条件概率与独立事件(二)

合集下载

事件的相互独立性、条件概率与全概率公式 2025年高考数学基础专项复习

事件的相互独立性、条件概率与全概率公式 2025年高考数学基础专项复习
事件甲与事件丙同时发生的概率为0,(甲丙)≠ (甲)(丙),故A错误;事件甲与事件丁同时发生的概率为
1
6×6
1
1
1
= 36,(甲丁)= (甲)(丁),故B正确;事件乙与事件丙同时发生的概率为6×6 = 36,(乙丙)≠
(乙)(丙),故C错误;事件丙与事件丁是互斥事件,不是相互独立事件,故D错误.故选B.
本质
一个事件是否发生对另一个事件是否发生没有影响.
独立
事件
(1)必然事件Ω、不可能事件∅都与任意事件相互独立;(2)当事件A与B相互独立时,事件A与B,A与
性质
B,A与B也相互独立;(3)如果事件A1,A2,…,An相互独立,那么这n个事件同时发生的概率等于每个
事件发生的概率的积,即P(A1A2…An)=P(A1)P(A2)…P(An).
1
3
2.[多选][人A必修二P253习题10.3第2题变式]设,为两个随机事件,若 = 2, = 4,则下列结论中
正确的是(
ABD )
3
3
B.若 ∩ = 8,则,相互独立
A.若,相互独立,则 ∩ = 8
3
7
C.若与相互独立,则 ∩ = 8
D.若与相互独立,则 ∪ = 8
1
三好学生的概率为__.
8
【解析】 根据题意可得,该班男生有40名,三好学生有10名,三好学生中男生有5名.设“从该班任选一名学生,
没有选上女生”为事件,“从该班任选一名学生,选
上的是三好学生”为事件,则“没有选上女生且选上的是三好学生”为事件 , = 40 , = 5.
40
2
2
3
+ 1−
1

条件概率与事件的独立性

条件概率与事件的独立性

P( AB)
P( A)
16 11
4 11
16
变式:若已知取得是玻璃球,求取得是篮球的概率.
4
P(A| B)
P( AB)
P(B)
16 6
4 6
16
例3.设 100 件产品中有 70 件一等品,25 件二等品, 规定一、二等品为合格品.从中任取1 件,求 (1) 取 得一等品的概率;(2) 已知取得的是合格品,求它是 一等品的概率.
∴P(A·B)=P(A)·P(B)=0.8×0.7=0.56
⑶1–P(A·B)=1-P(A)·P(B)=1-(1-0.8)(1-0.7)=0.94
⑷P(A·B)+P(A·B)=P(A)P(B)+P(A)P(B) =0.8(1-0.7)+(1-0.6)×0.7=0.38
答:两粒种子都能发芽的概率是0.56;至少有一粒种子能 发芽的概率是0.94;恰好有一粒种子能发芽的概率是0.38
P(A |
B)
P( AB) P(B)
52 1
1 13
P(A)
4
P(A | B) P(A)
P( AB) P( A) P(B)
B发生时A发生的条件概率
A发生的概率
P(AB) P(A)P(B)
则称A,B相互独立
相互独立事件 事件A(或B)是否发生对事件B(或A)发生的概率没 有影响,这样的两个事件叫做相互独立事件
中一等奖的概率为多少?
P
1
C
7 31
(2)如果在甲没有中一等奖后乙去买彩票,
则乙中一等奖的概率为多少?
P
1
C
ቤተ መጻሕፍቲ ባይዱ
7 31
2.一个袋子中有5个白球和3个黑球,从袋中分 两次取出2个球。设第1次取出的球是白球叫做 事件A,第2次取出的球是白球叫做事件B。

事件的相互独立性与条件概率、全概率公式

事件的相互独立性与条件概率、全概率公式

思维升华
求相互独立事件同时发生的概率的方法 (1)相互独立事件同时发生的概率等于他们各自发生的概率之积. (2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.
跟踪训练1 (1)(多选)甲、乙两个口袋中装有除了编号不同以外其余完全 相同的号签.其中,甲袋中有编号为 1,2,3的三个号签;乙袋有编号为
对于C,三次传输,发送1,则译码为1的事件是依次收到1,1,0;1,0,1; 0,1,1和1,1,1这4个事件的和, 它们互斥,所求的概率为 C23β(1-β)2+(1-β)3=(1-β)2(1+2β),故 C 错误; 对于D,三次传输,发送0,则译码为0的概率P=(1-α)2(1+2α), 单次传输发送0,则译码为0的概率P′=1-α,而0<α<0.5, 因此P-P′=(1-α)2(1+2α)-(1-α)=α(1-α)(1-2α)>0,即P>P′, 故D正确.
微拓展
D 选项,由 C 选项知 Pn=12(1-Pn-1), 即 Pn=-12Pn-1+12, 设 Pn+λ=-12(Pn-1+λ), 故 Pn=-12Pn-1-32λ, 所以-32λ=12,解得 λ=-13,
微拓展
故 Pn-13=-12Pn-1-31, 又 P1-13=-13≠0, 所以Pn-13是首项为-13,公比为-21的等比数列,故 Pn-13=-13-12n-1, 故 Pn=13-13-12n-1,D 正确; B 选项,由 D 选项可知 P4=13-13×-123=38,B 错误.
自主诊断
2.(必修第二册 P253T4 改编)甲、乙两人独立地破解同一个谜题,破解出
谜题的概率分别为12,23,则谜题没被破解出的概率为
√A.16
B.13
C.56

高中数学第二章概率2.2条件概率与事件的独立性2.2.1-2.2.2条件概率与事件的独立性课堂导学案

高中数学第二章概率2.2条件概率与事件的独立性2.2.1-2.2.2条件概率与事件的独立性课堂导学案

-2.2.2 条件概率与事件独立性课堂导学三点剖析一、条件概率【例1】一个家庭中有两个小孩,假定生男、生女是等可能,这个家庭有一个是女孩,问这时另一个小孩是男孩概率是多少?解析:一个家庭两个小孩子只有4种可能:{两个都是男孩子},{第一个是男孩,第二个是女孩},{第一个是女孩,第二个是男孩},{两个都是女孩},由题目假定可知这4个根本领件发生是等可能.根据题意,设根本领件空间为Ω,A=“其中一个是女孩〞,B=“其中一个是男孩〞,那么Ω={〔男,男〕,〔男,女〕,〔女,男〕,〔女,女〕}, A={〔男,女〕,〔女,男〕,〔女,女〕},B={〔男,男〕,〔男,女〕,〔女,男〕},AB={〔男,女〕,〔女,男〕},问题是求在事件A 发生情况下,事件B 发生概率,即求P 〔B|A 〕.由上面分析可知P 〔A 〕=43,P 〔AB 〕=42. 由公式②可得P 〔B|A 〕=, 因此所求条件概率为32. 温馨提示关键是弄清楚P 〔A·B〕及P 〔A 〕.二、事件独立性应用【例2】甲、乙两名篮球运发动分别进展一次投篮,如果两人投中概率都是0.6,计算: 〔1〕两人都投中概率;〔2〕其中恰有一人投中概率;〔3〕至少有一人投中概率.思路分析:甲、乙两人各投篮一次,甲〔或乙〕是否投中,对乙〔或甲〕投中概率是没有影响,也就是说,“甲投篮一次,投中〞与“乙投篮一次,投中〞是相互独立事件.因此,可以求出这两个事件同时发生概率.同理可以分别求出,甲投中与乙未投中,甲未投中与乙投中,甲未投中与乙未投中同时发生概率,从而可以得到所求各个事件概率.解:〔1〕设A=“甲投篮一次,投中〞,B=“乙投篮一次,投中〞,那么AB=“两人各投篮一次,都投中〞.由题意知,事件A 与B 相互独立,根据公式③所求概率为 P 〔AB 〕=P 〔A 〕·P(B)=0.6×0.6=0.36.(2)事件“两人各投篮一次,恰好有一人投中〞包括两种情况:一种是甲投中、乙未投中〔事件A∩B 发生〕,另一种是甲未投中、乙投中〔事件A∩B 发生〕。

北师大版高中数学选修2-3课件2.3条件概率与独立事件

北师大版高中数学选修2-3课件2.3条件概率与独立事件
(3)甲、乙各射击 1 次,“甲、乙都射中目标”与“甲、乙都没有射中目标” 不可能同时发生,二者是互斥事件;
(4)甲、乙各射击 1 次,“至少有 1 人射中目标”与“甲射中目标,但乙没 有射中目标”可能同时发生,二者构不成互斥事件,也不可能是相互独立事 件.
弄清“互斥事件”与“相互独立事件”的区别是关键,“互斥事件”不能
§3 条件概率与独立事件
-1-
学习目标导航 基础知识梳理 重点难点突破 典型例题剖析 随堂练习巩固
1.了解条件概率的概念,理解互斥事件,会用条件概率公式求解简单的实际 问题. 2.理解相互独立事件的意义,理解相互独立事件同时发生的概率乘法公式.
学习目标导航 基础知识梳理 重点难点突破 典型例题剖析 随堂练习巩固
=1 4 1Fra bibliotek=12.
2
答案:A
学习目标导航 基础知识梳理 重点难点突破 典型例题剖析 随堂练习巩固
12345
2 在 10 支铅笔中,有 8 支正品,2 支次品,从中任取 2 支,则在第一次抽的
是次品的条件下,第二次抽的是正品的概率是( )
A.15
B.485
C.89
D.45
解析:记事件 A,B 分别表示“第一次、第二次抽得正品”,
【例 2】 判断下列各对事件是互斥事件还是相互独立事件. (1)运动员甲射击 1 次,“射中 9 环”与“射中 8 环”; (2)甲、乙两运动员各射击 1 次,“甲射中 10 环”与“乙射中 9 环”; (3)甲、乙两运动员各射击 1 次,“甲、乙都射中目标”与“甲、乙都没有
射中目标”; (4)甲、乙两运动员各射击 1 次,“至少有 1 人射中目标”与“甲射中目标,

P(A2)=P(������1 A2)+P(A1A2)=25

独立事件

独立事件

凭我的智慧, 凭我的智慧,我解 有奖解题擂台大赛 出的把握有80% 出的把握有 老大,你的把握有50%, 老大,你的把握有 , 我只有45%,看来这大 我只有 , 奖与咱是无缘啦! 奖与咱是无缘啦! 别急,常言到: 别急,常言到:三个 臭皮匠臭死诸葛亮, 臭皮匠臭死诸葛亮, 咱去把老三叫来, 咱去把老三叫来,我 就不信合咱三人之力, 就不信合咱三人之力, 赢不了诸葛亮! 赢不了诸葛亮!
袋中有三个红球,两个白球, ③ 袋中有三个红球,两个白球,采取不放回的 取球. 取球. 事件A 第一次从中任取一个球是白球. 事件A:第一次从中任取一个球是白球. 事件B 第二次从中任取一个球是白球. 事件B:第二次从中任取一个球是白球. ④ 甲坛子里有3个红球,2个黄球,乙坛子里也有 甲坛子里有3个红球, 个黄球, 个红球, 个黄球,从这两个坛子里分别摸出1 3个红球,2个黄球,从这两个坛子里分别摸出1个 球。 事件A 从甲坛子里摸出1个球,得到黄球. 事件A:从甲坛子里摸出1个球,得到黄球. 事件B 从乙坛子里摸出1个球,得到黄球. 事件B:从乙坛子里摸出1个球,得到黄球.
(1)第三个人去挑水的概率为 1/3 第三个人去挑水的概率为 ; P(B)=1/3
(2)已知第一个人抽签结果不用挑水 已知第一个人抽签结果不用挑水, 已知第一个人抽签结果不用挑水 则第三个人去挑 . P(B|A)=1/2 则第三个人去挑水的概率为 1/2 第三个人去挑 第一个不用挑 记: B={第三个人去挑水};A={第一个不用挑水} 第三个人去 第一个不用
想一想: 第④题中事件 A ,A 与 , B 是否相互独立 与 B 与 A B ?
判断:下列事件哪些是相互独立的: 判断:下列事件哪些是相互独立的:
1、相互独立事件的定义: 相互独立事件的定义:

北师版数学高二-选修1-2教案条件概率与独立事件

北师版数学高二-选修1-2教案条件概率与独立事件

2.1条件概率与独立事件学习目标 1.理解条件概率的定义及计算方法.2.了解两个事件相互独立的概念.3.能利用相互独立事件同时发生的概率公式解决问题.知识点一条件概率思考(1)3张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比其他同学小?(2)如果已知第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率是多少?梳理(1)概念:已知事件B发生的条件下,A发生的概率称为B发生时A发生的条件概率,记为________.(2)公式:当P(B)>0时,P(A|B)=P(AB) P(B).知识点二相互独立事件思考在一次数学测试中,甲考满分对乙考满分有影响吗?梳理(1)定义:对两个事件A,B,如果P(AB)=________,则称A,B相互独立.(2)性质:如果A,B相互独立,则A与B,A与________,A与B也相互独立.(3)如果A1,A2,…,A n相互独立,则有P(A1A2…A n)=____________________.类型一条件概率例1甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问:(1)乙地为雨天时,甲地也为雨天的概率是多少?(2)甲地为雨天时,乙地也为雨天的概率是多少?反思与感悟在概率的求解题目中,若出现“已知在…前提下(条件下)”等字眼时,一般需用到条件概率;若题中出现“事件B的发生受事件A发生的影响”时,也需利用条件概率解决.跟踪训练1甲、乙、丙、丁4人到4个景点旅游,每人只去一个景点,设事件A=“4个人去的景点不相同”,事件B=“甲独自去一个景点”,则P(A|B)=________.类型二独立事件的判定及概率计算命题角度1独立事件的判定例2对于下列给出的事件:①甲、乙两同学同时解一道数学题,事件A表示“甲同学做对”,事件B表示“乙同学做对”;②在某次抽奖活动中,记事件A表示“甲抽到的两张奖券中,一张中一等奖,另一张未中奖”,事件B表示“甲抽到的两张奖券均中二等奖”;③一个布袋里有3个白球和2个红球,记事件A,B分别表示“从中任意取一个是白球”与“取出的球不放回,再从中任取一球是红球”;④在有奖储蓄中,记甲在不同奖组M和N中所开设的两个户头分别中一等奖为事件A和B.其中事件A和事件B相互独立的是________.(填序号)反思与感悟事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件称为相互独立事件.跟踪训练2掷一枚骰子一次,设事件A:“出现偶数点”,事件B:“出现3点或6点”,则事件A,B的关系是()A.互斥但不相互独立B.相互独立但不互斥C.互斥且相互独立D.既不相互独立也不互斥命题角度2相互独立事件同时发生的概率例3甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率;(2)2人中恰有1人射中目标的概率;(3)2人至少有1人射中目标的概率;(4)2人至多有1人射中目标的概率.反思与感悟求P(AB)时注意事件A、B是否相互独立,求P(A+B)时同样应注意事件A、B 是否互斥,对于“至多”“至少”型问题的解法有两种思路:①分类讨论;②求对立事件,利用P(A)=1-P(A)来运算.跟踪训练3某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是0.05,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码.1.下列说法正确的是() A .P (B |A )<P (AB ) B .P (B |A )=P (B )P (A )是可能的 C .0<P (B |A )<1D .P (A |A )=02.坛子中放有3个白球和2个黑球,从中进行不放回地取球2次,每次取一球,用A 1表示第一次取得白球,A 2表示第二次取得白球,则A 1与A 2是( ) A .互斥事件 B .相互独立事件 C .对立事件D .不相互独立事件3.甲,乙,丙三人独立去破译一个密码,分别破译出的概率为15,13,14,则此密码能破译出的概率是( ) A.160 B.25 C.35 D.59604.已知A 、B 是相互独立事件,且P (A )=12,P (B )=23,则P (A B )=________;P (A B )=________.5.在感冒流行的季节,设甲、乙两人患感冒的概率分别为0.6和0.5,则他们中有人患感冒的概率是________.1.条件概率的前提条件是:在知道事件A 必然发生的前提下,只需局限在A 发生的范围内考虑问题,在事件A 发生的前提下事件B 发生,等价于事件A 和B 同时发生,由古典概型知,其条件概率为P (B |A )=n (AB )n (A )=n (AB )n (Ω)n (A )n (Ω)=P (AB )P (A ),其中,n (Ω)为一次试验可能出现的所有结果数,n (A )为事件A 所包含的结果数,n (AB )为AB 同时发生时的结果数.2.P (AB )=P (A )P (B )使用的前提条件是A ,B 为相互独立事件;当事件A 与B 相互独立时,事件A 与B 、A 与B 、A 与B 也相互独立.3.求事件的概率时,有时遇到求“至少”或“至多”等事件概率问题,可考虑用他们的对立事件求解.答案精析问题导学 知识点一思考 (1)最后一名同学抽到中奖奖券的概率为13,不比其他同学小.(2)按照古典概型的计算公式,此时最后一名同学抽到中奖奖券的概率为12.梳理 (1)P (A |B ) 知识点二 思考 没有影响.梳理 (1)P (A )P (B ) (2)B (3)P (A 1)P (A 2)…P (A n ) 题型探究例1 解 设A =“甲地为雨天”,B =“乙地为雨天”,则: (1)乙地为雨天时,甲地也为雨天的概率是P (A |B )=P (AB )P (B )=0.120.18=0.67. (2)甲地为雨天时,乙地也为雨天的概率是P (B |A )=P (AB )P (A )=0.120.20=0.60. 跟踪训练1 29解析 甲独自去一个景点,有4个景点可选,其余3人每人都有3种选择,可能性为3×3×3=27(种).故甲独自去一个景点的可能性为4×27=108(种), 4人去不同的景点的可能性为4×3×2×1=24(种). 故P (A |B )=24108=29.例2 ①④ 解析跟踪训练2B例3解记“甲射击1次,击中目标”为事件A,“乙射击1次,击中目标”为事件B,则A与B,A与B,A与B,A与B为相互独立事件,(1)“2人都射中”的概率为P(AB)=P(A)P(B)=0.8×0.9=0.72,所以2人都射中目标的概率是0.72.(2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲击中、乙未击中(事件A B发生),另一种是甲未击中、乙击中(事件A B发生).根据题意,事件A B与A B互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为P(A B)+P(A B)=P(A)P(B)+P(A)P(B)=0.8×(1-0.9)+(1-0.8)×0.9=0.08+0.18=0.26.所以2人中恰有1人射中目标的概率是0.26.(3)方法一“2人至少有1人射中”包括“2人都中”和“2人有1人不中”2种情况,其概率为P=P(AB)+=0.72+0.26=0.98.方法二“2人至少有一人射中”与“2人都未射中”为对立事件,“2个都未射中目标”的概率是P(A B)=P(A)P(B)=(1-0.8)(1-0.9)=0.02,所以“两人至少有1人射中目标”的概率为P=1-P(A B)=1-0.02=0.98.(4)方法一“至多有1人射中目标”包括“2人都未射中”和“有1人射中”,故所求概率为P=P(A B)+P(A B)+P(A B)=P(A)P(B)+P(A)P(B)+P(A)P(B)=0.02+0.08+0.18=0.28.方法二“至多有1人射中目标”的对立事件是“2人都射中目标”,故所求概率为P=1-P (AB )=1-P (A )P (B )=1-0.72=0.28.跟踪训练3 解 设“第一次抽奖抽到某一指定号码”为事件A ,“第二次抽奖抽到某一指定号码”为事件B ,则“两次抽奖都抽到某一指定号码”就是事件AB .(1)由于两次抽奖结果互不影响,因此事件A 与B 相互独立.于是由独立性可得两次抽奖都抽到某一指定号码的概率为P (AB )=P (A )P (B )=0.05×0.05=0.002 5.(2)“两次抽奖恰有一次抽到某一指定号码”可以用(A B )∪(A B )表示.由于事件A B 与A B 互斥,根据概率的加法公式和相互独立事件的定义,可得所求事件的概率为 P (A B )+P (A B )=P (A )P (B )+P (A )P (B )=0.05×(1-0.05)+(1-0.05)×0.05=0.095. 即恰有一次抽到某一指定号码的概率为0.095.(3)方法一 “两次抽奖至少有一次抽到某一指定号码”可以用(AB )∪(A B )∪(A B )表示.由于事件AB ,A B 和A B 两两互斥,根据概率的加法公式和相互独立事件的定义,可得所求事件的概率为P (AB )+P (A B )+P (A B )=0.002 5+0.095=0.097 5. 方法二 1-P (A B )=1-(1-0.05)2=0.097 5. 即至少有一次抽到某一指定号码的概率为0.0975. 当堂训练1.B 2.D 3.C 4.16 165.0.8。

【高中数学】条件概率(2) 课件 高二下学期数学人教A版(2019)选择性必修第三册

【高中数学】条件概率(2) 课件 高二下学期数学人教A版(2019)选择性必修第三册

解法二:在缩小的样本空间A上求P(B|A). 已知第1次抽到代数题, 这时还
余下4道试题, 其中代数题和几何题各2道.
2 1
因此,事件A发生的条件下,事件B发生的概率为 (|) = =
3
又P(A)=
5
, 利用乘法公式可得
3 1 3
P(AB)=P(A)P(B|A)= = .
5 2 10
4
2
P(B|A)容易求,
3
7 2 7
(2) P ( AB ) P ( A) P ( B | A) . 或P( AB) n( AB) 7 6 7 .
10 3 15
n() 10 9 15
7
.
∴两次都摸到白球的概率为
15
练习 有一批种子的发芽率为0.9,发芽后的幼苗成活率为0.8,在这批种
根据题意得P B|A = 0.8, P A = 0.9,
则P AB = P B|A ⋅ P A = 0.8 × 0.9 = 0.72,故选A
练习 有5瓶除颜色外完全相同的墨水,其中红色墨水1瓶,蓝色、黑色墨
水各2瓶,某同学从中随机任取2瓶,若取得的2瓶中有1瓶是蓝色墨水,
求另1瓶是红色墨水或黑色墨水的概率.
则P(B|A)=P(B)或P(A|B)=P(A).
此时:P(AB) = P(A)P(B)
作用:用于计算P(AB)
()
样本点个数公式
() =
()
=()(|)
定义公式
例题 在5道试题中有3道代数题和2道几何题,每次从中随机抽出1道题,
抽出的题不再放回. 求:第1次抽到代数题且第2次抽到几何题的概率;
子中,随机抽取一粒,则这粒种子能成长为幼苗(发芽,且幼苗成活)的

北师大版高中数学选修2-3课件:2.3条件概率与独立事件(共68张PPT)

北师大版高中数学选修2-3课件:2.3条件概率与独立事件(共68张PPT)

预习探究
知识点二
条件概率的计算公式
一般地,若P(B)>0,则事件B发生时A发生的条件概率[思考] 条件概率的计算公式中,为什么强调P(B)>0?
解:若P(B)=0,则表示事件B没发生,此时用条件概率公式计算P(A|B)就没有意义 了,所以条件概率计算必须在P(B)>0的情况下进行.
教学建议
分两课时完成本节内容,可引导学生采用 “自主学习”或“合作学习”的 学习方式来完成本课学习.本节中条件概率的引入目的是为了讲解独立事 件,因此教学时对条件概率做简单处理,一切围绕独立事件展开教学.
新课导入
[导入一] 情景引入 探究:三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最 后一名同学抽到中奖奖券的概率是否比前两名同学小?
备课素材
1.如何理解P(A|B)?
解:(1)它指的是“B发生时A发生的概率”; (2)它是一个数值,满足0≤P(A|B)≤1; (3)一般地,它与没有这个附加条件B的P(A)概率是不同的; (4)它与P(B|A)意义不同,P(B|A)是指A发生时B发生的概率.
备课素材
2.细解条件概率 (1)事件A在“事件B发生”这个附加条件下发生的概率与没有这个附加条件下 发生的概率一般是不同的. (2)条件概率公式揭示了条件概率P(A|B)与事件概率P(B),P(AB)三者之间的 关系,下列两种情况可利用条件概率公式:一种情况是已知P(B)和P(AB)求 P(A|B);另一种情况是已知P(B)和P(A|B)求P(AB). (3)条件概率也是概率,故0≤P(B|A)≤1.
解:能.结合条件概率的知识可知,P(AB)=P(A)P(B|A),由于A,B相互独立,因此 P(B|A)=P(B),故P(AB)=P(A)P(B).

2.2 条件概率与事件的独立性

2.2  条件概率与事件的独立性

【高二数学学案】§2. 2 条件概率与事件的独立性2.2.1 条件概率主备人: 时间:一、自学导引1、条件概率一般地,设A 、B 为两个事件,且P(A)>0,称P(B|A)= 为在事件A 发生的条件下,事件B 发生的条件概率。

一般把P(B|A)读作 。

2、求条件概率的两个公式(1)P(B|A)= ; (2)P(B|A)= .二、学法指导条件概率计算公式的使用说明:(1)利用定义计算。

先分别计算概率P(AB)和P(A),然后将它们相除得到条件概率)()()|(B P AB P A B P =,这个公式适用于一般情形,其中AB 表示A 、B 同时发生。

(2)利用缩小样本空间的观点计算。

在这种观点下,原来的样本空间缩小为已知的条件事件A ,原来的事件B 缩小为AB 。

而A 中仅包含有限个基本事件,每个基本事件发生的概率相等,从而可以在缩小的概率空间上利用古典概型公式计算条件概率。

即)()()|(A n AB n A B P =,这里n(A)和n(AB)的计数是基于缩小的概率空间。

三、典例精析例1、设31)(,21)|()|(===A P A B P B A P ,求P(B).随练:某地区气象台统计,该地区下雨的概率是154,刮风的概率为152,既刮风又下雨的概率是101,设A 为下雨,B 为刮风。

求:(1)P(A|B); (2)P(B|A)。

例2、在5道题中有3道理科题和2道文科题。

如果不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率。

随练:抛掷红、蓝两颗骰子,设事件A 为“蓝色骰子的点数为3或6”,事件B 为“两颗骰子的点数之和大于8”。

(1)求P(A), P(B), P(AB);(2)当已知蓝色骰子两点数为3或6时,问两颗骰子的点数之和大于8的概率为多少?例3、在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中的4道题即可通过;若至少能答对其中5道题就获得优秀。

高中数学 第1部分 第二章 §3 条件概率与独立事件课件 北师大版选修23

高中数学 第1部分 第二章 §3 条件概率与独立事件课件 北师大版选修23
PAB = PA .
有这样一项活动:甲箱里装有3个白球,2个黑球,乙 箱里装有2个白球,2个黑球,从这两个箱子里分别摸出1 个球,记事件A={从甲箱里摸出白球},B={从乙箱里摸 出白球}.
问题1:事件A发生会影响事件B发生的概率吗? 提示:不影响.
问题2:试求P(A),P(B),P(AB). 提示:P(A)=35,P(B)=12,P(AB)=35× ×24=130. 问题3:P(AB)与P(A),P(B)有什么关系?
4.若 A 与 B 相互独立,则下面不是相互独立事件的是
A.A 与 A
B.A 与 B
()
C. A 与 B
D. A 与 B
解析:当 A,B 相互独立时,A 与 B ,A 与 B 以及 A
与 B 都是相互独立的,而 A 与 A 是对立事件,不相 互独立.
答案:A
5.从一副扑克牌(52张)中任抽一张,设A=“抽得老K”, B=“抽得红牌”,判断事件A与B是否相互独立. 解:抽到老 K 的概率为 P(A)=542=113,抽到红牌的概 率 P(B)=2562=12,故 P(A)P(B)=113×12=216,事件 AB 即为“既抽得老 K 又抽得红牌”,亦即“抽得红桃老 K 或方块老 K”,故 P(AB)=522=216,从而有 P(A)P(B) =P(AB),因此 A 与 B 互为独立事件.
1.抛掷一枚质地均匀的骰子所出现的点数的所有可能
结果为 Ω={1,2,3,4,5,6},记事件 A={2,3,5},B=
{1,2,4,5,6},则 P(A|B)=
()
A.12
B.15
2
3
C.5
D.5
1 解析:P(B)=56,P(A∩B)=13,P(A|B)=PPABB=35=25.

事件的独立性、条件概率和全概率公式(精讲)【2024一轮复习讲义】(新高考通用)解析版

事件的独立性、条件概率和全概率公式(精讲)【2024一轮复习讲义】(新高考通用)解析版

【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第53讲事件的独立性、条件概率和全概率公式(精讲)题型目录一览①事件的相互独立性②条件概率③全概率公式④贝叶斯公式一、条件概率1.定义:一般地,设A ,B 为两个事件,且()0P A >,称()()()|P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率.注:(1)条件概率|()P B A 中“|”后面就是条件;(2)若()0P A =,表示条件A 不可能发生,此时用条件概率公式计算|()P B A 就没有意义了,所以条件概率计算必须在()0P A >的情况下进行.2.性质(1)条件概率具有概率的性质,任何事件的条件概率都在0和1之间,即1|0()P B A ≤≤.(2)必然事件的条件概率为1,不可能事件的条件概率为0.(3)如果B 与C 互斥,则(||()(|))P B C A P B A P C A =+ .注:已知A 发生,在此条件下B 发生,相当于AB 发生,要求|()P B A ,相当于把A 看作新的基本事件空间计算AB 发生的概率,即()()()()()()()()|()n AB n AB n P AB P B A n A n A P A n Ω===Ω.二、相互独立与条件概率的关系1.相互独立事件的概念及性质(1)相互独立事件的概念对于两个事件A ,B ,如果)(|)(P B A P B =,则意味着事件A 的发生不影响事件B 发生的概率.设()0P A >,一、知识点梳理根据条件概率的计算公式,()()()()|P AB P B P B A P A ==,从而()()()P AB P A P B =.由此我们可得:设A ,B 为两个事件,若()()()P AB P A P B =,则称事件A 与事件B 相互独立.(2)概率的乘法公式由条件概率的定义,对于任意两个事件A 与B ,若()0P A >,则()|)()(P AB P A P B A =.我们称上式为概率的乘法公式.(3)相互独立事件的性质如果事件A ,B 互相独立,那么A 与B ,A 与B ,A 与B 也都相互独立.(4)两个事件的相互独立性的推广两个事件的相互独立性可以推广到(2)n n n >∈*N ,个事件的相互独立性,即若事件1A ,2A ,…,n A 相互独立,则这n 个事件同时发生的概率1212()()()()n n P A A A P A A P A = .2.事件的独立性(1)事件A 与B 相互独立的充要条件是()()()P AB P A P B =⋅.(2)当()0P B >时,A 与B 独立的充要条件是()()|P A B P A =.(3)如果()0P A >,A 与B 独立,则()()()()()()()|P AB P A P B P B A P B P A P A ⋅===成立.三、全概率公式1.全概率公式(1)|()()()()(|)P B P A P B A P A P B A =+;(2)定理1若样本空间Ω中的事件1A ,2A ,…,n A 满足:①任意两个事件均互斥,即i j A A =∅,12i j n = ,,,,,i j ≠;②12n A A A +++=Ω ;③()0i P A >,12i n = ,,,.则对Ω中的任意事件B ,都有12n B BA BA BA =+++ ,且11()()()()|nni i i i i P B P BA P A P B A ====∑∑.2.贝叶斯公式(1)一般地,当0()1P A <<且()0P B >时,有()()()()()()()()()()||||P A P B A P A P B A P A B P B P A P B A P A P B A ==+(2)定理2若样本空间Ω中的事件12n A A A ,,,满足:①任意两个事件均互斥,即i j A A =∅,12i j n = ,,,,,i j ≠;②12n A A A +++=Ω ;③()01i P A <<,12i n = ,,,.则对Ω中的任意概率非零的事件B ,都有12n B BA BA BA =+++ ,且1()()()()()()()()|||j j j j j niii P A P B A P A P B A P A B P B P A P B A ===∑注:贝叶斯公式体现了|()P A B ,()P A ,()P B ,|()P B A ,|()P B A ,()P AB 之间的关系,即()()()|P AB P A B P B =,()()()()()||P AB P A B P B P B A P A ==,|()()()()(|)P B P A P B A P A P B A =+.题型一事件的相互独立性1.判断事件是否相互独立的方法(1)定义法:事件(2)由事件本身的性质直接判定两个事件发生是否相互影响.二、题型分类精讲A.332B.【答案】D【题型训练】一、单选题,从乙口袋内摸出一个白球的概率是6【分析】根据题意,求得事件甲、乙、丙、丁的概率,结合相互独立事件的概念及判定方法,逐项判定,不相互独立,所以本序号说法不正确;二、多选题不能同时发生,但能同时不发生,所以不是对立事件,所以三、填空题四、解答题.一题多解是由多种途径获得同一数学问题的最终结论,一题多解不但达到了解题的目标要求,而且让情.某市举行了一场射击表演赛,规定如下:表演赛由甲、乙两位选手进行,每次只能有一位选手射击,题型二条件概率1.判断所求概率为条件概率的主要依据是题目中的知事件的发生影响了所求事件的概率,也认为是条件概率问题.运用条件概率的关键是求出【题型训练】一、单选题1.核酸检测是目前确认新型冠状病毒感染最可靠的依据.经大量病例调查发现,试剂盒的质量、抽取标本的部位和取得的标本数量,对检测结果的准确性有一定影响.已知国外某地新冠病毒感染率为d二、多选题、表示事件错误;三、填空题个红球,从中任意取出一球,已知它不是白题型三全概率公式全概率公式复杂的概率计算分解为一些较为容易的情况分别进行考虑.【题型训练】一、单选题小时的学生中任意调查一名学生,则(二、多选题,所以表示买到的口罩分别为甲品牌、乙品牌、其他品牌,,对;三、填空题记任选一人去桂林旅游的事件为B ,则123()0.4,()()0.3P A P A P A ===,123(|)0.1,(|)0.2,(|)0.15P B A P B A P B A ===,由全概率公式得112233()(|)()(|)()(5|)30.15014P P A P B A P A P B A P A P B B A =⨯⨯++==++⨯.故答案为:0.145四、解答题附:()2P K k≥0.150.100.05k 2.072 2.706 3.841 (2)将甲乙生产的产品各自进行包装,每来自甲生产的概率为3,来自乙生产的概率为(1)假设四人实力旗鼓相当,即各比赛每人的胜率均为①A获得季军的概率;②D成为亚军的概率;,其余三人实力旗鼓相当,求题型四贝叶斯公式1.利用贝叶斯公式求概率的步骤第一步:利用全概率公式计算【题型训练】一、单选题。

概率论和数理统计(第三学期)第2章条件概率与独立性

概率论和数理统计(第三学期)第2章条件概率与独立性

PA1PA2 A1PA3 A1A2
(1 p) p p p p 1 p p p p p 1 p p p p p
2
2
2
1 5 3 pp3
2
§2.2 全概率公式与贝叶斯公式
全概率公式
定理 设B1,B2,…,Bn 是一组两两互斥的事件,且
n
(1) Bi i 1
(3)P( A3 B) 1 P( A3 B)
1
0.2 0.2
0.93
0.5 0.6 0.3 0.9 0.2 0.2
解法二:
(3)P( A1 A2 B) P( A1 B) P( A2 B) 0.49 0.44 0.93
a a 1 b
a
a b a b 1 a b a b 1
a ab
例2 一商店出售的某型号的晶体管是甲、乙、
丙三家工厂生产的,其中乙厂产品占总数的50%, 另两家工厂的产品各占25%。已知甲、乙、丙各 厂产品合格率分别为0.9、0.8、0.7,试求随意取出 一只晶体管是合格品的概率(也就是本商店出售货 的合格率)。
pk
1 4
(
pk
pk 1 )
pn p1 ( p2 p1 ) ( p3 p2 ) ( pn pn1 )
1 1 n1
p1
4 1 1
( p2 p1 )
4

pn
3 5
(1)n 10
1 4n 1
贝叶斯公式
定理 设B1,B2,…,Bn是一组两两互斥的事件,且
n
(1) Bi i 1
而p1
m 1 m
pn
1 2
1
m2 m
n
当n
时,pn
1 2
例4 连续做某项试验,每次试验只有成功和失败

条件概率与独立事件

条件概率与独立事件

条件概率与独立事件【要点梳理】要点一:条件概率1.概念设A 、B 为两个事件,求已知B 发生的条件下,A 发生的概率,称为B 发生时A 发生的条件概率,记为()|P A B ,读作:事件B 发生的条件下A 发生的概率。

要点诠释:我们用韦恩图能更好的理解条件概率,如图,我们将封闭图形的面积理解为相应事件的概率,那么由条件概率的概率,我们仅局限于B 事件这个范围来考察A 事件发生的概率,几何直观上,()|P A B 相当于B 在A 内的那部分(即事件AB )在A中所占的比例。

2.公式.要点诠释:(1)对于古典(几何)概型的题目,可采用缩减样本空间的办法计算条件概率: 古典概型:(|)AB P A B B =包含的基本事件数包含的基本事件数,即()()card (|)card AB P AB B =; 几何概型:(|)AB P A B B =的测度的测度. (2)公式()(|)()P AB P A B P B =揭示了()P B 、()|P AB 、()P AB 的关系,常常用于知二求一,即要熟练应用它的变形公式如,若()P B >0,则()()()=|P AB P A P B A ,该式称为概率的乘法公式.(3)类似地,当()0P A >时,A 发生时B 发生的条件概率为:()()()|=P AB P B A P A .3. 性质(1)非负性:()|0P A B ≥;(2)规范性:()|=1P B Ω(其中Ω为样本空间);(3)可列可加性:若两个事件A 、B 互斥,则()()()+||+|P A B C P A C P B C =.4.概率()P A |B 与()P AB 的联系与区别: 当()0P B >时,()()()|=P A B P A B P B .联系:事件A ,B 都发生了。

区别:①在()|P A B 中,事件A ,B 发生有时间上的差异,事件B 先发生,事件A 后发生;在()P AB 中,事件A ,B 同时发生;②基本事件空间不同在()|P A B 中,事件B 成为基本事件空间,即()()card (|)card AB P ABB =;在()P AB 中,基本事件空间保持不变,仍为原基本事件空间,即()()card ()card AB P AB =Ω。

第7课时条件概率与独立事件、二项分布

第7课时条件概率与独立事件、二项分布

2.事件的相互独立性
(1)设A、B为两个事件,如果P(AB)= 与事件B相互独立.
P(A)P(B)
,则称事件A
(2)如果事件A与B相互独立,那么 A与B,A 与B, A与 B 也都是相互 独立的.
3.二项分布 进行n次试验,如果满足以下条件 (1)每次试验只有两个相互对立的结果,可以分别称为“成功”和“失 败”; (2)每次试验“成功”的概率均为P,“失败”的概率均为1-P; (3)各次试验是相互独立的. 设X表示这n次试验中成功的次数,则 P(X=k)= CnkPk(1-p)n-k .(k=0,1,2,…,n) 称X服从参数为n,P的二项分布,简记为X~B(n,p) .
(2010·广东汕头)某广场上有 4 盏装饰灯,晚上每盏灯都随机地闪烁 红灯或绿灯,每盏灯出现红灯的概率都是23,出现绿灯的概率都是13,记 这 4 盏灯中出现红灯的数量为 ξ,当这排装饰灯闪烁一次时.
(1)求 ξ=2 时的概率; (2)求 ξ 的数学期望.
【变式训练】 3.“上海世博会”将于 2010 年 5 月 1 日至 10 月 31 日在上海举行.世博会“中国馆·贵宾厅”作为接待中外贵宾的重要场 所,陈列其中的艺术品是体现兼容并蓄、海纳百川的重要文化载体,为 此,上海世博会事物协调局将举办“中国 2010 年上海世博会‘中国馆·贵 宾厅’艺术品方案征集”活动.某地美术馆从馆藏的中国画、书法、油 画、陶艺作品中各选一件代表作参与应征,假设代表作中中国画、书法、 油画入选“中国馆·贵宾厅”的概率均为14,陶艺入选“中国馆·贵宾厅” 的概率为13.
1
1
A.4
B.3
1 C.2 解析:
3 D.4 P(X=1)=C21211121=12.
答案: C

条件概率与独立性

条件概率与独立性

A={掷出偶数点}, P(B|A)=?
掷骰子 P(B|A)= 1/3.
1 1 6 P( AB) P(B|A) 3 3 6 P( A)
条件概率 Conditional Probability
定义 设A,B为同一个随机试验中的两个随机事件 , 且P(A)>0, 则称
P ( AB ) P ( B A) P ( A)
1 两事件相互独立的定义
直观定义: 已知事件A与B,若 其中任何一个事件发生
的概率不受另一个事件发生与否的影响,则称事件A与 B是相互独立的。
定义1.3 设 是一个样本空间,A、B是其上的 的两个事件,若A,B满足 P(AB)= P(A) P(B) 则称A与B独立,或称A、B相互独立.
例1 从一副不含大小王的扑克牌中任取一 张,记 A={抽到K}, B={抽到的牌是黑桃的}
问事件A、B是否独立? 解: 由于 P(A)=4/52=1/13, P(B)=13/52=1/4 P(AB)=1/52=1/52 可见, P(AB)=P(A)P(B)
说明事件A、B独立.
在实际应用中, 往往根据问题的实际意 义去判断两事件是否独立.
练习.
设A、B为互不相容事件,且P(A)>0,P(B)>0, 下面四个结论中,正确的是: 1. P(B|A)>0 2. P(A|B)=P(A) 3. P(A|B)=0 4. P(AB)=P(A)P(B) 设A、B为独立事件,且P(A)>0,P(B)>0, 下面四个结论中,正确的是:
n个事件相互独立的定义: 设A1,A2, …,An是 n个事件,如果对任意k (2 k n)个事件 Ai1,Ai2, …,Aik , 有等式
P( Ai1 Ai2 Aik ) P( Ai1 )P( Ai2 )P( Aik )

北师大版高中数学选修1-2课件2.1条件概率与独立事件

北师大版高中数学选修1-2课件2.1条件概率与独立事件

1.(2011·辽宁高考)从1,2,3,4,5中任取2个不
同的数,事件A=“取到的2个数之和为偶数”,事件
B=“取到的2个数均为偶数”,则P(B|A)=( B )
A. 1
B. 1
C. 2
D. 1
8
4
5
2
解:事件B含有基本事件数为1,事件A含有基本事件
数为4,因此P(B|A)= 1 .
4
2.若 A 与 B 相互独立,则下面不是相互独立事件的是
(1)由条件概率的定义知,P(B|A)与P(A|B)是不同 的;另外,在事件A发生的前提下,事件B发生的概 率为P(B|A),其值不一定等于P(B ).
(2)有界性:0 P B A 1.
【练一练】
袋子中有5个球(3个白色、2个黑色),现每次取一 个,无放回地抽取2次,则在第一次抽到白球的条件 下,第二次抽到白球的概率为( C )
思考3:P(AB)与P(A),P(B)有什么关系?
提示:P(AB)=P(A)·P(B)=53×12=130.
思考4:P(B|A)与P(B)相等吗?
提示:相等,由 P(B|A)=PPAAB=12,可得 P(B|A)=P(B).
【抽象概括】
对于两个事件A,B,如果P(A|B)=P(A),则意味着事 件B发生不影响事件A的概率.设P(B)>0,根据条件
( A)
A.A 与 A
B.A 与 B
C. A 与 B
D. A 与 B
解析:当 A,B 相互独立时,A 与 B ,A 与 B 以及 A
与 B 都是相互独立的,而 A 与 A 是对立事件,不相
互独立.
1 3.已知 P(A|B)=12,P(B)=13,则 P(AB)=____6____.

高中数学 第2章 概率 2.2 条件概率与事件的独立性 2.2.1 条件概率 2.2.2 事件的独立

高中数学 第2章 概率 2.2 条件概率与事件的独立性 2.2.1 条件概率 2.2.2 事件的独立

2.2.1 条件概率 2.2.2 事件的独立性1.了解条件概率和两个事件相互独立的概念.2.理解条件概率公式和相互独立事件同时发生的概率公式.3.能利用概率公式解决实际问题.1.条件概率(1)定义:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号“P (B |A )”来表示,读作“A 发生的条件下B 发生的概率”.类似地,事件B 发生的条件下事件A 发生的条件概率记为“P (A |B )”,读作“B 发生的条件下A 发生的概率”.(2)事件的交(或积)由事件A 和B 同时发生所构成的事件D ,称为事件A 与B 的交(或积),记作D =A ∩B (或D =AB ).(3)条件概率计算公式 一般地,条件概率公式为P (B |A )=P (A ∩B )P (A )(P (A )>0),类似地,P (A |B )=P (A ∩B )P (B )(P (B )>0).2.相互独立事件(1)定义:一般地,事件A 是否发生对事件B 发生的概率没有影响,即P (B |A )=P (B ),则称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.若n 个事件A 1,A 2,…,A n ,如果其中任何一个事件发生的概率不受其他事件是否发生的影响,则称这n 个事件相互独立.(2)相互独立事件的性质一般地,若事件A ,B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立. (3)相互独立事件同时发生的概率①两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P (A ∩B )=P (A )×P (B ).②如果事件A 1,A 2,…,A n 相互独立,则这n 个事件都发生的概率,等于每个事件发生的概率的积,即P (A 1∩A 2∩…∩A n )=P (A 1)×P (A 2)×…×P (A n )并且上式中任意多个事件A i 换成其对立事件后,等式仍成立.1.判断(对的打“√”,错的打“×”) (1)若事件A 、B 互斥,则P (B |A )=1.( ) (2)必然事件与任何一个事件相互独立.( )(3)“P (AB )=P (A )·P (B )”是“事件A ,B 相互独立”的充要条件.( ) 答案:(1)× (2)√ (3)√2.已知P (AB )=310,P (A )=35,则P (B |A )为( )A.950 B.12 C.910D.14答案:B3.甲、乙两人各射击一次,他们各自击中目标的概率都是0.6,则他们都击中目标的概率是( )A .0.6B .0.36C .0.16D .0.84答案:B4.甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为________.答案:0.95求条件概率[学生用书P26]在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.【解】 设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第2次都抽到理科题为事件A ∩B .(1)从5道题中不放回地依次抽取2道题的事件数为A 25=20. 根据分步乘法计数原理,事件A 的总数为A 13×A 14=12. 故P (A )=1220=35.(2)因为事件A ∩B 的总数为A 23=6. 所以P (A ∩B )=620=310.(3)法一:由(1)、(2)可得,在第1次抽到理科题的条件下,第2次抽到理科题的概率为P (B |A )=P (A ∩B )P (A )=31035=12.法二:因为事件A ∩B 的总数为6,事件A 发生的总数为12,所以P (B |A )=612=12.利用定义计算条件概率的步骤(1)分别计算概率P (AB )和P (A ). (2)将它们相除得到条件概率P (B |A )=P (AB )P (A ),这个公式适用于一般情形,其中AB 表示A ,B 同时发生.设10件产品中有4件不合格,从中任意取出2件,那么在所取得的产品中发现有一件不合格品,求另一件也是不合格品的概率.解:设事件A 为“在所取得的产品中发现有一件不合格品”,事件B 为“另一件产品也是不合格品”,则P (A )=C 14C 16C 210=4×6×210×9=815,P (A ∩B )=C 24C 210=215.因此P (B |A )=P (A ∩B )P (A )=14.相互独立事件的判断判断下列各对事件是不是相互相互独立事件:(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”;(3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”.【解】 (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为58,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47,若前一事件没有发生,则后一事件发生的概率为57.可见,前一事件是否发生,对后一事件发生的概率有影响,所以两者不是相互独立事件.(3)记A :出现偶数点,B :出现3点或6点,则A ={2,4,6},B ={3,6},AB ={6}, 所以P (A )=36=12,P (B )=26=13,P (AB )=16,所以P (A ∩B )=P (A )·P (B ), 所以事件A 与B 相互独立.判断两事件的独立性的方法(1)定义法:如果事件A ,B 同时发生的概率等于事件A 发生的概率与事件B 发生的概率的积,则事件A ,B 为相互独立事件.(2)由事件本身的性质直接判定两个事件发生是否相互影响. (3)当P (A )>0时,可用P (B |A )=P (B )判断.一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A ={一个家庭中既有男孩又有女孩},B ={一个家庭中最多有一个女孩}.对下述两种情形,讨论A 与B 的独立性:(1)家庭中有两个小孩; (2)家庭中有三个小孩.解:(1)有两个小孩的家庭,男孩、女孩的可能情形为Ω={(男,男),(男,女),(女,男),(女,女)},它有4个基本事件, 由等可能性知概率各为14.这时A ={(男,女),(女,男)},B ={(男,男),(男,女),(女,男)}, A ∩B ={(男,女),(女,男)},于是P (A )=12,P (B )=34,P (A ∩B )=12.由此可知P (A ∩B )≠P (A )P (B ),所以事件A ,B 不相互独立.(2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为Ω={(男,男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女)},由等可能性知这8个基本事件的概率均为18,这时A 中含有6个基本事件,B 中含有4个基本事件, A ∩B 中含有3个基本事件.于是P (A )=68=34,P (B )=48=12,P (A ∩B )=38,显然有P (A ∩B )=38=P (A )P (B )成立.从而事件A 与B 是相互独立的.求相互独立事件的概率甲、乙2个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:(1)2个人都译出密码的概率; (2)2个人都译不出密码的概率; (3)至多1个人译出密码的概率;【解】 记“甲独立地译出密码”为事件A ,“乙独立地译出密码”为事件B ,A 与B 为相互独立事件,且P (A )=13,P (B )=14.(1)“2个人都译出密码”的概率为:P (AB )=P (A )·P (B )=13×14=112.(2)“2个人都译不出密码”的概率为:P (A -B -)=P (A -)·P (B -)=[1-P (A )]×[1-P (B )]=(1-13)×(1-14)=12.(3)“至多1个人译出密码”的对立事件为“2个人都译出密码”,所以至多1个人译出密码的概率为:1-P (AB )=1-P (A )P (B )=1-13×14=1112.在本例条件下,求:(1)恰有1个人译出密码的概率; (2)至少1个人译出密码的概率.解:(1)“恰有1个人译出密码”可以分为两类,即甲译出乙未译出以及甲未译出乙译出,且两个事件为互斥事件,所以恰有1个人译出密码的概率为:P (A B -∪A -B )=P (A B -)+P (A -B )=P (A )P (B -)+P (A -)P (B ) =13×(1-14)+(1-13)×14=512. (2)“至少1个人译出密码”的对立事件为“2个人都未译出密码”,所以至少1个人译出密码的概率为:1-P (A -B -)=1-P (A -)P (B -)=1-23×34=12.与相互独立事件有关的概率问题求解策略一般地,已知两个事件A ,B ,它们的概率分别为P (A ),P (B ),那么:A ,B 互斥 A ,B 相互独立P (A +B ) P (A )+P (B )1-P (A -)P (B -)P (AB ) 0P (A )P (B ) P (A -B -)1-[P (A )+P (B )]P (A -)P (B -)某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13 s 内(称为合格)的概率分别为25,34,13,若对这三名短跑运动员的100 m 跑的成绩进行一次检测,则(1)三人都合格的概率; (2)三人都不合格的概率; (3)出现几人合格的概率最大.解:记“甲、乙、丙三人100米跑成绩合格”分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P (A )=25,P (B )=34,P (C )=13.设恰有k 人合格的概率为P k (k =0,1,2,3),(1)三人都合格的概率:P 3=P (ABC )=P (A )·P (B )·P (C )=25×34×13=110. (2)三人都不合格的概率:P 0=P (A -B -C -)=P (A -)·P (B -)·P (C -)=35×14×23=110. (3)恰有两人合格的概率:P 2=P (AB C -)+P (A B -C )+P (A -BC )=25×34×23+25×14×13+35×34×13=2360. 恰有一人合格的概率:P 1=1-P 0-P 2-P 3=1-110-2360-110=2560=512.综合第一问、第二问、第三问可知P 1最大. 所以出现恰有1人合格的概率最大.相互独立事件的综合应用在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众要彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率. (2)X 表示3号歌手得到观众甲、乙、丙的票数之和,求X 的分布列.【解】 (1)设A 表示事件“观众甲选中3号歌手”,B 表示事件“观众乙选中3号歌手”,则P (A )=C 12C 23=23,P (B )=C 24C 35=35.因为事件A 与B 相互独立,所以观众甲选中3号歌手且观众乙未选中3号歌手的概率为P (A B -)=P (A )·P (B -)=P (A )·[1-P (B )]=23×25=415.(或P (A B -)=C 12·C 34C 23·C 35=415). (2)设C 表示事件“观众丙选中3号歌手”,则P (C )=C 24C 35=35,因为X 可能的取值为0,1,2,3,且取这些值的概率分别为P (X =0)=P (A -B -C -)=13×25×25=475,P (X =1)=P (A B - C -)+P (A -B C -)+P (A -B -C )=23×25×25+13×35×25+13×25×35=2075, P (X =2)=P (A B C -)+P (A -BC )+P (A B -C )=23×35×25+13×35×35+23×25×35=3375, P (X =3)=P (ABC )=23×35×35=1875,所以X 的分布列为X 0 1 2 3 P475207533751875概率问题中的数学思想(1)正难则反.灵活应用对立事件的概率关系(P (A )+P (A -)=1)简化问题,是求解概率问题最常用的方法.(2)化繁为简.将复杂事件的概率转化为简单事件的概率,即寻找所求事件与已知事件之间的关系.“所求事件”分几类(考虑加法公式,转化为互斥事件)还是分几步组成(考虑乘法公式,转化为互独事件).(3)方程思想.利用有关的概率公式和问题中的数量关系,建立方程(组),通过解方程(组)使问题获解.三个元件T 1,T 2,T 3正常工作的概率分别为12,34,34,将它们中的某两个元件并联后再和第三个元件串联接入电路,如图所示,求电路不发生故障的概率.解:记“三个元件T 1,T 2,T 3正常工作”分别为事件A 1,A 2,A 3, 则P (A 1)=12,P (A 2)=34,P (A 3)=34,不发生故障的事件为(A 2∪A 3)A 1,P =P [(A 2∪A 3)A 1]=P (A 2∪A 3)·P (A 1) =[1-P (A 2)·P (A 3)]·P (A 1) =(1-14×14)×12=1532.————————————————————————————————————————————————1.求条件概率的方法(1)利用定义,分别求P (A )和P (A ∩B ),得P (B |A )=P (A ∩B )P (A ).(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数,即n (AB ),得P (B |A )=n (A ∩B )n (A ).2.判定两个事件相互独立的方法(1)定义法:如果A 、B 同时发生的概率等于事件A 发生的概率与事件B 发生的概率的积,则事件A 、B 为相互独立事件.(2)由事件本身的性质直接判定两个事件发生是否相互影响.3.事件A 、B 相互独立,则P (AB )=P (A )P (B ).注意与事件互斥区别.1.求复杂事件的概率时,先判断事件间的关系,是互斥还是独立,特别对“至多”“至少”等问题,可分成互斥事件求概率,也可用对立事件求概率.2.在解题过程中,要明确事件中的“至少有一个发生”、“至多有一个发生”“恰有一个发生”“都发生”“都不发生”“不都发生”等词语的意义,已知两个事件A 、B ,它们的概率分别为P (A )、P (B ),那么:A 、B 中至少有一个发生的事件为A ∪B ; A 、B 都发生的事件为AB ;A 、B 都不发生的事件为A -B -;A 、B 恰有一个发生的事件为A B -∪A -B ;A 、B 中至多有一个发生的事件为A B -∪A -B ∪A -B -.1.已知P (B |A )=12,P (AB )=38,则P (A )等于( )A.316B.1316C.34D.14解析:选C.由P (AB )=P (A )P (B |A )可得P (A )=34.2.甲、乙、丙3人投篮,投进的概率分别是13,25,12,现3人各投篮1次,则3人都没有投进的概率为( )A.115 B.215C.15D.110解析:选C.甲、乙、丙3人投篮相互独立,都不进的概率为⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-25⎝ ⎛⎭⎪⎫1-12=15.3.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班的概率为________.解析:设事件A 为“周日值班”,事件B 为“周六值班”,则P (A )=C 16C 27,P (AB )=1C 27,故P (B |A )=P (AB )P (A )=16.答案:16[A 基础达标]1.设A 与B 是相互独立事件,则下列事件中不相互独立的是( ) A .A 与B -B.A -与B C.A -与B -D .A 与A -解析:选D.A 、B 、C 选项的两事件相互独立,而A 与A -是对立事件,不是相互独立事件. 2.某班学生考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是( )A .0.2B .0.33C .0.5D .0.6解析:选A.A =“数学不及格”,B =“语文不及格”,P (B |A )=P (AB )P (A )=0.030.15=0.2,所以数学不及格时,该生语文也不及格的概率为0.2.3.7名同学站成一排,已知甲站在中间,则乙站在末尾的概率是( ) A.14 B.15 C.16D.17解析:选C.记“甲站在中间”为事件A ,“乙站在末尾”为事件B ,则n (A )=A 66,n (AB )=A 55,P (B |A )=A 55A 66=16.4.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,则23等于( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有1个红球的概率D .2个球中恰有1个红球的概率解析:选C.分别记从甲、乙袋中摸出一个红球为事件A 、B ,则P (A )=13,P (B )=12,由于A 、B 相互独立,所以1-P (A -)P (B -)=1-23×12=23.根据互斥事件可知C 正确.5.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y (若指针停在边界上则重新转),x ,y 构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( )A.116B.18C.316D.14解析:选C.满足xy =4的所有可能如下:x =1,y =4;x =2,y =2;x =4,y =1.所以所求事件的概率P =P (x =1,y =4)+P (x =2,y =2)+ P (x =4,y =1)=14×14+14×14+14×14=316. 6.已知有两台独立在两地工作的雷达,它们发现飞行目标的概率分别为0.9和0.85,则两台雷达都未发现飞行目标的概率为________.解析:所求概率为(1-0.9)×(1-0.85)=0.015. 答案:0.0157.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________. 解析:设此队员每次罚球的命中率为p , 则1-p 2=1625,所以p =35.答案:358.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率是________.解析:设事件A 为“其中一瓶是蓝色”,事件B 为“另一瓶是红色”,事件C 为“另一瓶是黑色”,事件D 为“另一瓶是红色或黑色”,则D =B ∪C ,且B 与C 互斥, 又P (A )=C 12C 14C 25=45,P (AB )=C 12C 11C 25=15,P (AC )=C 12C 12C 25=25,故P (D |A )=P (B ∪C |A ) =P (B |A )+P (C |A ) =P (AB )P (A )+P (AC )P (A )=34.答案:349.在社会主义新农村建设中,某市决定在一个乡镇投资农产品加工、绿色蔬菜种植和水果种植三个项目,据预测,三个项目成功的概率分别为45、56、23,且三个项目是否成功互相独立.(1)求恰有两个项目成功的概率; (2)求至少有一个项目成功的概率.解:(1)只有农产品加工和绿色蔬菜种植两个项目成功的概率为 45×56×(1-23)=29, 只有农产品加工和水果种植两个项目成功的概率为 45×(1-56)×23=445, 只有绿色蔬菜种植和水果种植两个项目成功的概率为 (1-45)×56×23=19,所以恰有两个项目成功的概率为29+445+19=1945.(2)三个项目全部失败的概率为 (1-45)×(1-56)×(1-23)=190,所以至少有一个项目成功的概率为1-190=8990.10.甲箱的产品中有5个正品和3个次品,乙箱的产品中有4个正品和3个次品. (1)从甲箱中任取2个产品,求这2个产品都是次品的概率.(2)若从甲箱中任取2个产品放入乙箱中,然后再从乙箱中任取一个产品,求取出的这个产品是正品的概率.解:(1)从甲箱中任取2个产品的事件数为C 28=28,这2个产品都是次品的事件数为C 23=3.所以这2个产品都是次品的概率为328.(2)设事件A 为“从乙箱中取一个正品”,事件B 1为“从甲箱中取出2个产品都是正品”,事件B 2为“从甲箱中取出1个正品1个次品”,事件B 3为“从甲箱中取出2个产品都是次品”,则事件B 1、事件B 2、事件B 3彼此互斥.P (B 1)=C 25C 28=514,P (B 2)=C 15C 13C 28=1528,P (B 3)=C 23C 28=328,P (A |B 1)=69,P (A |B 2)=59,P (A |B 3)=49,所以P (A )=P (B 1)P (A |B 1)+P (B 2)·P (A |B 2)+P (B 3)P (A |B 3) =514×69+1528×59+328×49=712. [B 能力提升]11.抛掷一枚均匀的骰子所得的样本空间为Ω={1,2,3,4,5,6},令事件A ={2,3,5},B ={1,2,4,5,6},则P (A |B )等于( )A.25B.12C.35D.45解析:选A.因为A ∩B ={2,5},所以n (AB )=2. 又因为n (B )=5,故P (A |B )=n (AB )n (B )=25.12.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )=________.解析:由题意,P (A -)·P (B -)=19,P (A -)·P (B )=P (A )·P (B -).设P (A )=x ,P (B )=y , 则⎩⎪⎨⎪⎧(1-x )(1-y )=19,(1-x )y =x (1-y ). 即⎩⎪⎨⎪⎧1-x -y +xy =19,x =y , 所以x 2-2x +1=19,所以x -1=-13,或x -1=13(舍去),所以x =23.答案:2313.一只口袋内装有2个白球和2个黑球.求:(1)在先摸出1个白球不放回的条件下,再摸出1个白球的概率是多少? (2)在先摸出1个白球后放回的条件下,再摸出1个白球的概率是多少? 解:(1)记A =“先摸出一个白球不放回”,B =“再摸出一个球为白球”, 则AB =“先后两次摸到白球”. 因为P (A )=24=12,P (A ∩B )=A 22A 24=16,所以P (B |A )=P (A ∩B )P (A )=13.(2)记A 1=“先摸出一个白球放回”,B 1=“再摸出一个球为白球”, 则AB 1=“先后两次摸到白球”. 因为P (A 1)=24=12,P (A 1∩B 1)=2×24×4=14,所以P (B 1|A 1)=P (A 1∩B 1)P (A 1)=12.14.(选做题)某班甲、乙、丙三名同学竞选班委,甲当选的概率为45,乙当选的概率为35,丙当选的概率为710.求:(1)恰有一名同学当选的概率; (2)至多有两人当选的概率.解:设甲,乙,丙当选分别为事件A ,B ,C , 则有P (A )=45,P (B )=35,P (C )=710.(1)因为事件A ,B ,C 相互独立, 所以恰有一名同学当选的概率为P (A ∩B -∩C -)+P (A -∩B ∩C -)+P (A -∩B -∩C )=P (A )P (B -)P (C -)+P (A -)P (B )P (C -)+P (A -)P (B -)P (C ) =45×25×310+15×35×310+15×25×710 =47250. (2)至多有两人当选的概率为 1-P (A ∩B ∩C )=1-P (A )P (B )P (C )4 5×35×710=83125.=1-。

2.3 条件概率与独立事件 课件(北师大选修2-3)

2.3 条件概率与独立事件 课件(北师大选修2-3)

返回
[例 3]
(10 分)某田径队有三名短跑运动员,根据平时
训练情况统计甲,乙,丙三人 100 m 跑(互不影响)的成绩在 2 3 1 13 s 内(称为合格)的概率分别为 , , ,若对这三名短跑 5 4 3 运动员的 100 m 跑的成绩进行一次检测,则 (1)三人都合格的概率; (2)三人都不合格的概率; (3)出现几人合格的概率最大?
返回
[一点通]
求条件概率一般有两种方法:
一是对于古典概型类题目,可采用缩减基本事件总数的 nAB 办法来计算,P(B|A)= ,其中 n(AB)表示事件 AB 包含 nA 的基本事件个数,n(A)表示事件 A 包含的基本事件个数. PAB 二是直接根据定义计算,P(B|A)= ,特别要注意 PA P(AB)的求法.
(1)先摸出1个白球不放回,再摸出1个白球的概率是 多少? (2)先摸出1个白球后放回,再摸出1个白球的概率是 多少?
[思路点拨]
先摸出1个白球后放回或不放回,影响
到后面取到白球的概率,应注意两个事件同时发生的概率 的不同. 返回
[精解详析]
(1)设“先摸出 1 个白球不放回”为事件 A,
“再摸出 1 个白球”为事件 B,则“先后两次摸到白球”为 AB,先摸 1 球不放回,再摸 1 球共有 4×3 种结果. 2×3 1 2×1 1 ∴P(A)= = ,P(AB)= = . 4×3 2 4×3 6 PAB 1 ∴P(B|A)= = . PA 3
返回
[一点通]
(1)利用相互独立事件的定义(即P(AB)=
P(A)· P(B))可以准确地判定两个事件是否相互独立,这是用 定量计算方法判断,因此我们必须熟练掌握.
(2)判别两个事件是否为相互独立事件也可以从定性的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修2-3 第二章 概率条件概率与独立事件(二) Nhomakorabea推广
思考: (1)互斥事件、对立事件、相互独立事件的区别? 两个互斥事件在一次实验中不可能同时发生,即至多发生 一个;对立事件一定是互斥事件,且在一次试验中有且仅 有一个事件发生;两个互相独立事件是指一个事件发生与 否对另一件事件发生的概率没有影响。
A
B
小结
有三种方法判断两事件是否具有独立性
(1)定义法:直接判定两个事件发生是否相互影响;
跟踪训练1 已知下列各对事件: (1) 甲组 3 名男生, 2 名女生;乙组 2 名男生, 3 名女生.今 从甲、乙两组中各选一名同学参加游园活动.“从甲组中 选出一名男生”与“从乙组中选出一名女生”. (2)一盒内盛有5个白乒乓球和3个黄乒乓球.“从8个球中 任取 1个,取出的是白球”与“从剩下的 7个球中任意取 1 个,取出的仍是白球”. (3)一筐内有6个苹果和3个梨,“从中任取1个,取出的是 苹果”与“取出第一个后放回筐内,再取1个是梨”. 其中为相互独立事件的有 ( B ) A.(1)(2) B.(1)(3) C.(2) D.(2)(3)
例2 某商场推出二次开奖活动,凡购买一定价值的商品 可以获得一张奖券.奖券上有一个兑奖号码,可以分别参 加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中 奖概率都是0.05,求两次抽奖中以下事件的概率: (1)都抽到某一指定号码; (2)恰有一次抽到某一指定号码; (3)至少有一次抽到某一指定号码.
相关文档
最新文档