高中 高考物理 圆周运动的临界问题

合集下载

圆周运动——临界问题

圆周运动——临界问题
当v>v0,杆对球有向下的拉力。
mg
F1
此时最低点的速度为:
问:当v2的速度等于0时,杆对球的支持力为多少?
F支=mg
此时最低点的速度为:
结论:使小球能做完整的圆周运动在最低点的速度
拓展:物体在管型轨道内的运动
如图,有一内壁光滑、竖直放置的管型轨道,其半径为R,管内有一质量为m的小球有做圆周运动,小球的直径刚好略小于管的内径。
四、圆周运动的周期性 利用圆周运动的周期性把另一种运动(例如匀速直线运动、平抛运动)联系起来。圆周运动是一个独立的运动,而另一个运动通常也是独立的,分别明确两个运动过程,注意用时间相等来联系。在这类问题中,要注意寻找两种运动之间的联系,往往是通过时间相等来建立联系的。同时,要注意圆周运动具有周期性,因此往往有多个答案。
例:长为L的细绳,一端系一质量为m的小球,另一端固定于某点,当绳竖直时小球静止,现给小球一水平初速度v0,使小球在竖直平面内做圆周运动,并且刚好过最高点,则下列说法中正确的是:( ) A.小球过最高点时速度为零 B.小球开始运动时绳对小球的拉力为m C.小球过最高点时绳对小的拉力mg D.小球过最高点时速度大小为
【答案】 2.9 rad/s≤ω≤6.5 rad/s
如图所示,匀速转动的水平圆盘上,沿半径方向两个用细线相连的小物体A、B的质量均为m,它们到转轴的距离分别为rA=20cm,rB=30cm。A、B与圆盘间的最大静摩擦力均为重力的0.4倍,(g=10m/s2)求: (1)当细线上开始出现张力,圆盘的角速度; (2)当A开始滑动时,圆盘的角速度
思考:在最高点时,什么时候外管壁对小球有压力,什么时候内管壁对小球有支持力什么时候内外管壁都没有压力?小球在最低点的速度v至少多大时,才能使小球在管内做完整的圆周运动?

圆周运动的临界问题

圆周运动的临界问题
√D.汽车能安全转弯的向心加速度不超过7.0 m/s2
汽车转弯时所受的力有重力、弹力、摩擦力,向
心力是由摩擦力提供的,A错误; 汽车转弯的速度为 20 m/s 时,根据 Fn=mvR2,得所需的向心力为 1.0×104 N,没有超过最大静摩擦力,所以汽车不会发生侧滑,B、C 错误; 汽车安全转弯时的最大向心加速度为 am=Fmf=7.0 m/s2,D 正确.
ω越大时,小物体在最高点处受到的摩擦力一定越大
√B.小物体受到的摩擦力可能背离圆心 √C.若小物体与盘面间的动摩擦因数为 23,则 ω 的最大值是 1.0 rad/s
D.若小物体与盘面间的动摩擦因数为 23,则 ω 的最大值是 3 rad/s
当物体在最高点时,也可能受到重力、支持力与 摩擦力三个力的作用,摩擦力的方向可能沿斜面 向上(即背离圆心),也可能沿斜面向下(即指向圆 心),摩擦力的方向沿斜面向上时,ω越大时,小物体在最高点处受 到的摩擦力越小,故A错误,B正确; 当物体转到圆盘的最低点恰好不滑动时,圆盘的角速度最大,此时 小物体受竖直向下的重力、垂直于斜面向上的支持力、沿斜面指向 圆心的摩擦力,由沿斜面的合力提供向心力,支持力FN=mgcos 30°, 摩擦力Ff=μFN=μmgcos 30°,又μmgcos 30°-mgsin 30°=mω2R,解 得ω=1.0 rad/s,故C正确,D错误.
例2 (多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在 水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l.木块与圆盘 间的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从 静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,且最大 静摩擦力等于滑动摩擦力,下列说法正确的是
竖直面内圆周运动的临界问题

高考物理复习圆周运动的临界问题课件

高考物理复习圆周运动的临界问题课件

(2)因为 v2>v0,小球离开圆锥面,对小球受力分析,如图丙 所示,有
FT′sin α=Lmsivn22α FT′cos α=mg 解得 FT′=2mgFT′=-12mg舍去.
方法技巧:临界问题的解题思想: (1)有些题目中有“刚好”“恰好”“正好”等字眼,明显表 明题述的过程中存在着临界点. (2)若题目中有“取值范围”“多长时间”“多大距离”等词 语,表明题述的过程中存在着“起止点”,而这些起止点往往就 是临界点. (3)若题目中有“最大”“最小”“至多”“至少”等字眼, 表明题述的过程中存在着极值,这些极值点也往往是临界点.
答案:A
图 D27
小专题2 圆周运动的临界问题
突破 两类临界问题的分析
考向 1 与摩擦力有关的临界极值问题
物体间恰好不发生相对滑动的临界条件是物体间恰好达到
最大静摩擦力,如果只是摩擦力提供向心力,则有fm=
mv2 r
,静
摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,
如绳两端连物体,其中一个在水平面上做圆周运动时,存在一
角速度.下列说法正确的是( )
A.b 一定比 a 先开始滑动 B.a、b 所受的摩擦力始终相等
C.ω= k2gl是 b 开始滑动的临界角速度
图 Z2-1
D.当 ω= 23klg时,a 所受摩擦力的大小为 kmg
解析:a 与 b 所受的最大摩擦力相等,而 b 需要的向心力 较大,所以 b 先滑动,A 正确;在未滑动之前,a、b 各自受到 的摩擦力等于其向心力,因此 b 受到的摩擦力大于 a 受到的摩
擦力,B 错误;b 处于临界状态时 kmg=mω2·2l,解得 ω=
kg 2l

C 正确;ω= 23klg小于 a 的临界角速度,a 所受摩擦力没有达

圆周运动的临界问题-高考物理复习

圆周运动的临界问题-高考物理复习

力提供向心力,有μmg=mω2lsin θ,解得 ω= 4gl,可得
当 ω≤ 4gl时绳子无张力,ω> 4gl时绳子有张力,故 A、B 正确;圆台对木箱恰好无支持力时,有 mgtan θ=mω2lsin θ,
解得 ω= 53gl ,即当 ω≥ 故 C 正确,D 错误。
53gl 时,圆台对木箱无支持力,
目录
研透核心考点
2.解题技巧 (1)物体通过圆周运动最低点、最高点时,利用合力提供向心力列牛顿第二定律 方程。 (2)物体从某一位置到另一位置的过程中,用动能定理找出两处速度关系。 (3)注意:求对轨道的压力时,转换研究对象,先求物体所受支持力,再根据牛 顿第三定律求出压力。
目录
研透核心考点
2.(2024·北京丰台高三期中)如图5甲所示,小球在竖直放置的光滑圆形管道内做 圆周运动。当小球运动到圆形管道的最高点时,管道对小球的弹力与过最高点 时小球速度的平方的关系如图乙所示(取竖直向下为正方向)。MN为通过圆心的 一条水平线。不计小球半径、管道的粗细,重力加速度为g。下列说法正确的
0.5 kg的小球(可视为质点),用长为0.4 m的轻绳拴着在
竖直平面内做圆周运动,g=10 m/s2,下列说法不正确
的是( D )
A.小球要做完整的圆周运动,在最高点的速度至少为 2 m/s
图3
B.当小球在最高点的速度为 4 m/s 时,轻绳拉力为 15 N
C.若轻绳能承受的最大张力为 45 N,小球的最大速度不能超过 4 2 m/s
目录
研透核心考点
1.(多选)如图2所示,在水平圆台的转轴上的O点固定一根结实的细绳,细绳长度为l, 细绳的一端连接一个小木箱,木箱里坐着一只玩具小熊,此时细绳与转轴间的夹 角为θ=53°,且处于恰好伸直的状态。已知小木箱与玩具小熊的总质量为m,木箱 与水平圆台间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,sin 53°=0.8, cos 53°=0.6,重力加速度为g,不计空气阻力。在可调速电动机的带动下,让水

2025版高考物理一轮复习第四章曲线运动专题强化六圆周运动的临界问题

2025版高考物理一轮复习第四章曲线运动专题强化六圆周运动的临界问题

块经过B点时对轨道的压力大小为12mg.下列说法正确的是( )
A.h=3R B.小物块滑过M点时加速度大小a=5.5g
答案:B
C.减小h,小物块经过B点时对轨道的压力增大
D.减小h,小物块经过M点和B点时对轨道的压力差一定减小
考向2 杆(管)类竖直面内圆周运动 例 5 如图所示,一半径为R=0.2 m、内壁光滑的四分之三圆形管道 竖直固定在墙角处,O点为圆心,P点为最低点,A、B两点处为管口, O、A两点连线沿竖直方向,O、B两点连线沿水平方向.一个质量为 m=0.4 kg的小球从管道的顶部A点水平飞出,恰好又从管口B点射入 管内,重力加速度g取10 m/s2,则小球从A点飞出时及从B点射入管内 经过P点时对管壁的压力大小之差为( ) A.2 N B.18 N C.20 N D.22 N
(1)若要小球离开锥面,则小球的角速度ω0至少为多大? (2)若细线与竖直方向间的夹角为60°,则小球的角速度ω′为多大?
[教你解决问题] 读题审题——完成信息转化
例 2 如图所示,A、B两个小滑块用不可伸长的轻质细绳连接,放置在水 平转台上,mA=0.1 kg,mB=0.2 kg,绳长l=1.5 m,两滑块与转台的动摩 擦因数μ均为0.5(设最大静摩擦力等于滑动摩擦力),转台静止时细绳刚好伸 直但没有弹力,转台从静止开始绕竖直转轴缓慢加速转动(任意一段极短时 间内可认为转台做匀速圆周运动),g取10 m/s2.以下分析正确的是( )
专题强化六 圆周运动的临界问题
1. 掌握水平面内、竖直面内的圆周运动的动力学问题的解题方法. 2.会分析水平面内、竖直面内圆周运动的临界问题.
考点一
考点二
考点一
考点一 水平面内圆周运动的临界问题 1.运动特点 (1)运动轨迹是水平面内的圆. (2)合外力沿水平方向指向圆心,提供向心力,竖直方向合力为零, 物体在水平面内做匀速圆周运动. 2.过程分析 重视过程分析,在水平面内做圆周运动的物体,当转速变化时,物 体的受力可能发生变化,转速继续变化,会出现绳子张紧、绳子突然 断裂、静摩擦力随转速增大而逐渐达到最大值、弹簧弹力大小方向发 生变化等,从而出现临界问题.

高三物理复习:圆周运动中的临界问题

高三物理复习:圆周运动中的临界问题

如图所示,质量为0.5kg的杯子里盛有1kg的水, 用绳子系住水杯在竖直平面内做“水流星”表演,转动 半径为1m,水杯通过最高点的速度为4m/s,求: (1)在最高点时,绳的拉力? (2)在最高点时水对杯底的压力?
质量为m的小球在竖直平面内的圆形轨道内侧运动,若经最高点
不脱离轨道的临界速度为v,则当小球以2v速度经过最高点时,
圆周运动中的临界问题
复习引入
注意:向心力由外力或者某些外力的合力
来提供的
解题思路:让提供向心力的外力等于向心力
难点:受力分析找出是哪些外力用于提
供向心力
竖直平面内做圆周运动的临界问题
轻绳模型
轻杆模型
常见 类型
特点 在最高点时,没有物体支 轻杆对小球既能产生拉
撑,只能产生拉力
力,又能产生支持力
物体做圆周运动时,题干中常常会出 现“最大”“最小”“刚好”“恰好” 等词语,该类问题即为圆周运动的临界 问题
在最高点时速度应 不小于
gr
在最高点时速度应 不小于
gr
在最高点速度应大 于0
在最高点速度应大 于0
竖直面内圆周运动类问题的解题技巧
(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过
最高点的临界条件不同。
(2)确定临界点:抓住绳模型中最高点v≥
及杆模型中
v≥0这两个临界条件。
(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高
竖直平面内的圆周运动
竖直面内圆周运动的临界问题分析 对于物体在竖直面内做的圆周运动是一种
典型的变速曲线运动,该类运动常有临界 问题,并伴有“最大”“最小”“刚好” 等词语,常分析两种模型——轻绳模型和轻 杆模型,分析比较如下:

高中物理圆周运动的临界问题(含答案)

高中物理圆周运动的临界问题(含答案)

1圆周运动的临界问题一 .与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则有F m =m rv 2,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心。

二 与弹力有关的临界极值问题压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等。

【典例1】 (多选)(2014·新课标全国卷Ⅰ,20) 如图1,两个质量均为m 的小木块a 和b ( 可视为质点 )放在水平圆盘上,a 与转轴OO′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g 。

若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是 ( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=lkg2是b 开始滑动的临界角速度 D .当ω=lkg32 时,a 所受摩擦力的大小为kmg 答案 AC解析 木块a 、b 的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力F f m =km g 相同。

它们所需的向心力由F 向=mω2r知,F a < F b ,所以b 一定比a 先开始滑动,A 项正确;a 、b 一起2绕转轴缓慢地转动时,F 摩=mω2r ,r 不同,所受的摩擦力不同,B 项错;b 开始滑动时有kmg =mω2·2l ,其临界角速度为ωb =l kg 2 ,选项C 正确;当ω =lkg32时,a 所受摩擦力大小为F f =mω2 r =32kmg ,选项D 错误【典例2】 如图所示,水平杆固定在竖直杆上,两者互相垂直,水平杆上O 、A 两点连接有两轻绳,两绳的另一端都系在质量为m 的小球上,OA =OB =AB ,现通过转动竖直杆,使水平杆在水平面内做匀速圆周运动,三角形OAB 始终在竖直平面内,若转动过程OB 、AB 两绳始终处于拉直状态,则下列说法正确的是( )A .OB 绳的拉力范围为 0~33mg B .OB 绳的拉力范围为33mg ~332mg C .AB 绳的拉力范围为33mg ~332mg D .AB 绳的拉力范围为0~332mg 答案 B解析 当转动的角速度为零时,OB 绳的拉力最小,AB 绳的拉力最大,这时两者的值相同,设为F 1,则2F 1cos 30°=mg , F 1=33mg ,增大转动的角速度,当AB 绳的拉力刚好等于零时,OB 绳的拉力最大,设这时OB 绳的拉力为F 2,则F 2cos 30°=mg ,F 2 =332mg ,因此OB 绳的拉力范围为33mg ~332mg ,AB 绳的拉力范围为 0~33mg ,B 项正确。

【高考物理】圆周运动的动力学临界问题

【高考物理】圆周运动的动力学临界问题

圆周运动的动力学临界问题圆周运动动力学的临界问题——比如小球过竖直平面内圆周轨道最高点、物块随水平桌面转动而不外滑等,很多同学在最初接触这个问题时,都感觉很难理解,各种情形下的结论也常常混淆,究其根本,问题还是出在对圆周运动的径向动力学的理解不深入,对圆周运动动力学临界问题的类型和分析技巧不熟悉。

一、圆周运动的动力学之供需关系问题圆周运动的临界问题的正确分析,需要从供需匹配角度深入理解圆周运动的径向动力学——供需匹配,物体就做圆周运动,供需不匹配,物体就要离开圆周轨道做离心、近心运动。

我们以一个具体的例子来说明这个问题。

如图2-12-1所示,光滑水平桌面上,用一根细绳拴着一个小球绕O 点做圆周运动,则由圆周运动动力学可知,小球所受径向合力,即绳中拉力满足rv m F 2=。

现若将绳从O 点完全松开,绳中张力变为0,即0=F ,则小球将由于惯性而沿原圆周轨道切线方向做直线运动离开圆周轨道;若并不是完全放松,而只是适当的减小一些绳中拉力,即rv m F 2<,则绳中拉力虽然没能够将小球拉回原来的圆周轨道,但也将小球的轨迹拉弯了——夹在沿切线的直线和原圆周轨道之间,做离心运动;若不仅没松开绳,而且还用更大的力拉绳,即rv m F 2>,则小球将被绳拉到原圆周轨道内侧来,做近心运动。

圆周运动径向动力学的供需匹配问题,可以从上述例子中总结出来:1、径向合力为零:0n =F ,物体沿切线方向做直线运动。

2、径向合力不为零:0n ≠F ,物体偏离切线方向向径向合力一侧做曲线运动。

(1)径向合力小于所需的向心力:r m rv m F 22n ω=<,物体相对原圆周轨道做离心运动;(2)径向合力等于所需的向心力:r m rv m F 22n ω==,物体沿原圆周轨道继续做圆周运动;(3)径向合力大于所需的向心力:r m rv m F 22n ω=>,物体相对原圆周轨道做近心运动。

进一步可以这样理解:物体由于惯性,总有沿着切线做离心运动的趋势;物体转动的线速度、角速度越大,离心运动的趋势越大,越有可能做离心运动;线速度、角速度越小,离心运动的趋势越小,越有可能被径向合力拉近圆心而做近心运动;只有径向合力正好等于所需向心力大小时,径向合力刚好抵消物体的离心运动趋势,物体才能沿固定半径轨道做圆周运动。

圆周运动中的临界问题专题

圆周运动中的临界问题专题

课题28圆周运动中的临界问题一、竖直面内圆周运动的临界问题(1)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况: 特点:绳对小球,轨道对小球只能产生指向圆心的弹力 ① 临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R →v 临界=Rg 〔可理解为恰好转过或恰好转不过的速度〕即此时小球所受重力全部提供向心力注意:如果小球带电,且空间存在电、磁场时,临界条件应是小球重力、电场力和洛伦兹力的合力提供向心力,此时临界速度V 临≠Rg②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力. ③不能过最高点的条件:v <V 临界〔实际上球还没到最高点时就脱离了轨道做斜抛运动〕 [例题1]如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤gR 310,则有关小球能够上升到最大高度〔距离底部〕的说法中正确的是〔 〕 A 、一定可以表示为gv 220B 、可能为3RC 、可能为RD 、可能为35R[延展]汽车过拱形桥时会有限速,也是因为当汽车通过半圆弧顶部时的速度gr v 时,汽车对弧顶的压力F N =0,此时汽车将脱离桥面做平抛运动,因为桥面不能对汽车产生拉力.〔2〕如右图所示,小球过最高点时,轻质杆〔管〕对球产生的弹力情况: 特点:杆与绳不同,杆对球既能产生拉力,也能对球产生支持力. ①当v =0时,F N =mg 〔N 为支持力〕②当 0<v <Rg 时, F N 随v 增大而减小,且mg >F N >0,F N 为支持力. ③当v =Rg 时,F N =0④当v >Rg 时,F N 为拉力,F N 随v 的增大而增大〔此时F N 为拉力,方向指向圆心〕 典例讨论1.圃周运动中临界问题分析,应首先考虑达到临界条件时物体所处的状态,然后分析该状态下物体的受力特点.结合圆周运动的知识,列出相应的动力学方程[例题2]在图中,一粗糙水平圆盘可绕过中心轴OO /旋转,现将轻质弹簧的一端固定在OR圆盘中心,另一端系住一个质量为m 的物块A ,设弹簧劲度系数为k ,弹簧原长为L 。

高考物理 专题 四 圆周运动中的临界问题[配套课件] 大赛获奖精美课件PPT

高考物理 专题 四 圆周运动中的临界问题[配套课件]   大赛获奖精美课件PPT

突破三 竖直平面内的圆周运动与能量的综合 例 3:过山车是游乐场中常见的设施.如图 Z4-6 所示是一
种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆
形轨道组成,B、C、D 分别是三个圆形轨道的最低点,B、C 间距与 C、D 间距相等,半径 R1=2.0 m、R2=1.4 m.一个质量 为 m=1.0 kg 的小球(可视为质点),从轨道的左侧 A 点以 v0= 12.0 m/s 的初速度沿轨道向右运动,A、B 间距 L1=6.0 m.小球 与水平轨道间的动摩擦因数μ=0.2,圆形轨道是光滑的.假设 水平轨道足够长,圆形轨道间不相互重叠.重力加速度取 g= 10 m/s2,计算结果保留小数点后一位数字.试求:
临界
(实际上球还没到最高点
2.轻杆模型
甲 乙 图 Z4-3 如图 Z4-3 所示,球过最高点时,轻质杆对球产生的弹力情 况:
(1)当 v=0 时,FN=mg(FN 为支持力). (2)当 0<v< Rg时,FN 随 v 增大而减小,且 mg>FN>0, FN 为支持力. (3)当 v= Rg时,FN=0. (4)当 v> Rg时,FN 为拉力,FN 随 v 的增大而增大.
专题提升四
圆周运动中的临界问题
突破一 水平面内的匀速圆周运动的临界问题 1.此类问题的解题思路 (1)明确研究对象的受力情况. (2)抓住合力提供向心力这一关键点.
2.注意临界问题,往往都是被动力的临界问题
如:绳子达到最大拉力,恰好达到最大摩擦力等. 解题的关键是:确定临界状态并找出满足临界状态的条件.
图 Z4-5
解:铁块在竖直面内做匀速圆周运动,其向心力是重力 mg 与轮对它的压力 F 的合力.由圆周运动的规律可知:当 m 转到 最低点时 F 最大,当 m 转到最高点时 F 最小.设铁块在最高点 和最低点时,电机对其用力分别为 F1 和 F2,且都指向轴心,根 据牛顿第二定律有 在最高点:mg+F1=mω2r ① 在最低点:F2-mg=mω2r ② 电机对地面的最大压力和最小压力分别出现在铁块 m 位于 最低点和最高点,且压力差的大小为ΔFN=F2+F1 ③ 由①②③式可解得ΔFN=2mω2r 思维提升:通过本例说明在竖直平面内物体做圆周运动通 过最高点和最低点时向心力的来源,以及在最高点的临界条件 的判断和临界问题分析方法.

(完整版)圆周运动中的临界问题

(完整版)圆周运动中的临界问题

圆周运动中的临界问题一、水平面内圆周运动的临界问题关于水平面内匀速圆周运动的临界问题,涉及的是临界速度与临界力的问题,具体来说,主要是与绳的拉力、弹簧的弹力、接触面的弹力和摩擦力有关。

1、与绳的拉力有关的临界问题例1 如图1示,两绳系一质量为kg m 1.0=的小球, 上面绳长m l 2=,两端都拉直时与轴的夹角分别为o30与o45,问球的角速度在什么范围内,两绳始终张紧,当角速度为s rad /3时,上、下两绳拉力分别为多大?2、因静摩擦力存在最值而产生的临界问题 例2 如图2所示,细绳一端系着质量为kg M 6.0= 的物体,静止在水平面上,另一端通过光滑小孔吊着 质量为kg m 3.0=的物体,M 的中心与圆孔距离为m 2.0并知M 与水平面间的最大静摩擦力为N 2,现让此平面 绕中心轴匀速转动,问转动的角速度ω满足什么条件 可让m 处于静止状态。

(2/10s m g =)3、因接触面弹力的有无而产生的临界问题二、竖直平面内圆周运动的临界问题对于物体在竖直平面内做变速圆周运动,中学物理中只研究物体通过最高点和最低点的情况,并且也经常会出现临界状态。

1、轻绳模型过最高点如图所示,用轻绳系一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直平面内光滑轨道内侧做圆周运动过最到点的情况相似,都属于无支撑的类型。

临界条件:假设小球到达最高点时速度为0v ,此时绳子的拉力(轨道的弹力)C图1图2刚好等于零,小球的重力单独提供其做圆周运动的向心力,即rvm mg 20=,gr v =0,式中的0v 是小球过最高点的最小速度,即过最高点的临界速度。

(1)0v v = (刚好到最高点,轻绳无拉力)(2)0v v > (能过最高点,且轻绳产生拉力的作用) (3)0v v < (实际上小球还没有到最高点就已经脱离了轨道) 例4、如图4所示,一根轻绳末端系一个质量为kg m 1=的小球, 绳的长度m l 4.0=, 轻绳能够承受的最大拉力为N F 100max =, 现在最低点给小球一个水平初速度,让小球以轻绳的一端O 为 圆心在竖直平面内做圆周运动,要让小球在竖直平面内做完整的圆周运动且轻绳不断,小球的初速度应满足什么条件?(10m g =2、轻杆模型过最高点如图所示,轻杆末端固定一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直放置的圆形管道内过最到点的情况相似,都属于有支撑的类型。

专题 圆周运动临界问题

专题     圆周运动临界问题

专题 圆周运动的临界问题一.水平转台上与静摩擦力有关的临界问题在转台上做圆周运动的物体,若有静摩擦力参与,当转台的转速变化时,静摩擦力也会随之变化。

关键:(1)找出与最大静摩擦力对应的临界条件 (2)牢记“静摩擦力大小有个范围,方向可以改变1.单个物体做圆周运动【例1】如图所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。

物体和转盘间最大静摩擦力是其下压力的μ倍。

求:⑴当转盘角速度ω1=μg 2r 时,细绳的拉力T 1 ⑵当转盘角速度ω2=3μg 2r时,细绳的拉力T 22.绳子连接两个物体在圆心的一侧做圆周运动【例2】一圆盘可以绕其竖直轴在图所示水平面内转动,A 、B 物体质量均为m ,它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为L 的轻绳连在一起。

若将A 放在距轴心为L 的位置,A 、B 之间连线刚好沿半径方向被拉直,随着圆盘角速度ω的增加,摩擦力或绳子拉力会出现不同的状态,(两物体均看作质点)求:(1)ω1=Lg 3μ时,细绳的拉力T 1和A 所受的摩擦力f 1(2)ω1=Lg 53μ时,细绳的拉力T 2和A 所受的摩擦力f 23.绳子连接两个物体分别在圆心的两侧做圆周运动【例3】(多选)如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m 的两个物体A 和B ,它们分居圆心两侧,与圆心距离分别为R A =r ,R B =2r ,与盘间的动摩擦因数μ相同,当圆盘转速缓慢加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是( )A .此时绳子张力为3μmgB .此时A 所受摩擦力方向沿半径指向圆内C .此时圆盘的角速度为2μg rD .此时烧断绳子,A 仍相对盘静止,B 将做离心运动【针对训练1】如图所示,水平转台上的小物体A 、B 通过轻绳连接,转台静止时绳中无拉力,A 、B 的质量分别为m 、2m ,A 、B 与转台间的动摩擦因数均为μ, A 、B 离转台中心的距离分别为1.5r 、r ,当两物体随转台一起匀速转动时,设最大静摩擦力等于滑动摩擦力,下列说法中正确的是( )A .绳中无拉力时,A 、B 物体受到的摩擦力大小相等B .当绳中有拉力时,转台转动的角速度应大于√μg rC .若转台转动的角速度为√6μg r ,则A 、B 一起相对转台向B 离心的方向滑动D .物体A 所受的摩擦力方向一定指向圆心【针对训练2】(多选)如图所示,圆盘可以绕其竖直轴在水平面内转动。

高二物理-圆周运动中的临界问题

高二物理-圆周运动中的临界问题

高中物理圆周运动中的临界问题编稿老师刘汝发一校黄楠二校杨雪审核王红仙一、考点突破:二、重难点提示:重点:熟练掌握圆周运动的解题规律。

难点:会从向心力的供需关系分析圆周运动的临界问题。

一、圆周运动中的临界问题的分析方法首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系分析找到临界值。

二、圆周运动临界问题(一)竖直面内圆周运动的临界问题1. 绳模型:最高点不能产生支持力(1)小球能过最高点的临界条件:绳子和轨道对小球刚好没有力的作用mg =2vmRv临界Rg(2)小球能过最高点的临界条件:v Rg(当v Rg知识点考纲要求题型说明圆周运动中的临界问题1. 熟练掌握圆周运动的解题规律;2. 会从向心力的供需关系分析圆周运动的临界问题。

选择题计算题高考重点,通过圆周运动考查利用动力学和能量观点解决问题的方法,尤其是电磁场中的圆周运动,涵盖了高中阶段的绝大部分重要知识点,综合性很强,难度较大。

(3)小球不能过最高点的临界条件:v <Rg(实际上球还没有到最高点时,就脱离了轨道)2. “轻杆模型”如图所示为小球在竖直平面内做圆周运动过最高点的情况(注意:轻杆和细线不同,轻杆对小球既能产生拉力,又能产生推力。

)(1)小球能过最高点的临界条件:v = 0,F = mg(F为支持力)(2)当0< v Rg F随v增大而减小,且mg > F > 0(F为支持力)(3)当v =Rg F=0(4)当v Rg F随v增大而增大,且F >0(F为拉力)注意:管壁支撑情况与轻杆一样。

轻杆与细绳不同,轻杆既能对球产生拉力,也能对球产生支持力。

3. “拱桥模型”如图所示,此模型与“轻杆模型”类似,但因物体可以离开支持面,在最高点当物体速度达v=rg时,F N=0,物体将飞离最高点做平抛运动。

若是从半圆顶点飞出,则水平位移为s= 2R。

圆周运动的临界问题

圆周运动的临界问题

圆周运动的临界问题临界问题是高考考查的热点,特别是圆周运动中的临界问题,知识覆盖面广,题型多样,并且与生活实际息息相关,是同学们必须重点掌握的知识.1.圆周运动中的临界问题的分析方法首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值.2.竖直平面内作圆周运动的临界问题(1)绳模型如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点。

①临界条件:绳子或轨道对小球没有力的作用:mg=m v2/R→v临界=Rg(可理解为恰好转过或恰好转不过的速度)②能过最高点的条件:v≥Rg,当v>Rg时,绳对球产生拉力,轨道对球产生压力.③不能过最高点的条件:v<v临界(实际上球还没到最高点时就脱离了轨道)注意:绳对小球只能产生沿绳收缩方向的拉力(2)杆模型如图,球过最高点时,轻质杆(管)对球产生的弹力情况:①当v=0时,N=mg(N为支持力)②当0<v<Rg时,N随v增大而减小,且mg>N>0,N为支持力.③当v=Rg时,N=0④当v>Rg时,N为拉力,N随v的增大而增大(此时N为拉力,方向指向圆心)注意:管壁支撑情况与杆一样。

杆与绳不同,杆对球既能产生拉力,也能对球产生支持力.(3)拱桥模型如图所示,此模型与杆模型类似,但因可以离开支持面,在最高点当物体速度达v=rg 时,F N=0,物体将飞离最高点做平抛运动。

若是从半圆顶点飞出,则水平位移为s= 2R。

例1长度为L=0.5 m的轻质细杆OA,A端有一质量为m=3.0kg的小球,如图所示,小球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是 2.0m/s,g取10m/s2,则此时细杆OA受到()A.6.0N的拉力B.6.0N的压力C.24N的拉力D.24N的压力解析小球在A点的速度大于gL时,杆受到拉力,小于gL时,杆受压力。

v0=gL=10×0.5 m/s= 5 m/s由于v=2.0 m/s< 5 m/s,我们知道过最高点时,球对细杆产生压力。

高三物理 圆周运动的临界条件 知识精讲

高三物理 圆周运动的临界条件 知识精讲

高三物理 圆周运动的临界条件 知识精讲在竖直平面内,圆周运动的临界条件:1. 绳拉小球在竖直平面内的运动,是变速运动,在上端v v 小大,在下端BA 位置v AGN小球受到重力G ,绳的拉力为T ,A 位置的向心力F mg N mg N mv RA =++=2/mg N 重力与运动状态无关,为轨道对物体的弹力,该力的大小与运动状态有关。

N mv R mg A =-2/ (1)当时绳提供弹力向下,是N mv R mg A >>02/由绳的形变而引起的,小球维持圆周运动。

()当时重力提供向心力,202N mv R mg A ==/小球与绳间无相互作用。

()当时除提供向心力外还有余力,302N mv R mg mg A <</必须由绳提供,向上拉力以抵消该余力,这是绳所做不到的,所以,受力大于向心力而下落。

A. 该时v 称为临界速度,是小球刚好越过顶点,作圆周运动速度的最小值。

B. 临界速度与物体质量⋅⋅无关,只取决于竖直平面内,绳长和重力加速度gC. 当v v <临,小球下落,v v ≥临,小球保持⋅⋅圆周运动。

尚未达到最高点,作抛体运动。

在B 位置重力为mg 为切向力,使小球在切向加速,T 提供力作为向心力 T mv R B =2/在C 位置重力为mg ,拉力为T 在一条直线上,合力指向圆心,充当向心力T mg mv R C -=2/TmgvD. 如果在该题中,绳拉球,改为球在单侧内轨道运动,物体做圆周运动情况相同。

物体在绳,单侧轨道上竖直平面内,否则物体能做圆周运动的速度条件为v gR ≥在最高点。

2. 杆带球在竖直平面内作圆周运动,可以做到是匀速圆周运动。

CA 位置N mgv小球受到重力,杆的拉力N ,A 位置的向心力,F mg N =+ N F mg mv R mg A =-=-2/mg 与运动状态无关,N 与运动状态有关。

(1)当N mv R mg >>02,/ 杆提供向下弹力,是由于杆对球拉力,可以做到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[跟进训练] 2.( 多选 )(2017· 河北石家庄质检 ) 如图所 示,长为 3L 的轻杆可绕光滑水平转轴 O 转 动,在杆两端分别固定质量均为 m 的球 A、 B,球 A 距轴 O 的距离为 L。现给系统一定 能量,使杆和球在竖直平面内转动。当球 B 运动到最高点 时,水平转轴 O 对杆的作用力恰好为零,忽略空气阻力, 已知重力加速度为 g,则球 B 在最高点时,下列说法正确 的是( )
[解析]
当小球到达最高点且杆的弹力为零时,重力提
v2 供向心力, 有 mg=m R , 解得 v= gR, 即当速度 v= gR时, 杆所受的弹力为零,故 A 正确;小球通过最高点的最小速度 为零,故 B 错误;小球在最高点,若 v< gR,则有 mg-F v2 =m R ,杆对小球的作用力随着速度的增大而减小,若 v2 v> gR,则有 mg+F=m R ,杆对小球的作用力随着速度增 大而增大,故 C、D 错误。 [答案] A
|竖直平面内圆周运动的临界
问题——轻杆模型
如图所示, 小球固定在轻杆上, 在竖直平面内做圆周运动, 或小球在竖直放置的光滑圆管中运动。该题型的特点是小 题 球到达最高点时杆不但可以对小球有拉力,还可以对小球 型 产生支持力,而光滑圆管不仅可以对小球产生向下的压 简 力,还可以对小球产生向上的支持力。 述
A. 3mg C.3mg
B.2mg D.4mg
解析:选 A 当小球到达最高点时速率为 v, v2 两段线中张力恰好均为零,有 mg=m r ;当小球 到达最高点时速率为 2v,设每段线中张力大小为 2v2 F,作出示意图如图所示,应有 2Fcos 30° +mg=m r ; 解得 F= 3mg,选项 A 正确。
A.球 B 的速度为零 B.球 B 的速度为 2gL C.球 A 的速度为 2gL D.杆对球 B 的弹力方向竖直向下
解析:选 CD 球 B 运动到最高点时,水平转轴 O 对 杆的作用力为零,这说明球 A、B 对杆的作用力是一对平衡 力,由于球 A 所受杆的弹力必竖直向上,故球 B 所受杆的 弹力必竖直向下,且两力大小相等,D 正确;对球 A 有 F -mg=mω2L,对球 B 有 F+mg=mω2· 2L,由以上两式解 得 ω= 2g L ,则球 A 的速度 vA=ωL= 2gL,C 正确;球
A.最小值 4gr C.最小值 3gr
B.最大值 6gr D.最大值 7gr
[解析]
要保证小球能通过环的最高点,在最
v2 0 高点最小速度满足 mg=m r , 对小球从最低点运动 1 2 到最高点的过程,应用机械能守恒得 mv min = 2 1 2 mg· 2r+ mv0,可得小球在最低点瞬时速度的最小 2 值为 5gr,A、C 错误;为了不使环在竖直方向上
Байду номын сангаас
当物体有支撑物作用在竖直面内做圆周运动时, 只要物体速度不为 零,物体就会继续运动而不离开轨道。所以,到达最高点时速度为 零是物体恰能做圆周运动的临界条件。在最高点时,物体受到的弹 方 法 突 破 力有以下几种情况: (1)当 v=0 时,FN=mg(FN 为支持力)。 (2)当 0<v< Rg时,FN 随 v 增大而减小,且 mg>FN>0,FN 为支持 力。 (3)当 v= Rg时,FN=0。 (4)v> Rg时,FN 为拉力,FN 随 v 的增大而增大。
[例 2]
(2017· 泰安新泰一中质检 )一轻杆一端固定
质量为 m 的小球,以另一端 O 为圆心,使小球在竖直 面内做半径为 R 的圆周运动, 如图所示, 则下列说法正 确的是( )
A.小球过最高点时,杆所受到的弹力可以等于零 B.小球过最高点的最小速度是 gR C.小球过最高点时,杆对小球的作用力一定随速 度的增大而增大 D.小球过最高点时,杆对小球的作用力一定随速 度的增大而减小
问题——轻绳模型
如图所示,轻绳拉着小球在竖直平面内做圆周运 动,或者小球在竖直放置的光滑圆弧形轨道内侧 题 型 简 述 运动。该题型的特点是小球到达最高点时没有物 体支撑小球,而轻绳或轨道对小球只能有向下的 拉力或弹力。
小球做圆周运动,只要所受合外力恰好提供其做圆周运动的向 心力,它便能沿着原轨道继续运动,而绳或轨道内侧对小球只 能有向着圆心的拉力或弹力,最小拉力为零。 方 法 突 破 (1)恰能过最高点的临界条件: 绳子或轨道对小球没有力的作用, v2 临界 mg=m R 得 v 临界= Rg。 (2)能过最高点的条件:v≥v 临界,当 v> Rg时,绳对小球产生拉 力,轨道对球产生压力。 (3)不能过最高点的条件:v<v 临界(实际上小球还没到最高点时就 脱离了轨道)。
高考研究(二)
圆周运动的临界问题
圆周运动的临界问题,一般有两类:一类是做圆周 运动的物体,在某些特殊位置上,存在着某一速度值, 小于(或大于)这个速度,物体就不能再继续做圆周运动, 此速度即为临界速度;另一类是因为某种原因导致物体 的受力发生变化,其运动状态随之变化,对应物体出现 相应的临界状态。
|竖直平面内圆周运动的临界
跳起,则在最高点小球有最大速度时,对环的 v2 1 最大压力为 2mg,满足 3mg=m r ,从最低点到最 1 2 1 2 高点由机械能守恒得 mvmax=mg· 2r+ mv1,可得 2 2 小球在最低点瞬时速度的最大值为 7gr,B 错误, D 正确。 [答案] D
[跟进训练] 1.(2017· 忻州一中检测 )如图所示,两段长均为 L 的 轻质线共同系住一个质量为 m 的小球,另一端分别固定 在等高的 A、B 两点,A、B 两点间距也为 L,今使小球 在竖直平面内做圆周运动,当小球到达最高点时速率为 v,两段线中张力恰好均为零,若小球到达最高点时速率 为 2v,则此时每段线中张力大小为( )
[例 1]
(2017· 抚顺模拟)如图所示,竖直环 A 半径为 r,
固定在木板 B 上,木板 B 放在水平地面上,B 的左右两侧各 有一挡板固定在地上,B 不能左右运动,在环的最低点静置 有一小球 C,A、B、C 的质量均为 m。现给小球一水平向右 的瞬时速度 v,小球会在环内侧做圆周运动,为保证小球能 通过环的最高点, 且不会使环在竖直方向上跳起(不计小球与 环之间的摩擦阻力),则瞬时速度 v 必须满足( )
相关文档
最新文档