概率统计应用题(1)说课材料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率统计应用题(1)

概率统计应用题(1)

1.抽签问题:有5个签,其中有两个签内写“有”字,三个签内写“无”

字,五个人去抽,一人抽一个签,不放回。问:

(1)第一个人抽到“有”字签的概率是多少?

(2)第二个人抽到“有”字签的概率是多少?

2.抽样问题:一批商品50件作为处理品出售,其中二等品45件,三等品5件,现从中任取两件,求:

(1)这两件都是二等品的概率,

(2)这两件中二等品,三等品各有一件的概率。

3.历史名题:六个人的一个房间没有同一天生日的概率是多少?而六个人的一个房间有同一天生日的概率?

4.福彩中奖问题:报载福彩第2001 053期开出“36选7”的中奖号码为03,04,06,08,18,22,31,特别号码为28,共8个无重复的号码,投注人在01至36等36个号码中任选7个无重复的号码,其获奖规则为:投注人选定的7个号码不论次序,如果

(1)都是中奖号码,获一等奖;

(2)其中有6个是中奖号码,1个是特别号码,获二等奖;

(3)其中有6个是中奖号码,获三等奖;

(4)其中有5个是中奖号码,1个是特别号码,获四等奖;

(5)其中有5个是中奖号码,或者有4个是中奖号码,1个是特别号码,获五等奖

(6)其中有4个是中奖号码,或者有3个是中奖号码,1个是特别号码,获六等奖;

(7)其中有4个是中奖号码,获七等奖。

试计算投注人买一张彩票中上述一等奖至七等奖的概率。

5.一语中的:数学课, 老师正讲授概率的计算方法。老师说:“如果我到投注站下注时, 买了一注三十六选七的彩票, 那么, 我中头奖的概率是多少?”所有的同学都在努力计算, 全班成绩最差的学

生却站起来蛮有自信地回答:“中了的话, 概率是百分之百; 不中的话, 概率是零。”

问题:1. 众同学计算的是什么概率?

2. 成绩最差的学生回答的是什么概率?

3. 他回答的话对否?

4. 他回答的问题对否?

6.机器维修:工厂有四台机器,如果在一小时内这些机器发生故障的概率第一台是0.21,第二台是0.21,第三台是0.20,第四台是0.19。假设各台机器是否发生故障相互之间没有影响(独

立),

(1)设一人同时照管此四台机器,计算在一小时内,这四台机器都

不发生故障的概率;

(2)设一台机器发生故障需要且只需要一人修理,问机器发生故

障需要等待修理的概率是多少?

(3)问至少需配备多少工人,才能保证当机器发生故障时等待修

理的概率小于0.1?

7.决策问题:肥肥总经理有三位顾问,每位顾问提出正确意见的概率都是0.9,现为某事可行与否而分别征求各顾问的意见,决策原则为少数服从多数。试问肥肥作出正确决策的概率是多少?

8.降低概率法:阿以战争时, 常有美国飞机被放炸弹, 有个美国人常坐飞机, 就做了一个统计,发现飞机上有一个炸弹的概率是万分之一。他就很害怕地问他数学系的朋友:“如何能让这概率降低一点?”朋友说:“很简单, 只要你带一颗炸弹上去就好了, 因为飞机上同时有两颗炸弹的概率是一亿分之一。”

9.寿保问题:在保险公司里有2500个同一年龄和同等社会地位的人参加了人寿保险。一年里每一个人死亡的概率为0.002,每一个参加人寿保险人在一月一日付12元保险费,而在死亡时家属可在公司里领回2000元。问:

(1)保险公司亏本(记为A)的概率是多少?

(2)保险公司获利不少于10000元(记为B)的概率是多少?

10 赌博问题1:小布袋内装有质地一样的三个球(二白一黑),从

中有放回地连摸三次,每次摸一个球,若摸到三个黑球得9元,若摸到二个黑球得6元,若摸到一个黑球得3元,若摸到0个黑球得0 元。交4元参赌一次。问该赌博是否公平?

11赌博问题2:三个袋中只有一个袋内装有金戒指(价值一百万元),你可任抽一个袋后,剩下的两个袋中有人将其中一个没装戒指的袋拿走,问你愿意不愿意将你抽的一个袋与剩下的一个袋交换?

12 分赌本问题:17世纪中叶一位赌徒向法国数学家帕斯卡提出一

个使他苦恼的分赌本问题。甲乙两位赌徒相约, 用掷硬币进行赌博, 谁先赢三次就得到全部赌本100法郎。当甲赢了二次、乙只赢一次时, 两人都不愿意再赌下去了, 问赌本应如何分配呢?

13 名画拍卖:在一次拍卖中,两人竞买一幅名画,拍卖以暗标形式

进行,并以最高价成交,设两人的出价相互独立且均服从

[1,3](单位:万元)上的均匀分布,求这一幅名画的期望成交

价。

14 验血建模:1000人中有10人患有某种疾病,通过验血找到这10

个人,如何令验血次数最少?

15 “百万富翁”节目:在香港“百万富翁”电视节目中,要求参加游

戏的幸运者回答15个问题。答错一题可取后一级的最高奖金,游戏结束;拒答一题可取后一题的奖金,游戏结束;答对15题得奖金100万元,游戏结束。每一题目答对得奖金数目如下表所示,试问该节目演播一晚的平均投资额为多少?

注:其中0、0.8、6分别为上一级答错问题的保底奖金。

16 电梯问题:R个人在一楼进入电梯,楼上有n层,设每一个乘客在

任何一层出电梯的概率相同,试求直到电梯中的乘客出空为止时,电梯需停次数的数学期望。

相关文档
最新文档