三角形专项训练

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形专项训练

一、选择题

1.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD 于F,交AB于G,连接EF,则线段EF的长为()

A.1 B.3

4

C.

2

3

D.

1

2

【答案】D

【解析】

【分析】

由等腰三角形的判定方法可知△AGC是等腰三角形,所以F为GC中点,再由已知条件可得EF为△CBG的中位线,利用中位线的性质即可求出线段EF的长.

【详解】

∵AD是△ABC角平分线,CG⊥AD于F,

∴△AGC是等腰三角形,

∴AG=AC=3,GF=CF,

∵AB=4,AC=3,

∴BG=1,

∵AE是△ABC中线,

∴BE=CE,

∴EF为△CBG的中位线,

∴EF=1

2

BG=

1

2

故选:D.

【点睛】

此题考查等腰三角形的判定和性质、三角形的中位线性质定理,解题关键在于掌握三角形的中位线平行于第三边,并且等于第三边的一半.

2.如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为()

A .65

B .85

C .125

D .245

【答案】D

【解析】

【分析】

连接AD ,根据已知等腰三角形的性质得出AD ⊥BC 和BD=6,根据勾股定理求出AD ,根据三角形的面积公式求出即可.

【详解】

解:连接AD

∵AB=AC ,D 为BC 的中点,BC=12,

∴AD ⊥BC ,BD=DC=6,

在Rt △ADB 中,由勾股定理得:AD=

22221068AB BD =+=, ∵S △ADB=

12×AD×BD =12×AB×DE , ∴DE=8624105

AD BD AB ⨯⨯==, 故选D .

【点睛】

本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD 的长是解此题的关键.

3.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )

A .3

B .3

C 21

D .6

【答案】C

【解析】

【分析】 先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后

根据勾股定理解Rt AOD △、平行四边形的性质即可求得21OC OA ==. 【详解】 解:∵AD BD ⊥

∴90ADB ∠=︒

∵在Rt ABD △中,30ABD ∠=︒,23AD =

∴243AB AD ==

∴226BD AB AD =-=

∵四边形ABCD 是平行四边形

∴132

OB OD BD ===,12OA OC AC == ∴在Rt AOD △中,23AD =,3OD =

∴2221OA AD OD =

+= ∴21OC OA ==

. 故选:C

【点睛】

本题考查了含30°角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.

4.如图,在▱ABCD 中,E 为边AD 上的一点,将△DEC 沿CE 折叠至△D ′EC 处,若∠B =48°,∠ECD =25°,则∠D ′EA 的度数为( )

A .33°

B .34°

C .35°

D .36°

【答案】B

【解析】

【分析】 由平行四边形的性质可得∠D =∠B ,由折叠的性质可得∠D '=∠D ,根据三角形的内角和定理可得∠DEC ,即为∠D 'EC ,而∠AEC 易求,进而可得∠D 'EA 的度数.

【详解】

解:∵四边形ABCD 是平行四边形,∴∠D =∠B =48°,

由折叠的性质得:∠D '=∠D =48°,∠D 'EC =∠DEC =180°﹣∠D ﹣∠ECD =107°, ∴∠AEC =180°﹣∠DEC =180°﹣107°=73°,

∴∠D 'EA =∠D 'EC ﹣∠AEC =107°﹣73°=34°.

故选:B .

【点睛】

本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.

5.等腰三角形两边长分别是 5cm 和 11cm,则这个三角形的周长为()

A.16cm B.21cm 或 27cm C.21cm D.27cm

【答案】D

【解析】

【分析】

分两种情况讨论:当5是腰时或当11是腰时,利用三角形的三边关系进行分析求解即可.【详解】

解:当5是腰时,则5+5<11,不能组成三角形,应舍去;

当11是腰时,5+11>11,能组成三角形,则三角形的周长是5+11×2=27cm.

故选D.

【点睛】

本题主要考查了等腰三角形的性质, 三角形三边关系,掌握等腰三角形的性质, 三角形三边关系是解题的关键.

6.如图,11∥l2,∠1=100°,∠2=135°,则∠3的度数为()

A.50°B.55°C.65°D.70°

【答案】B

【解析】

【分析】

如图,延长l2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.

【详解】

如图,延长l2,交∠1的边于一点,

∵11∥l2,

∴∠4=180°﹣∠1=180°﹣100°=80°,

由三角形外角性质,可得∠2=∠3+∠4,

∴∠3=∠2﹣∠4=135°﹣80°=55°,

故选B.

相关文档
最新文档