圆中常见辅助线的做法教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O

C

B

A

O

C

B

A

O

C

B

A

学生姓名: 周俊瑶 授课时间: 2011-10-6 年级: 九年级 教师姓名: 范一龙

课 题

圆中常见辅助线的做法

教学内容

1. 遇到弦时(解决有关弦的问题时)

常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。 作用:①利用垂径定理;

②利用圆心角及其所对的弧、弦和弦心距之间的关系;

③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。

【例1】如图,已知△ABC 内接于⊙O ,∠A=45°,BC=2,求⊙O 的面积。

【例2】如图,⊙O 的直径为10,弦AB =8,P 是弦AB 上一个动点,

那么OP 的长的取值范围是_________.

2. 遇到有直径时

常常添加(画)直径所对的圆周角。

作用:利用圆周角的性质,得到直角或直角三角形。 【例3】如图,AB 是⊙O 的直径,AB=4,弦BC=2,

∠B=

3. 遇到90°的圆周角时

常常连结两条弦没有公共点的另一端点。 作用:利用圆周角的性质,可得到直径。

【例4】如图,AB 、AC 是⊙O 的的两条弦,∠BAC=90°,

AB=6,AC=8,⊙O的半径是

4.遇到弦时

常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。

作用:①可得等腰三角形;

②据圆周角的性质可得相等的圆周角。

【例5】如图,弦AB的长等于⊙O的半径,点C在弧AMB上,

则∠C的度数是________.

5.遇到有切线时

(1)常常添加过切点的半径(连结圆心和切点)

作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形。

【例6】如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB•的延长线于D,求证:AC=CD.

(2)常常添加连结圆上一点和切点

作用:可构成弦切角,从而利用弦切角定理。

6.遇到证明某一直线是圆的切线时

(1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段,再证垂足到圆心的距离等于半径。

【例7】如图所示,已知AB是⊙O的直径,AC⊥L于C,BD⊥L于D,且AC+BD=AB。

求证:直线L与⊙O相切。

(2)若直线过圆上的某一点,则连结这点和圆心(即作半径),再证其与直线垂直。

【例8】如图,△ABO 中,OA= OB ,以O 为圆心的圆经过AB 中点C ,且分别交OA 、

OB 于

点E 、F .

求证:AB 是⊙O 切线;

7. 遇到两相交切线时(切线长)

常常连结切点和圆心、连结圆心和圆外的一点、连结两切点。

作用:据切线长及其它性质,可得到:①角、线段的等量关系;②垂直关系;③

全等、

相似三角形。

【例9】如图,P 是⊙O 外一点,PA 、PB 分别和⊙O 切于A 、B ,C 是弧AB 上

任意一点,过C 作⊙O 的切线分别交PA 、PB 于D 、E ,若△PDE 的周 长为12,则PA 长为______________

8. 遇到三角形的内切圆时

连结内心到各三角形顶点,或过内心作三角形各边的垂线段。 作用:利用内心的性质,可得:

① 内心到三角形三个顶点的连线是三角形的角平分线; ② 内心到三角形三条边的距离相等。

【例10】如图,△ABC 中,∠A=45°,I 是内心,则∠BIC=

【例11】如图,Rt △ABC 中,AC=8,BC=6,∠C=90°,⊙I 分别切AC ,BC ,AB 于D ,E ,F ,求Rt △ABC 的内

心I 与外心O 之间的距离.

A

B C D

E

P

O

9. 遇到三角形的外接圆时,连结外心和各顶点

作用:外心到三角形各顶点的距离相等。

圆的辅助线做法口诀 弦与弦心距,密切紧相连. 直径对直角,圆心作半径. 已知有两圆,常画连心线. 遇到相交圆,连接公共弦. 遇到相切圆,作条公切线. “有点连圆心,无点作垂线.” 切线证明法,规律记心间.

练习

一、证明解答题

1.已知:P 是⊙O 外一点,PB ,PD 分别交⊙O 于A 、B 和C 、D ,且AB=CD. 求证:PO 平分∠BPD .

2.如图,ΔABC 中,∠C=90°,圆O 分别与AC 、BC 相切于M 、N ,点O 在AB 上,如果AO=15㎝,BO=10㎝,求圆O 的半径.

3.已知:□ABCD 的对角线AC 、BD 交于O 点,BC 切⊙O 于E 点.求证:AD 也和⊙O 相切.

A

B

C

D

O

E

4.如图,学校A 附近有一公路MN ,一拖拉机从P 点出发向PN 方向行驶,已知∠NPA=30°,AP=160米,假使拖拉机

行使时,A 周围100米以内受到噪音影响,问:当拖拉机向PN 方向行驶时,学校是否会受到噪音影响?请说明理由.如果

拖拉机速度为18千米∕小时,则受噪音影响的时间是多少秒?

5.如图,A 是半径为1的圆O 外的一点,OA=2,AB 是圆O 的切线,B 是切点,弦BC ∥OA ,连结AC ,求阴影部分的面积.

A

C

B

M N o

F

E

D

O

C

B

A

相关文档
最新文档