(完整版)解直角三角形的复习课教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形的复习课教案(1)
执教者:上海市园南中学姚春花教学目标:掌握直角三角形的基本方法,能灵活运用锐角三角比解直角三角形。
并在解题过程中渗透化归方程等数学思想。通过习题的变式,让学生感悟图
形间的联系,以及知识的本质。通过一题多解,培养学生的发散思维。
教学重点与难点:寻找合适的方法灵活求解直角三角形。
教学过程:
一、回顾与思考
1、在Rt^ABC 中,/ C=90°, b=2, c=2 2 ,则/B= __________ 度;a= ____
2、在Rt A ABC 中,/ C=90°,Z A=30°, AB=3 贝U AC= _______ ; Z B= ___ 度
3
3、在Rt A ABC 中,Z B=90°, sin A=—,a=3,贝U c= _____ ; b= ____
5
4、在Rt A ABC 中,Z A=60° Z B=75°, AB=8 贝U AC= ________
B B
1、解一个直角三角形要具备什么样的条件?
生:除直角外,已知三角形的两个元素(其中至少有一个条件与边有关),才能解这个直角三角形。
2、解直角三角形运用到哪些定理或定义?(依据)
①勾股定理
②锐角三角比
③两锐角互余
(以上四题均给出图形,教师根据学生的回答,让学生回顾知识)
归纳:解直角三角形首先要根据题目给出图形,其次关键在于正确选用只含有一个未知数的三角比的式子。
3、你能归纳出解一般三角形的思路吗?
构造有效的直角三角形二、小试牛刀
1、已知在Rt A ABC 中,Z ACB=90
3
AB=10, tanA ,求AC 的长
4
,CD是斜边AB上的高,
C
D
归纳:常用解法:
① 寻找Rt A (根据三角比)
② 转化角(等角的同名三角比相等)
③ 设元(列方程求解)
2、已知,如图,在△ ABC 中,/ A=30°, F 为 AC 上一点,且 AF : FC 4:1, EF 丄AB ,E 为垂足,联结EC ,求tan /CEB 的值
归纳: 观察所求线段是否在直角三角形中, 在哪一个直
角三角形中,然后再思考解题方 法。若它不在直角三角形中,则需要如何添加辅助线构造直角三角形, 然后再逐 步求出结果。
、拓展探究
3
如图,已知在 Rt A ABC 中,/ C=90°,AC=8,tanA ,四边形DEFG 是厶 4
归纳:所求线段可直接从解这个直角三角形求得,则只需要求有关元素;若不能 直接求解,则要分析图形中角、边的相互联系,通过找等量关系列方程求解。 本题的关键是选择合理地设元。
变式二:如果把上题中的正方形改为一个内角为 ABC 的内接正方形,求 ED 的长
变式一:如果把上题中的正方形改为矩形,且使
45°的菱形,求菱形的边长
F
G D
四、归纳小结
1、今天的学习中我最大的收获是什么?
2、今天的学习我还有什么地方存在疑惑?
五、布置作业:
1、练习册P45/1、2,P47/7、8
2、补充思考题
在Rt A ABC 中,/ ACB=90°, AB=5, sin CAB - , D 是斜边AB 上一点,过点5
A作AE丄CD,垂足为E, AE交直线BC于点F.
1
(1) 当tan BCD -时,求线段BF的长;
(2) 当点F在边BC上时,设AD x,BF y,求y关于x的函数解析式, 及其定义域;
5 C
(3) 当BF -时,求线段AD的长. 八、
4 /V K-