三角形专项训练
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形专项训练
一、选择题
1.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD 于F,交AB于G,连接EF,则线段EF的长为()
A.1 B.3
4
C.
2
3
D.
1
2
【答案】D
【解析】
【分析】
由等腰三角形的判定方法可知△AGC是等腰三角形,所以F为GC中点,再由已知条件可得EF为△CBG的中位线,利用中位线的性质即可求出线段EF的长.
【详解】
∵AD是△ABC角平分线,CG⊥AD于F,
∴△AGC是等腰三角形,
∴AG=AC=3,GF=CF,
∵AB=4,AC=3,
∴BG=1,
∵AE是△ABC中线,
∴BE=CE,
∴EF为△CBG的中位线,
∴EF=1
2
BG=
1
2
,
故选:D.
【点睛】
此题考查等腰三角形的判定和性质、三角形的中位线性质定理,解题关键在于掌握三角形的中位线平行于第三边,并且等于第三边的一半.
2.如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为()
A .65
B .85
C .125
D .245
【答案】D
【解析】
【分析】
连接AD ,根据已知等腰三角形的性质得出AD ⊥BC 和BD=6,根据勾股定理求出AD ,根据三角形的面积公式求出即可.
【详解】
解:连接AD
∵AB=AC ,D 为BC 的中点,BC=12,
∴AD ⊥BC ,BD=DC=6,
在Rt △ADB 中,由勾股定理得:AD=
22221068AB BD =+=, ∵S △ADB=
12×AD×BD =12×AB×DE , ∴DE=8624105
AD BD AB ⨯⨯==, 故选D .
【点睛】
本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD 的长是解此题的关键.
3.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )
A .3
B .3
C 21
D .6
【答案】C
【解析】
【分析】 先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后
根据勾股定理解Rt AOD △、平行四边形的性质即可求得21OC OA ==. 【详解】 解:∵AD BD ⊥
∴90ADB ∠=︒
∵在Rt ABD △中,30ABD ∠=︒,23AD =
∴243AB AD ==
∴226BD AB AD =-=
∵四边形ABCD 是平行四边形
∴132
OB OD BD ===,12OA OC AC == ∴在Rt AOD △中,23AD =,3OD =
∴2221OA AD OD =
+= ∴21OC OA ==
. 故选:C
【点睛】
本题考查了含30°角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.
4.如图,在▱ABCD 中,E 为边AD 上的一点,将△DEC 沿CE 折叠至△D ′EC 处,若∠B =48°,∠ECD =25°,则∠D ′EA 的度数为( )
A .33°
B .34°
C .35°
D .36°
【答案】B
【解析】
【分析】 由平行四边形的性质可得∠D =∠B ,由折叠的性质可得∠D '=∠D ,根据三角形的内角和定理可得∠DEC ,即为∠D 'EC ,而∠AEC 易求,进而可得∠D 'EA 的度数.
【详解】
解:∵四边形ABCD 是平行四边形,∴∠D =∠B =48°,
由折叠的性质得:∠D '=∠D =48°,∠D 'EC =∠DEC =180°﹣∠D ﹣∠ECD =107°, ∴∠AEC =180°﹣∠DEC =180°﹣107°=73°,
∴∠D 'EA =∠D 'EC ﹣∠AEC =107°﹣73°=34°.
故选:B .
【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
5.等腰三角形两边长分别是 5cm 和 11cm,则这个三角形的周长为()
A.16cm B.21cm 或 27cm C.21cm D.27cm
【答案】D
【解析】
【分析】
分两种情况讨论:当5是腰时或当11是腰时,利用三角形的三边关系进行分析求解即可.【详解】
解:当5是腰时,则5+5<11,不能组成三角形,应舍去;
当11是腰时,5+11>11,能组成三角形,则三角形的周长是5+11×2=27cm.
故选D.
【点睛】
本题主要考查了等腰三角形的性质, 三角形三边关系,掌握等腰三角形的性质, 三角形三边关系是解题的关键.
6.如图,11∥l2,∠1=100°,∠2=135°,则∠3的度数为()
A.50°B.55°C.65°D.70°
【答案】B
【解析】
【分析】
如图,延长l2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.
【详解】
如图,延长l2,交∠1的边于一点,
∵11∥l2,
∴∠4=180°﹣∠1=180°﹣100°=80°,
由三角形外角性质,可得∠2=∠3+∠4,
∴∠3=∠2﹣∠4=135°﹣80°=55°,
故选B.