量子力学--第一章 量子力学产生的历史背景

合集下载

中国量子力学发展史

中国量子力学发展史

中国量子力学发展史
中国量子力学的发展史可以追溯到20世纪初。

在这个时期,许多物理学家为解开经典物理学上空的两朵乌云,付出了巨大的精力。

其中,爱因斯坦就排除了以太的思想,从而为相对论的形成迈出了重要的一步;而德国物理学家普朗克通过黑体辐射的紫外灾变引出了另一个重要的概念——量子。

随后,爱因斯坦在1905年发表了一篇论文来描述光电效应,并大胆地引用了普朗克的能量量子思想,认为电磁波本身就是能量量子组成的,称之为光量子(后面统一简称为光子)。

这篇论文为爱因斯坦赢得了迟到的诺贝尔奖。

从那以后,量子力学的物理含义就在逐步的发展过程中。

整个20世纪10-20年代,以玻尔为首的哥本哈根学派引领着量子力学的发展。

如今,“量子”代表着量子世界中物质客体的总称,它既可以是光子、电子、原子、原子核、基本粒子等微观粒子,它们的共同特征就是必须遵从量子力学的规律。

量子力学-简介

量子力学-简介

0
/ kT
即:
( e 0 / kT 1)

n 0
e
n 0 / kT
1 1 x 1 x 1 e 0 / kT n 0
n

计算分子: n 0 e n 0 / kT ,令y 0 / kT
n 0 n 0 / kT ny n e ne 0 0 n 0 n 0
说明: Planck 成功的关键在于提出了能量子 0 h 的假设,辐 射能量是不连续改变的,从而导致了 E 不同于经典的能量均分 定理的连续分布。这里第一次出现了经典物理中没有的常数 h , 这些都跳出了经典物理的框架, 成为量子物理的开端。 Planck 导 出公式后,曾努力把它纳入经典物理范畴,但未成功。
代入(7) 式得 Planck 公式
8h 3 1 d d 3 h / kT c e 1
(8)
(9)
这个公式与实验符合的很好。
实验结果:频率 d 间的辐射能量密度 d 只与频率
及黑体的绝对温度 T 有关,而与腔的形状及组成物质无关。
3. 讨论:
a. 当辐射频率高时,即当
基础知识
量子的世界、量子力学的诞生、 波函数和薛定谔方程
量子力学与经典力学的本质差别及其起源
漫画:滑雪图
量子力学与经典力学的本质差别及其起源
隧穿效应
量子力学与经典力学的本质差别及其起源
一、普适性的完结
在牛顿物理学中没有任何普适常数。这就是它 主张普适性的原因,就是它为什么能不管对象的尺 度如何而以同一方式被应用的原因:原子、行星和 恒星的运动都服从一个定律。 然而、普适常数的发现标志着一个根本的变化。 把光速用作比较的标准,物理学建立起了低速和接 近光速的高速之间的区别。 普适常数不但通过引入物理尺度(据此,各种 行为都成为性质上有区别的)破坏了宇宙的均匀性, 而且引出了一种客观性的新概念。任何观察者都不 能以高于真空中光速的速度来发射信号。

量子力学史简介

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介姓名:学号:学院:2016年12月27量子力学发展脉络量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。

可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。

而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。

可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。

尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。

本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。

通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。

旧量子理论量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。

在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。

然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。

对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。

随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。

普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。

结构化学 第1章 量子力学基本原理---量子论

结构化学 第1章 量子力学基本原理---量子论

光是一种电磁波
➢1856年,Maxwell建立电磁场理论,预言了电 磁波的存在。 ➢理论计算出电磁波以3×108m/s的速度在真空 中传播,与光速度相同,所以人们认为光也是 电磁波。 ➢1888年,Hertz探测到电磁波。 ➢光作为电磁波的一部分,在理论上和实验上就 完全确定了。
L. Rayleigh(瑞利) 1911年Nobel物理奖
➢R - J 方 程 只 在 波 长 很 大时与实际情况比较符
。实验 -- 维恩 -- 瑞利-金斯
合 , 随 着 λ 减 小 , ρλ 单调增大,与实验结果
呈现巨大分歧。
➢推 论 : 黑 体 的 单 色 辐
射强度将随波长变短而
趋于“无限大”。
光子学说对光电效应的解释
当光照射金属中的电子时,电子吸收光子的能量,
体现为逸出功(W0)和光电子动能(Ek) :
hn
1 mv2 2
W0
n0=W0/h,为金属材料的特征值。
当n>n0时,如果光的强度越大,则单位体积内
通过的光子数目就越多,因而光电流也越大。
W0
W0
W0 ,逸出功, 或称为功函数,F
结构化学 —— 第一章量子力学原理
第一章
I 量子论的形成 新理论的产生
为世人接受的新 观念和新理论
传统观念 和经典理论
不能解释 实验新发现
解释实验且为 其他实验证实

新观念 新假设

结构化学 —— 第一章量子力学原理
经典物理学
1900年以前,物理学的发展处于经典物理学 (classical physics)阶段: 由经典力学,电磁波理论, 统计物理学和热力学等组成。
与此相反,Wien方程只在
--“紫外灾难” 高频区符合。

量子力学时间轴

量子力学时间轴

量子力学时间轴
量子力学时间轴
1. 1900年:物理学家爱因斯坦提出的量子力学,是物理学中描述微观
世界的理论之一。

2. 1905年:爱因斯坦提出“光量子假说”,称电磁波是由光量子组成的。

3. 1913年:德国物理学家霍金斯提出有关原子结构的量子模型。

4. 1924年:爱因斯坦提出量子力学统计概念,揭示物质的统计学特征。

5. 1925年:正卜马提出哥本哈根解释,阐明了量子波动是原子结构的
基础。

6. 1926年:延鲁斯发现量子力学的隐形属性,称为“量子跳跃”。

7. 1927年:贝多提出质量-能量关系,揭示了能量的微观性质。

8. 1928年:布特维拉介绍量子的叠加性,表明量子系统的行为是彼此
叠加的。

9. 1929年:贝多提出量子学的统计解释框架,引入了量子数值的概念。

10. 1935年:和他的协作者马斯尔通过费米定理提出普朗克-费米定律,表明普朗克定律具有复杂的量子力学特性。

11. 1947年:斯特林和保罗提出轨道确定性原理,解释了原子结构在某
些情况下的量子力学性质。

12. 1957年:贝森和博格定义量子计算机与量子力学的统一视角,将量
子力学的概念引入计算机领域。

13. 1964年:量子场论从量子力学中单独分离出来,提出引力和物质在
量子尺度上的联系。

14. 1990年:光量子学把量子力学与光学融合了起来,实现了对光力学
现象的完全量子力学解释。

第一章_量子力学的基础知识

第一章_量子力学的基础知识

m
0
c2
h
c2
(4)光子的动量为 pmh c/ch /
(5)光子与电子碰撞时服从能量守恒和动量守恒定律
1

hν < W 0

hν > W 0
W0
1 m2 2
W0
① 当 h < W0 (ho) 时,光子
没有足够的能量使电子克服 电子的束缚能而成为自由电 子,则不发生光电效应;
② 当 h > W0 (ho) 时,
D
狭缝到底片的距离远大于狭
缝宽度, CP≈AP,
e
sin=OC/AO =/D
x A OC
P y
在p点的动量在x轴的分量就 是在该方向的不确定量
△px=psin=p/D=h/D 而坐标x的不确定量Δx即为 单缝宽度D
△x=D, 所以 △x△px=h
Q A
C O
P
psin
电子单缝衍射实验示意图
考虑二级以上衍射, x px ≥h 1
金属中发射的电子具有 一定的动能,发生光电
流,并随 增加而增加。
1
光电子动能mv 2/2
光子能量: E=hν 光子动量: p=h/λ 光电效应方程: mv2/2 =hν-W
(λ为入射光的波长, W为金属的功函数, m和v为光电子的质量和速度)
斜率为h
光频率ν
1
只有把光看成是由光子组成的光束才能理解光电效 应,而只有把光看成波才能解释衍射和干涉现象。光表 现出波粒二象性,即在一些场合光的行为像粒子,在另 一些场合光的行为像波。粒子在空间定域,而波却不能 定域。光子模型得到的光能是量子化的,波动模型却是 连续的,而不是量子化的。
1
按经典物理学理论

量子力学(曾谨言)

量子力学(曾谨言)



d nx nx h e e dx n 0 n 0 d x 1 x 1 h (1 e ) (1 e ) dx h (e h kT 1)
17
n 0
e
于是,用电动力学和统计力学导出的公式
2 2 E ( , T ) kT (Rayleigh–Jeans) 2 c
13
能量量子化概念对难题的解释
黑体辐射 从能量量子化假设出发,可以推导出 同实验观测极为吻合的黑体辐射公式, 即Planck公式
E ( )
e
c2 / T
c1
3
1
2 3
E ( ) c1 e
3 c2 / T
E ( ) 8kT / c
14
普朗克(Planck)大胆假设:无论是黑体辐射 也好,还是固体中原子振动也好,它们都是以 分立的能量 nh 显示,即能量模式是不连续 的。
23
光的波粒二象性
波粒二象性,又称为波动粒子两重性, 是指物体,小到光子、电子、原子,大 到子弹、足球、地球,都既有波动性, 又有粒子性。 频率为υ的单色光波是由能量为E =hυ 的一个个粒子组成的,这样的粒子被称 为光子,或光量子。 光子的粒子性-光电效应; 光子的波动性-光的衍射和干涉。
24
光的波粒二象性
33
《量子力学》的作用
一般工科:建立概念与启迪思维,重点在 了解。 材料学:重点是建立正确的、系统的、完 整的概念,为后续课程以及将来从事材料 学领域的研究奠定基础。 理科:四大力学之一,应该精通,并作为 日后从事研究的工具。
34
学习《量子力学》时应注意的问题
概念是灵魂-建立起清晰的概念 数学是桥梁-不必过分拘泥于数学推导 结论是收获-铭记结论在材料学中的作用

量子力学完整版

量子力学完整版

2020/12/8
32
《量子力学》的作用
一般工科:建立概念与启迪思维,重点在了解。 材料学:重点是建立正确的、系统的、完整的概念,为后续课程以及将来从事材料学领域的研究
奠定基础。
理科:四大力学之一,应该精通,并作为日后从事研究的工具。
2020/12/8
33
学习《量子力学》时应注意的问题
概念是灵魂-建立起清晰的概念 数学是桥梁-不必过分拘泥于数学推导 结论是收获-铭记结论在材料学中的作用
为什么要学习量子力学和统计物理学?
1960年代,著名微波电子学家Pirls 子力学、统计物理学是高度抽象的科学,不需 要所有的人都懂得这种理论物理科学。
然而,在1990年代,随着高技术科学的发展, 要求我们必须掌握理论物理学,包括量子力学 和统计物理学。例如:微电子器件的集成度越 来越高,组成器件的每一个元件的体积越来越 小。目前,元件的尺寸可以达到nm级。
在 E能E 量范围内d, E
经典的能量分布几率
eEkT dE0eEkT dE(玻尔兹曼几率分布)
所以对于连续分布的辐射平均能量为
E 0 E e Ekd TE 0 e Ekd TE
k(E T e E k0 T 0 e E kd T )E 0 e E kd TE
kT
2020/12/8
C60分子干涉图
2020/12/8
28
4 波粒二象性既不是经典的粒子,也不是经典的波
5 物理意义:概率波与概率幅 概率波(M.Born,1926):物质波描述了 粒子在各处发现的概率。
概率幅:波函数ψ也叫概率幅,概率密度
2
波的叠加是概率幅叠加,而非概率叠加
P 1 2 122 P 1 P 21222
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电效应
固体低温下的比热,
原子的稳定性与线状光谱.
1、黑体辐射(Black Body Radiation)现象
黑体辐射问题所研究的是辐射与周围的物体处于平衡态时 的能量分布。我们知道所有物体都发射出热辐射,它是一定波 长范围内的电磁波。对于外来的热辐射,物体有反射和吸收的 作用。
(1) 黑体的定义:如果一个物体能够全部吸收而不反射投射于其 上的辐射,就称它为绝对黑体,简称为黑体。
于是他们得到黑体辐射平衡分布的公式为
8 2 d 3 kT d c
(3 )
这个公式与 Wien 公式恰好相反,它在低频(长波)时与实验 符合,高频时不符合。即只是在可见光的长波部分,绿、黄、 红部分内,这个公式才能很好的与实验一致,当接近蓝、紫、 紫外光线时,这个公式便告失败。
一.经典物理学的成就
大到天体小到原子分子的运动和 各种电磁现象和光的传播等现象. 这些我们在以前的课程中已经学 习了.
当时物理学家们的世界图样:
物质粒子 + 电磁场 = 世界
物质粒子的运动由经典力学描述
电磁场运动由经典电磁学描述.
带电粒子与电磁场相互作用是 洛仑兹力.
二.经典物理学的困难
19世纪末物理学上空的乌云: 黑体辐射的能量密度随波长的分布.
量子力学
Quantum Mechanics
学习量子力学课程的主要目的是:
⑴ 使学生了解微观世界矛盾的特殊性和微观粒 子的运动规律,初步掌握量子力学的基本原理 和一些重要方法,并初步具有运用这些方法解 决较简单问题的能力。 ⑵ 使学生了解量子力学在现代科学技术中的广 泛应用,深化和扩大在普通物理中学过的有关 内容,为学生以后的物理教学或进一步学习与 提高打下必要的基础。

散射角
h m c2 h Ee p p pe
Ee / c p m c
2 2 e 2 2 2
(5) (6)
(5) 2 / c 2 (6) 2 并利用相对论中能量动量关系式
可得
2 1 2 2 2 2 ( h mc h ) ( p p ) m c 2 c
3、Compton散射
Compton散射曾经被认为是光子概念以及PlankEinstein关系的判定性实验。
早在1912年,C.Sadler 和A.Meshan就发现X射线被 轻原子量的物质散射后,波长有变长的现象,Compton把 这种现象看成X射线的光子与电子碰撞而产生的。成功地 解释了实验结果。
a. Plank-Einstein关系在定量上是正确的 b. 在微观的单个碰撞事件中,动量及能量守恒 定律仍然是成立的(不仅是平均值守恒)
§4.玻尔的原子结构理论
一、原子的线状光谱与稳定性问题
1. 原子的稳定性
1895年Rö ntgen发现X射线
1896年A.H.Bequerrel发现天然放射性
(2) 黑体模型:
一个开有小孔的空腔可以看作为黑体;光线从一小孔进去后 便再也出不来了,它一旦被捕便永无自由,这样我们说,空腔把 进来的辐射能量全部吸收了。
空腔
光谱仪
能量密度
热池 温度T 辐射能量
密度
绝对黑体模型
(3)平衡辐射的性质:当空腔与内部的辐射处于热平衡状态时, 即腔壁维持一定温度时,腔壁辐射同时也吸收能量,当达到平 衡时,单位面积在单位时间内的射、吸相等。且设腔内辐射保 持一定密度且辐射各向同性。
他们的根据是(经典电动力学和统计力学) :
(A) 把 腔 内平衡 辐射视 为 驻波, 计算得 到 单位体 积内 包含 的
2 8 d 频率范围的振动方式数为 d ; 3 c (B)把每一振动方式看成一个一维振子,按经典统计的能均分定
k 为 Boltzman 常数。 理:每一振子平均具有能量为kT ,
( 7)
p h / c, p h / c 则 对于光子,
h 2 p p pp cos cos c
代入式(7),可解出


h 1 2 (1 cos ) mc

( 8)
1 1 h [1 (1 cos )] 2 mc
E h
并根据狭义相对论以及光子以光速C运动的事实, 得出光子的动量P波长λ的关系:
p E / c h / k notice : h 2
康普顿散射的实验规律:
0
450
散射角
900
1、散射线波长的改变量 随散射角 增加而增加。 2、在同一散射角下 相同 , 与散射物 0 质和入射光波长无关。 3、原子量较小的物质,康普顿散射较强。




H∞
图1.2 氢原子光谱(Balmer系)
1 1 ~ R( 2 2 ) 2 n
R 3,4,5
1
R 109677 .581 cm
Balmer公式与观测结果的惊人符合,引起了光谱学家的注 意。紧接着就有不少人对光谱线波长(数)的规律进行了 大量分析,发现,每一种原子都有它特有的一系列光谱项 T(n),而原子发出的光谱线的波数,总可以表成两个光谱 项之差
1898年Curie夫妇发现了放射性元素钚与镭 电子与放射性的发现揭示出:原子不再是物质组成的永 恒不变的最小单位,它们具有复杂的结构,并可相互转化。 原子既然可以放出带负电的β粒子来,那么原子是怎样由带 负电的部分(电子)与带正电的部分结合起来的?这样, 原子的内部结构及其运动规律的问题就提到日程上来了。
利用 c / , c / 上式改写成
h (1 cos ) mc

(9)
0 h 2 (10) c 2.43 10 A (电子的Compton波长) mc
c (1 cos )
c (1 cos )
四、固体比热问题
固体中每个原子在其平衡位置附近作小振动,可以看成是具 有三个自由度的粒子( 振子)。按照经典统计力学,其平均动能与
3 势能均各为 kT ,总能量为 3kT 。 2
因此, 1mol 固体物质的平均热能为 3NkT=3RT(N 为阿伏加德罗常 数,R=Nk 为气体常数),故固体的定容热容量为 C V =3R 5.958 卡/度,此即杜隆—珀替经验定律(1819) 。 但后来实验发现,在极低温度下,固
* 只要频率高于红限,既使光强很弱也有光电流; 频率低于红限时,无论光强再大也没有光电流。 而经典认为有无光电效应不应与频率有关。 * 瞬时性。经典认为光能量分布在波面上,吸收 能量要时间,即需能量的积累过程。
当采用了光量子概念后,光电效应问题迎刃而解。 当光量子射到金属表面时,一个光子的能量可能立即 被一个电子吸收。但只当入射光频率足够大,即每一 个光子的能量足够大时,电子才可能克服脱出功而逸 出金属表面。逸出表面后,电子的动能为:
1 2 mV0 h A 2
A 称为逸出功。只与 金属性质有关。与光 (4) 的频率无关。
当 0 A / h (临界频率)时,电子无法克 服金属表面的引力而从金属中逸出,因而没有光电子发 出。
Einstein还进一步把能量不连续的概念用到固体中 原子的振动上去,成功地解决了固体比热在温度T→0K 是趋于0的现象。这时,P lank的光量子能量不连续性概 念才引起很多人的注意。
d c1 3 e c 2 / T d
(2 )
其中c1 、c2 是经验常数,T 为平衡时的绝对温度。这个公式只在 辐射频率较高(波长较短)时与实验符合,而在低频时与实验显 著不一致。
实验点 维恩
(5)瑞利-金斯公式(J.W.Raleigh-Jeans,英-美)
英国物理学家 Rayleigh 利用经典统计力学和经典电磁理论 于 1900 年推导出一个能量密度分布公式,后由美国物理学家 Jeans 于 1905 年对此作了修正。
(11)
由式(9)可清楚地看出,散射光的波长随角度增 大而增加。理论计算所得公式与实验结果完全符合。
从式(9)可以看出,散射的X射线波长与角度的依 赖关系中包含了Plank常数K。因此,它是经典物理学无 法解释的。 Compton散射实验是对光量子概念的一个直接的强有 力支持,因为在上述推导中,假设了整个光子(而不是 它的一部分)被散射。此外,Compton散射实验还证实:
2.光电效应
光电效应的实验规律及经典理论的困难 饱和光电流强度与 入射光强度成正比。 或者说:单位时间内从 金属表面逸出的光电子 数目与入射光强成正比 I IS 3 2 1 G
U
U0
0
U
相同频率,不同入射光强度
经典理论的困难:
* 经典认为光强越大,饱和电流应该越大,光电子的 初动能也越大。但实验上光电子的初动能仅与频率 有关而与光强无关。
体比热都趋于零(如图) ,这是为什么?此 外若 考 虑 到原 子 由原子 核 和若干 电 子组 成,为什么原子核与电子的这样多的自由 度对固体比热都没贡献?这都是经典理论 所无法解释的。 量子理论就是在解决这些生产实践和科学实验同经典物理
学的矛盾中逐步建立起来的。
§2.普朗克能量子假说
* 辐射物体中包含大量谐振子,它们的能量取分立值 * 存在着能量的最小单元(能量子=h) * 振子只能一份一份地按不连续方式辐射或吸收能量
2. 原子的线状光谱及其规律
最早的光谱分析始于牛顿(17世纪),但直到19世 纪中叶,人们把它应用与生产后才得到迅速发展。 由于光谱分析积累了相当丰富的资料,不少人对它 们进行了整理与分析。1885年,Balmer发现,氢原子光 谱线的波数具有下列规律
6562.8Å 4861.3Å 4340.5Å 4101.7Å
135
Compton认为X射线的光子与电子碰撞而发生 散射。假设在碰撞过程中能量与动量是守恒的, 由于反冲,电子带走一部分能量与动量,因而散 射出去的光子的能量与动量都相应减小,即 X射线 频率变小而波长增大。
相关文档
最新文档