三个内角A ,Β,C 所对的边为a ,b ,c ,若23ABC S =△,6a b +=,cos cos 2cos a B b Ac c+=,则c =( )A.27B.23C.4D.33 9.已知函数()()220162016log 120162x x f x x x -=+++-+,则关于x 的不等式()()314f x f x ++>的解集为( ) A 、1,4⎛⎫-+∞ ⎪⎝⎭ B 、1,4⎛⎫-∞- ⎪⎝⎭C 、()0,+∞D 、(),0-∞10.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n 的两个零点,则b 10等于( )A .24B .32C .48D .64 11.如图,已知球O 是棱长为1的正方体ABCD -A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为( ) A.π6 B.π3 C.66π D.33π 12.设函数()2xf x e x =+-,2()ln 3g x x x =+-,若实数,a b 满足()0f a =,()0g b =, 则 ( )A .0()()g a f b <<B .()0()g a f b <<C .()()0f b g a <<D .()0()f b g a <<第Ⅱ卷(90分)二、填空题:(本大题共4小题,每小题5分,共20分)13.已知sin 0a xdx π=⎰,则二项式51a x ⎛⎫- ⎪⎝⎭的展开式中3x -的系数为 .14.如果满足60,12,ABC AC BC k ∠===的三角形ABC 有且只有一个,那么k 的取值范围是 .15.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .16.如图,已知12,F F 是双曲线22221(a 0,0)y x b a b-=>>的上下焦点,过2F 点作以1F 为圆心,1|OF |为半径的圆的切线,P 为切点,若切线段2PF 被一条渐近线平分,则双曲线的离心率为________.C 1B 1A 1CBA三、解答题(解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分12分)已知正项数列{}n a 的前n 项和n S 满足2632n n n S a a =++,且2a 是1a 和6a 的等比中项.()I 求数列{}n a 的通项公式;()II 符合[]x 表示不超过实数x 的最大整数,如22[log 3]1,[log 5] 2.==记25[log ]3n n a b +=,求数列2{2}n n b ⋅的前n 项和.n T 18. (本小题满分12分)如图,在斜三棱柱111ABC A B C -中,1A B AC ⊥,且15A B AC ==,113AA BC ==,且12AB =。
辽宁省2020年高考[理数卷]考试真题与答案解析
辽宁省2020年高考[理数卷]考试真题与答案解析一、选择题1.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则()U A B ðA .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}2.若α为第四象限角,则A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A .10名B .18名C .24名D .32名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)A .3699块B .3474块C .3402块D .3339块11.若2x -2y <3−x -3−y ,则A .ln(y-x+1)>0B .ln(y-x+1)<0C .ln ∣x-y ∣>0D .ln ∣x-y ∣<012.0-1周期序列在通信技术中有着重要应用.若序列满足,且存12n a a a {0,1}(1,2,)i a i ∈= 在正整数,使得成立,则称其为0-1周期序列,并称满足的m (1,2,)i m i a a i +== (1,2,)i m i a a i +== 最小正整数为这个序列的周期.对于周期为的0-1序列,m m 12n a a a 是描述其性质的重要指标,下列周期为5的0-1序列中,满足11()(1,2,,1)mi i k i C k a a k m m +===-∑ 的序列是1()(1,2,3,4)5C k k ≤=A .B .C .D .11010 11011 10001 11001二、填空题13.已知单位向量a ,b 的夹角为45°,k a –b 与a 垂直,则k=__________.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.15.设复数,满足,,则=__________.1z 2z 12||=||=2z z 123i z z +=+12||z z -16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l 平面α,直线m ⊥平面α,则m ⊥l .⊂则下述命题中所有真命题的序号是__________.①②③④14p p ∧12p p ∧23p p ⌝∨34p p ⌝∨⌝三、解答题(一)必考题17.中,sin 2A -sin 2B -sin 2C= sinBsinC .ABC △(1)求A ;(2)若BC=3,求周长的最大值.ABC △18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i=1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,20160i i x ==∑2011200i i y ==∑,,.2021)8(0ii x x =-=∑2021)9000(i i y y =-=∑201)()800(i i i y y x x =--=∑(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i ) (i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数,.12211)(()()()iiini n i ini x y r x y x y x y ===----=∑∑∑2 1.414≈19.已知椭圆C 1:(a>b>0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 222221x y a b+=的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且.43CD AB =(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF|=5,求C 1与C 2的标准方程.20.如图,已知三棱柱ABC-A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面(2)设O 为△A 1B 1C 1的中心,所成角的正弦值.21.已知函数2() sin sin2f x x x =(1)讨论f(x)在区间(0,π)的单调性;答案解析1.A2.D3.B4.C5.B6.C7.A8.B9.D 10.C 11.A 12.C 13.14.3615.16.①③④222317.解:(1)由正弦定理和已知条件得,①222BC AC AB AC AB --=⋅由余弦定理得,②2222cos BC AC AB AC AB A =+-⋅由①,②得.1cos 2A =-因为,所以.0πA <<2π3A =(2)由正弦定理及(1)得,23sin sin sin AC AB BCB C A===从而,.23sin AC B =23sin(π)3cos 3sin AB A B B B =--=-故.π33sin 3cos 323sin()3BC AC AB B B B ++=++=++又,所以当时,周长取得最大值.π03B <<π6B =ABC △323+18.解:(1)由已知得样本平均数,从而该地区这种野生动物数量的估计值20160120i iy y===∑为60×200=12000.(2)样本的相关系数(,)i i x y (1,2,,20)i = .20120202211)()800220.94380900(0))((ii iii i ix y y x x r x y y ===--===≈⨯--∑∑∑(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.19.解:(1)由已知可设的方程为,其中.2C 24y cx =22c a b =-不妨设在第一象限,由题设得的纵坐标分别为,;的纵坐标分别为,,A C ,A B 2b a 2b a -,C D 2c ,故,.2c -22||b AB a=||4CD c =由得,即,解得(舍去),.4||||3CD AB =2843b c a =2322()c c a a ⨯=-2c a =-12c a =所以的离心率为.1C 12(2)由(1)知,,故,2a c =3b c =22122:143x y C c c+=设,则,,故.①00(,)M x y 220022143x y c c +=2004y cx =20024143x x c c+=由于的准线为,所以,而,故,代入①得2C x c =-0||MF x c =+||5MF =05x c =-,即,解得(舍去),.22(5)4(5)143c c c c --+=2230c c --=1c =-3c =所以的标准方程为,的标准方程为.1C 2213627x y +=2C 212y x =20.解:(1)因为M ,N 分别为BC ,B 1C 1的中点,所以.又由已知得AA 1∥CC 1,1MN CC ∥故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN .所以平面A 1AMN ⊥平面.11EB C F (2)由已知得AM ⊥BC .以M 为坐标原点,的方向为x 轴正方向,为单位长,建立如MAMB 图所示的空间直角坐标系M-xyz ,则AB=2,AM=.3连接NP ,则四边形AONP 为平行四边形,故.由(1)知平面A 1AMN ⊥23231,(,,0)333PM E =平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC .设,则,(,0,0)Q a 22123234(),(,1,4())33NQ a B a a =----故.21123223210(,,4()),||3333B E a a B E =-----=故的普通方程为.2C 224x y -=(2)由得所以的直角坐标为.224,4x y x y +=⎧⎨-=⎩5,23,2x y ⎧=⎪⎪⎨⎪=⎪⎩P 53(,)22设所求圆的圆心的直角坐标为,由题意得,0(,0)x 220059()24x x =-+解得.01710x =因此,所求圆的极坐标方程为.17cos 5ρθ=23.解:(1)当时,2a =72,3,()1,34,27,4,x x f x x x x -≤⎧⎪=<≤⎨⎪->⎩因此,不等式的解集为.()4f x ≥311{|}22x x x ≤≥或(2)因为,故当,即时,222()|||21||21|(1)f x x a x a a a a =-+-+≥-+=-2(1)4a -≥|1|2a -≥.所以当a≥3或a≤-1时,.()4f x ≥()4f x ≥当-1<a<3时,,222()|21|(1)4f a a a a =-+=-<所以a 的取值范围是.(,1][3,)-∞-+∞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年辽宁省高考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数的模长为()A.B.C.D.22.(5分)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1) B.(0,2]C.(1,2) D.(1,2]3.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A.B.C.D.4.(5分)下列关于公差d>0的等差数列{a n}的四个命题:p1:数列{a n}是递增数列;p2:数列{na n}是递增数列;p3:数列是递增数列;p4:数列{a n+3nd}是递增数列;其中真命题是()A.p1,p2B.p3,p4C.p2,p3D.p1,p45.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()A.B.C. D.7.(5分)使得(3x+)n(n∈N+)的展开式中含有常数项的最小的n为()A.4 B.5 C.6 D.78.(5分)执行如图所示的程序框图,若输入n=10,则输出的S=()A.B.C.D.9.(5分)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有()A.b=a3B.C.D.10.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.11.(5分)已知函数f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的较大值,min{p,q}表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.16 B.﹣16 C.﹣16a2﹣2a﹣16 D.16a2+2a﹣1612.(5分)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值二、填空题:本大题共4小题,每小题5分.13.(5分)某几何体的三视图如图所示,则该几何体的体积是.14.(5分)已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.15.(5分)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e=.16.(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.18.(12分)如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(Ⅰ)求证:平面PAC⊥平面PBC;(Ⅱ)若AB=2,AC=1,PA=1,求证:二面角C﹣PB﹣A的余弦值.19.(12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(Ⅰ)求张同学至少取到1道乙类题的概率;(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.20.(12分)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣时,切线MA的斜率为﹣.(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).21.(12分)已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.请考生在21、22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.(10分)选修4﹣1:几何证明选讲如图,AB为⊙O直径,直线CD与⊙O相切与E,AD垂直于CD于D,BC垂直于CD于C,EF垂直于F,连接AE,BE.证明:(I)∠FEB=∠CEB;(II)EF2=AD•BC.23.在直角坐标系xOy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos()=2.(Ⅰ)求C1与C2交点的极坐标;(Ⅱ)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为(t∈R为参数),求a,b的值.24.已知函数f(x)=|x﹣a|,其中a>1(1)当a=2时,求不等式f(x)≥4﹣|x﹣4|的解集;(2)已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a 的值.2013年辽宁省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数的模长为()A.B.C.D.2【分析】通过复数的分子与分母同时求模即可得到结果.【解答】解:复数,所以===.故选:B.【点评】本题考查复数的模的求法,考查计算能力.2.(5分)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1) B.(0,2]C.(1,2) D.(1,2]【分析】求出集合A中其他不等式的解集,确定出A,找出A与B的公共部分即可求出交集.【解答】解:由A中的不等式变形得:log41<log4x<log44,解得:1<x<4,即A=(1,4),∵B=(﹣∞,2],∴A∩B=(1,2].故选:D.【点评】此题考查了交集及其运算,以及其他不等式的解法,熟练掌握交集的定义是解本题的关键.3.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A.B.C.D.【分析】由条件求得=(3,﹣4),||=5,再根据与向量同方向的单位向量为求得结果.【解答】解:∵已知点A(1,3),B(4,﹣1),∴=(4,﹣1)﹣(1,3)=(3,﹣4),||==5,则与向量同方向的单位向量为=,故选:A.【点评】本题主要考查单位向量的定义和求法,属于基础题.4.(5分)下列关于公差d>0的等差数列{a n}的四个命题:p1:数列{a n}是递增数列;p2:数列{na n}是递增数列;p3:数列是递增数列;p4:数列{a n+3nd}是递增数列;其中真命题是()A.p1,p2B.p3,p4C.p2,p3D.p1,p4【分析】对于各个选项中的数列,计算第n+1项与第n项的差,看此差的符号,再根据递增数列的定义得出结论.【解答】解:∵对于公差d>0的等差数列{a n},a n+1﹣a n=d>0,∴命题p1:数列{a n}是递增数列成立,是真命题.对于数列{na n},第n+1项与第n项的差等于(n+1)a n+1﹣na n=(n+1)d+a n,不一定是正实数,故p2不正确,是假命题.对于数列,第n+1项与第n项的差等于﹣==,不一定是正实数,故p3不正确,是假命题.对于数列{a n+3nd},第n+1项与第n项的差等于a n+1+3(n+1)d﹣a n﹣3nd=4d>0,故命题p4:数列{a n+3nd}是递增数列成立,是真命题.故选:D.【点评】本题主要考查等差数列的定义,增数列的含义,命题的真假的判断,属于中档题.5.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.60【分析】由已知中的频率分布直方图,我们可以求出成绩低于60分的频率,结合已知中的低于60分的人数是15人,结合频数=频率×总体容量,即可得到总体容量.【解答】解:∵成绩低于60分有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20,则成绩低于60分的频率P=(0.005+0.010)×20=0.3,又∵低于60分的人数是15人,则该班的学生人数是=50.故选:B.【点评】本题考查的知识点是频率分布直方图,结合已知中的频率分布直方图,结合频率=矩形的高×组距,求出满足条件的事件发生的频率是解答本题的关键.6.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()A.B.C. D.【分析】利用正弦定理化简已知的等式,根据sinB不为0,两边除以sinB,再利用两角和与差的正弦函数公式化简求出sinB的值,即可确定出B的度数.【解答】解:利用正弦定理化简已知等式得:sinAsinBcosC+sinCsinBcosA=sinB,∵sinB≠0,∴sinAcosC+sinCcosA=sin(A+C)=sinB=,∵a>b,∴∠A>∠B,即∠B为锐角,则∠B=.故选:A.【点评】此题考查了正弦定理,两角和与差的正弦函数公式,以及诱导公式,熟练掌握正弦定理是解本题的关键.7.(5分)使得(3x+)n(n∈N+)的展开式中含有常数项的最小的n为()A.4 B.5 C.6 D.7【分析】利用二项展开式的通项公式T r+1=3n﹣r••,令x的幂指数n﹣r=0即可求得展开式中含有常数项的最小的n.【解答】解:设(n∈N+)的展开式的通项为T r+1,则:T r+1=3n﹣r••x n﹣r•=3n﹣r••,令n﹣r=0得:n=r,又n∈N+,∴当r=2时,n最小,即n min=5.故选:B.【点评】本题考查二项式系数的性质,求得n﹣r=0是关键,考查分析与运算能力,属于中档题.8.(5分)执行如图所示的程序框图,若输入n=10,则输出的S=()A.B.C.D.【分析】框图首先给累加变量S和循环变量i分别赋值0和2,在输入n的值为10后,对i的值域n的值大小加以判断,满足i≤n,执行,i=i+2,不满足则跳出循环,输出S.【解答】解:输入n的值为10,框图首先给累加变量S和循环变量i分别赋值0和2,判断2≤10成立,执行,i=2+2=4;判断4≤10成立,执行=,i=4+2=6;判断6≤10成立,执行,i=6+2=8;判断8≤10成立,执行,i=8+2=10;判断10≤10成立,执行,i=10+2=12;判断12≤10不成立,跳出循环,算法结束,输出S的值为.故选:A.【点评】本题考查了循环结构中的当型循环,即先判断后执行,满足条件,执行循环,不满足条件跳出循环,算法结束,是基础题.9.(5分)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有()A.b=a3B.C.D.【分析】利用已知可得=(a,a3﹣b),,=(a,a3),且ab≠0.分以下三种情况:①,②,③,利用垂直与数量积的关系即可得出.【解答】解:∵=(a,a3﹣b),,=(a,a3),且ab≠0.①若,则=ba3=0,∴a=0或b=0,但是ab≠0,应舍去;②若,则=b(a3﹣b)=0,∵b≠0,∴b=a3≠0;③若,则=a2+a3(a3﹣b)=0,得1+a4﹣ab=0,即.综上可知:△OAB为直角三角形,则必有.故选:C.【点评】熟练掌握垂直与数量积的关系、分类讨论的思想方法是解题的关键.10.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.【分析】通过球的内接体,说明几何体的侧面对角线是球的直径,求出球的半径.【解答】解:因为三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,所以三棱柱的底面是直角三角形,侧棱与底面垂直,侧面B1BCC1,经过球的球心,球的直径是其对角线的长,因为AB=3,AC=4,BC=5,BC1=,所以球的半径为:.故选:C.【点评】本题考查球的内接体与球的关系,球的半径的求解,考查计算能力.11.(5分)已知函数f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的较大值,min{p,q}表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.16 B.﹣16 C.﹣16a2﹣2a﹣16 D.16a2+2a﹣16【分析】先作差得到h(x)=f(x)﹣g(x)=2(x﹣a)2﹣8.分别解出h(x)=0,h(x)>0,h(x)<0.画出图形,利用新定义即可得出H1(x),H2(x).进而得出A,B即可.【解答】解:令h(x)=f(x)﹣g(x)=x2﹣2(a+2)x+a2﹣[﹣x2+2(a﹣2)x ﹣a2+8]=2x2﹣4ax+2a2﹣8=2(x﹣a)2﹣8.①由2(x﹣a)2﹣8=0,解得x=a±2,此时f(x)=g(x);②由h(x)>0,解得x>a+2,或x<a﹣2,此时f(x)>g(x);③由h(x)<0,解得a﹣2<x<a+2,此时f(x)<g(x).综上可知:(1)当x≤a﹣2时,则H1(x)=max{f(x),g(x)}=f(x)=[x﹣(a+2)]2﹣4a﹣4,H2(x)=min{f(x),g(x)}=g(x)=﹣[x﹣(a﹣2)]2﹣4a+12,(2)当a﹣2≤x≤a+2时,H1(x)=max{f(x),g(x)}=g(x),H2(x)=min{f (x),g(x)}=f(x);(3)当x≥a+2时,则H1(x)=max{f(x),g(x)}=f(x),H2(x)=min{f(x),g(x)}=g(x),故A=g(a+2)=﹣[(a+2)﹣(a﹣2)]2﹣4a+12=﹣4a﹣4,B=g(a﹣2)=﹣4a+12,∴A﹣B=﹣4a﹣4﹣(﹣4a+12)=﹣16.故选:B.【点评】熟练掌握作差法、二次函数图象的画法及其单调性、一元二次不等式的解法、数形结合的思想方法及正确理解题意是解题的关键.12.(5分)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值【分析】令F(x)=x2f(x),利用导数的运算法则,确定f′(x)=,再构造新函数,确定函数的单调性,即可求得结论.【解答】解:∵函数f(x)满足,∴令F(x)=x2f(x),则F′(x)=,F(2)=4•f(2)=.由,得f′(x)=,令φ(x)=e x﹣2F(x),则φ′(x)=e x﹣2F′(x)=.∴φ(x)在(0,2)上单调递减,在(2,+∞)上单调递增,∴φ(x)的最小值为φ(2)=e2﹣2F(2)=0.∴φ(x)≥0.又x>0,∴f′(x)≥0.∴f(x)在(0,+∞)单调递增.∴f(x)既无极大值也无极小值.故选:D.【点评】本题考查导数知识的运用,考查函数的单调性与极值,考查学生分析解决问题的能力,难度较大.二、填空题:本大题共4小题,每小题5分.13.(5分)某几何体的三视图如图所示,则该几何体的体积是16π﹣16.【分析】首先判断该几何体的形状,然后计算其体积即可.【解答】解:根据三视图可知,该几何体为圆柱中挖去一个四棱柱,圆柱是底面外径为2,高为4的圆筒,四棱柱的底面是边长为2的正方形,高也为4.故其体积为:22π×4﹣22×4=16π﹣16,故答案为:16π﹣16.【点评】本题考查了由三视图判断几何体的知识,解题的关键是首先判断该几何体为圆柱中挖去一个棱柱,然后利用柱体的体积计算方法计算其体积差即可.14.(5分)已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=63.【分析】通过解方程求出等比数列{a n}的首项和第三项,然后求出公比,直接利用等比数列前n项和公式求前6项和.【解答】解:解方程x2﹣5x+4=0,得x1=1,x2=4.因为数列{a n}是递增数列,且a1,a3是方程x2﹣5x+4=0的两个根,所以a1=1,a3=4.设等比数列{a n}的公比为q,则,所以q=2.则.故答案为63.【点评】本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.15.(5分)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e=.【分析】设椭圆右焦点为F',连接AF'、BF',可得四边形AFBF'为平行四边形,得|AF|=|BF'|=6.△ABF中利用余弦定理算出|BF|=8,从而得到|AF|2+|BF|2=|AB|2,得∠AFB=90°,所以c=|OF|=|AB|=5.根据椭圆的定义得到2a=|BF|+|BF'|=14,得a=7,最后结合椭圆的离心率公式即可算出椭圆C的离心率.【解答】解:设椭圆的右焦点为F',连接AF'、BF'∵AB与FF'互相平分,∴四边形AFBF'为平行四边形,可得|AF|=|BF'|=6∵△ABF中,|AB|=10,|AF|=6,cos∠ABF=,∴由余弦定理|AF|2=|AB|2+|BF|2﹣2|AB|×|BF|cos∠ABF,可得62=102+|BF|2﹣2×10×|BF|×,解之得|BF|=8由此可得,2a=|BF|+|BF'|=14,得a=7∵△ABF中,|AF|2+|BF|2=100=|AB|2∴∠AFB=90°,可得|OF|=|AB|=5,即c=5因此,椭圆C的离心率e==故答案为:【点评】本题给出椭圆经过中心的弦AB与左焦点构成三边分别为6、8、10的直角三角形,求椭圆的离心率.着重考查了椭圆的定义与标准方程、椭圆的简单几何性质等知识,属于中档题.16.(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为10.【分析】本题可运用平均数公式求出平均数,再运用方差的公式列出方差表达式,再讨论样本数据中的最大值的情况,即可解决问题.【解答】解:设样本数据为:x1,x2,x3,x4,x5,平均数=(x1+x2+x3+x4+x5)÷5=7;方差s2=[(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2+(x5﹣7)2]÷5=4.从而有x1+x2+x3+x4+x5=35,①(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2+(x5﹣7)2=20.②若样本数据中的最大值为11,不妨设x5=11,则②式变为:(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2=4,由于样本数据互不相同,这是不可能成立的;若样本数据为4,6,7,8,10,代入验证知①②式均成立,此时样本数据中的最大值为10.故答案为:10.【点评】本题考查的是平均数和方差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.【分析】(1)由条件求得,的值,再根据以及x的范围,可的sinx 的值,从而求得x的值.(2)利用两个向量的数量积公式以及三角恒等变换化简函数f(x)的解析式为sin(2x﹣)+.结合x的范围,利用正弦函数的定义域和值域求得f(x)的最大值.【解答】解:(1)由题意可得=+sin2x=4sin2x,=cos2x+sin2x=1,由,可得4sin2x=1,即sin2x=.∵x∈[0,],∴sinx=,即x=.(2)∵函数=(sinx,sinx)•(cosx,sinx)=sinxcosx+sin2x=sin2x+=sin(2x﹣)+.x∈[0,],∴2x﹣∈[﹣,],∴当2x﹣=,sin(2x﹣)+取得最大值为1+=.【点评】本题主要考查两个向量的数量积的运算,三角函数的恒等变换及化简求值,正弦函数的定义域和值域,属于中档题.18.(12分)如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(Ⅰ)求证:平面PAC⊥平面PBC;(Ⅱ)若AB=2,AC=1,PA=1,求证:二面角C﹣PB﹣A的余弦值.【分析】(Ⅰ)要证平面PAC⊥平面PBC,只要证明平面PBC经过平面PAC的一条垂线BC即可,利用题目给出的条件借助于线面垂直的判定定理能够证明BC ⊥平面PAC;(Ⅱ)因为平面PAB和平面ABC垂直,只要在平面ABC内过C作两面的交线AB 的垂线,然后过垂足再作PB的垂线,连结C和后一个垂足即可得到二面角C﹣PB﹣A的平面角,然后在作出的直角三角形中通过解直角三角形即可求得二面角C﹣PB﹣A的余弦值.【解答】(Ⅰ)证明:如图,由AB是圆的直径,得AC⊥BC.由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC.又PA∩AC=A,PA⊂平面APC,AC⊂平面PAC,所以BC⊥平面PAC.因为BC⊂平面PBC,所以平面PAC⊥平面PBC;(Ⅱ)解:过C作CM⊥AB于M,因为PA⊥平面ABC,CM⊂平面ABC,所以PA⊥CM,故CM⊥平面PAB.过M作MN⊥PB于N,连接NC.由三垂线定理得CN⊥PB.所以∠CNM为二面角C﹣PB﹣A的平面角.在Rt△ABC中,由AB=2,AC=1,得,,.在Rt△ABP中,由AB=2,AP=1,得.因为Rt△BNM∽Rt△BAP,所以.故MN=.又在Rt△CNM中,.故cos.所以二面角C﹣PB﹣A的余弦值为.【点评】本题考查了平面与平面垂直的判定,考查了二面角的平面角及其求法,“寻找垂面,构造垂线”是找二面角的平面角常用的方法,此题是中档题.19.(12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(Ⅰ)求张同学至少取到1道乙类题的概率;(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.【分析】(I)从10道试题中取出3个的所有可能结果数有,张同学至少取到1道乙类题的对立事件是:张同学取到的全为甲类题,代入古典概率的求解公式即可求解(II)先判断随机变量X的所有可能取值为0,1,2,3,根据题意求出随机变量的各个取值的概率,即可求解分布列及期望值【解答】解:(I)设事件A=“张同学至少取到1道乙类题”则=张同学至少取到的全为甲类题∴P(A)=1﹣P()=1﹣=(II)X的所有可能取值为0,1,2,3P (X=0)==P(X=1)==P(X=2)=+=P(X=3)==X的分布列为X0123PEX=【点评】本题主要考查了古典概型及计算公式,互斥事件、离散型随机变量的分布列及期望值的求解,考查了运用概率知识解决实际问题的能力.20.(12分)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣时,切线MA的斜率为﹣.(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).【分析】(Ⅰ)利用导数的几何意义,先表示出切线方程,再由M在抛物线上及在直线上两个前提下,得到相应的方程,解出p值.(Ⅱ)由题意,可先设出A,B两个端点的坐标及中点的坐标,再由中点坐标公式建立方程,直接求解出中点N的轨迹方程【解答】解:(Ⅰ)因为抛物线C1:x2=4y上任意一点(x,y)的切线斜率为y′=,且切线MA的斜率为﹣,所以设A点坐标为(x,y),得,解得x=﹣1,y==,点A的坐标为(﹣1,),故切线MA的方程为y=﹣(x+1)+因为点M(1﹣,y0)在切线MA及抛物线C2上,于是y0=﹣(2﹣)+=﹣①∴y0=﹣=﹣②解得p=2(Ⅱ)设N(x,y),A(x1,),B(x2,),x1≠x2,由N为线段AB中点知x=③,y==④切线MA,MB的方程为y=(x﹣x1)+,⑤;y=(x﹣x2)+⑥,由⑤⑥得MA,MB的交点M(x0,y0)的坐标满足x0=,y0=因为点M(x0,y0)在C2上,即x02=﹣4y0,所以x1x2=﹣⑦由③④⑦得x2=y,x≠0当x1=x2时,A,B丙点重合于原点O,A,B中点N为O,坐标满足x2=y因此中点N的轨迹方程为x2=y【点评】本题考查直线与圆锥曲线的关系,此类题运算较繁,解答的关键是合理引入变量,建立起相应的方程,本题探索性强,属于能力型题21.(12分)已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.【分析】(I)①当x∈[0,1)时,(1+x)e﹣2x≥1﹣x⇔(1+x)e﹣x≥(1﹣x)e x,令h(x)=(1+x)e﹣x﹣(1﹣x)e x,利用导数得到h(x)的单调性即可证明;②当x∈[0,1)时,⇔e x≥1+x,令u(x)=e x﹣1﹣x,利用导数得出h(x)的单调性即可证明.(II)利用(I)的结论得到f(x)≥1﹣x,于是G(x)=f(x)﹣g(x)≥=.再令H(x)=,通过多次求导得出其单调性即可求出a的取值范围.【解答】(I)证明:①当x∈[0,1)时,(1+x)e﹣2x≥1﹣x⇔(1+x)e﹣x≥(1﹣x)e x,令h(x)=(1+x)e﹣x﹣(1﹣x)e x,则h′(x)=x(e x﹣e﹣x).当x∈[0,1)时,h′(x)≥0,∴h(x)在[0,1)上是增函数,∴h(x)≥h(0)=0,即f(x)≥1﹣x.②当x∈[0,1)时,⇔e x≥1+x,令u(x)=e x﹣1﹣x,则u′(x)=e x ﹣1.当x∈[0,1)时,u′(x)≥0,∴u(x)在[0,1)单调递增,∴u(x)≥u(0)=0,∴f(x).综上可知:.(II)解:设G(x)=f(x)﹣g(x)=≥=.令H(x)=,则H′(x)=x﹣2sinx,令K(x)=x﹣2sinx,则K′(x)=1﹣2cosx.当x∈[0,1)时,K′(x)<0,可得H′(x)是[0,1)上的减函数,∴H′(x)≤H′(0)=0,故H(x)在[0,1)单调递减,∴H(x)≤H(0)=2.∴a+1+H(x)≤a+3.∴当a≤﹣3时,f(x)≥g(x)在[0,1)上恒成立.下面证明当a>﹣3时,f(x)≥g(x)在[0,1)上不恒成立.f(x)﹣g(x)≤==﹣x.令v(x)==,则v′(x)=.当x∈[0,1)时,v′(x)≤0,故v(x)在[0,1)上是减函数,∴v(x)∈(a+1+2cos1,a+3].当a>﹣3时,a+3>0.∴存在x0∈(0,1),使得v(x0)>0,此时,f(x0)<g(x0).即f(x)≥g(x)在[0,1)不恒成立.综上实数a的取值范围是(﹣∞,﹣3].【点评】本题综合考查了利用导数研究函数的单调性、等价转化、作差比较大小、放缩法等基础知识与基本技能,考查了推理能力、计算能力和分析问题、解决问题的能力.请考生在21、22、23题中任选一题作答,如果多做,则按所做的第一题计分。