线性代数第2讲
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法2 分别计算出排列中每个元素前面比它大的数码 个数之和,即算出排列中每个元素的逆序数, 这每个元素的逆序数之总和即为所求排列的逆 序数.
例1 求排列32514的逆序数. 解 在排列32514中,
3排在首位,逆序数为0;
2的前面比2大的数只有一个3,故逆序数为1;
5的前面没有比5大的数,其逆序数为0; 1的前面比1大的数有3个,故逆序数为3; 4的前面比4大的数有1个,故逆序数为1;
解 n1
nn 1n 2 321 n 2
t n 1 n 2 2 1 nn 1,
2 当 n 4k,4k 1 时为偶排列;
当 n 4k 2,4k 3 时为奇排列.
3 2k12k 122k 232k 3 k 1k
解 2k 1 2k 1 2 2k 2 3 2k 3 k 1 k
01 1 2 2
k
t 0 1 1 2 2 k 1 k 1 k
21 k 1k 1 k k 2 ,
2
当 k 为偶数时,排列为偶排列,
当 k 为奇数时,排列为奇排列.
定理1.1 一次对换改变排列的奇偶性。
推论 任何一个n元排列都可通过若干次 对换变成标准排列,且所需对换次数与该 排列的逆序数有着相同的奇偶性。
排列的逆序数
我们规定各元素之间有一个标准次序, n 个 不同的自然数,规定由小到大为标准次序.
定义 在一个排列 i1i2 it is in 中,若数
it is 则称这两个数组成一个逆序.
例如 排列32514 中, 逆序
32514
逆序 逆序
定义 一个排列中所有逆序的总数称为此排列的 逆序数. 例如 排列32514 中,
第二讲 n阶行列式的定义
• 概念的引入 • 全排列及其逆序数 • n阶行列式的定义 • 小结
一、概念的引入
引例 用1、2、3三个数字,可以组成多少个没 有重复数字的三位数?
解
123
百位 1 十位 1 2 个位 1 2 3
2
3
3种放法
13
2种放法
1种放法
共有 3 2 1 6 种放法.
二、全排列及其逆序数
32514 01 031 于是排列32514的逆序数为 t 0 1 0 3 1 5.
例2 计算下列排列的逆序数,并讨论它们的奇 偶性.
1 217986354
解
217986354
0 10 0 1 3 4 4 5
t 5 4 4310010
18
此排列为偶排列.
2 nn 1n 2 321
(3)每项的正负号都取决于位于不同行不同列 的三个元素的下标排列.
例如 a a a 13 21 32 列标排列的逆序数为
t312 1 1 2, 偶排列 正号
a a a 11 23 32
列标排列的逆序数为
t132 1 0 1, 奇排列 负号,
a11 a12 a13
a21 a22 a23 (1)t a1 p1a2 p2 a3 p3 .
2、 n 阶行列式是 n! 项的代数和;
3、 n 阶行列式的每项都是位于不同行、不同 列 n 个元素的乘积;
4、 一阶行列式 a a 不要与绝对值记号相混淆;
5、 a1 p1a2 p2 anpn 的符号为 1t .
6、n阶行列式也可定义为
D
1 t a p11a p2 2 a pnn
若 p1 4 a1 p1 0, 所以 p1只能等于 4 ,
从而这个项为零,同理可得 p2 3, p3 2, p4 1
即行列式中不为零的项为a14a23a32a41 .
0001
0 0
0 3
2 0
0 0
1t 1 4321 2 3 4
24.
4000
例2 计算上三角行列式
a11 a12 a1n 0 a22 a2n 0 0 ann
问题 把 n 个不同的元素排成一列,共有几种不 同的排法?
定义 把 n个不同的元素排成一列,叫做这 n 个
元素的全排列(或排列).
n 个不同的元素的所有排列的种数,通常
用 Pn表示. 由引例 P3 3 2 1 6. 同理 Pn n (n 1) (n 2) 3 2 1 n!.
a31 a32 a33
定义 由 n2 个数组成的n 阶行列式等于所有
取自不同行不同列的n 个元素的乘积
的代数和
(1)t a1 p1a2 p2 anpn .
a11 a12 a1n
记作 D a21 a22 a2n
wk.baidu.com
an1 an2 ann 简记作 det(aij ). 数 aij 称为行列式det(aij ) 的元素.
0 01
32514
1 逆序数为3
故此排列的逆序数为3+1+0+1+0=5.
排列的奇偶性
逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列.
计算排列逆序数的方法
方法1
分别计算出排在1,2, ,n 1,n前面比它大的数 码之和即分别算出 1,2, ,n 1,n 这 n个元素
的逆序数,这个元素的逆序数的总和即为所求 排列的逆序数.
其中 t 为行标排列 p1 p2 pn的逆序数.
或者 D
1
a a t p1q1 p2q2
a pnqn
其中 p1 p2 pn , q1q2 qn是两个 n阶排列,t 为行
标排列逆序数与列标排列逆序数的和.
例1 计算对角行列式
0001 0020 0300 4000
解 分析 展开式中项的一般形式是 a a a a 1 p1 2 p2 3 p3 4 p4
其中 p1 p2 pn 为自然数1,2, ,n 的一个排列, t 为这个排列的逆序数.
a11 a12 a1n D a21 a22 a2n
an1 an2 ann
1 t p1 p2 pn a1 p1a2 p2 anpn
p1 p2 pn
说明 1、行列式是一种特定的算式,它是根据求解方 程个数和未知量个数相同的一次方程组的需要而 定义的;
三、 n阶行列式的定义
三阶行列式
a11 a12 a13 D a21 a22 a23 a11a22a33 a12a23a31 a13a21a32
a31 a32 a33 a13a22a31 a11a23a32 a12a21a33
说明
(1)三阶行列式共有 6 项,即 3! 项.
(2)每项都是位于不同行不同列的三个元素的 乘积.