鸡兔同笼(画图法)
小学数学“鸡兔同笼”例题13种讲解方法
小学数学“鸡兔同笼”例题13种讲解方法题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,球鸡和兔子各有多少只?(请用尽量多的方法解答)『方法一:人见人爱的列表法』如果二年级小朋友做这道题,可以用列表法!直观、易理解,还不容易出错~好啦,我们来看一下!根据表格,我们可以看出,鸡为9只,兔子为5只。
我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些哦!『方法二:最快乐的画图法』画图可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。
图片14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。
图片『方法三:最酷的金鸡独立法』分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。
鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。
『方法四:最逗的吹哨法』分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。
这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。
(惊现跑男中包贝尔的抬脚法有木有!)『方法五:最常用的假设法』分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。
小升初复习:知识点19鸡兔同笼问题
第十九节:典型应用题(四)鸡兔同笼问题列表法和画图法【例1】鸡兔同笼,有10个头,26条腿,笑笑用取中列表法在下面填了一次就找出答案了。
你怎么样使用表格法,求出鸡、兔各多少只呢?请解答。
鸡的只数兔的只数腿的总条数⨯+⨯=55525430思路引导一只鸡有2条腿,一只兔子4条腿。
已知鸡和兔子一共有10只,根据“鸡的只数×2+兔的只数×4=腿的总条数”用列表法计算。
表中已经列出腿的总条数是30条,比26条多4条。
把一只鸡当作兔子,腿数就多算了2条。
4÷2=2(只),则鸡的只数需要加上2,兔的只数减去2,这样腿的总条数就是26条。
正确解答:鸡的只数兔的只数腿的总条数⨯+⨯=55525430737×2+3×4=26答:鸡有7只,兔有3只。
本题考查鸡兔同笼问题。
要理解“把一只鸡当作兔子,腿数就多算了2条”,从而得出多算的4条腿是把2只鸡当作兔来算。
【变式1】(2021五下·浙江丽水)1. 五年级1班48名同学去公园划船,每条大船限坐6人,每条小船限坐4人,他们一共租了10条船,每条船都坐满。
大船租了几条?小船租了几条?(用列表法解决)总人数大船小船【例2】鸡、兔关在同一笼子里,共有10个头,28条腿,笼里有几只鸡几只兔?(用画图法)我们用“○”表示头,画10个“○”;用“|”表示腿,鸡有两条腿,兔子有四条腿,鸡的腿数比兔子的少。
先全画成鸡:从图中可以看出,10只鸡只有20条腿,而条件说“共有28条腿”,显然少了28﹣20﹦8(条)腿,这样,在鸡图上一只加两条腿,把它变成兔子,8条腿添改4次即可。
正确解答:由图可知,有6只鸡,4只兔。
答:笼里有6只鸡,4只兔。
数据较小时,可以用画图法解答,画图时一定要注意结合题意,及时调整。
【变式2】(2022六下·山西临汾)2. 一辆自行车有2个轮子,一辆三轮车有3个轮子.车棚里放着自行车和三轮车共10辆,数数车轮共有26个.问自行车几辆,三轮车几辆?假设法【例3】鸡兔同关在一只笼里,共48个头,100只脚。
画图法巧解鸡兔同笼问题(优.选)
画图法巧解鸡兔同笼问题【专题解析】小朋友们在解题时,会遇到一些较难的题目,这时可用画图的方法把题目中的条件画出来再思考,往往会容易得多,你不妨试一试。
在有些数学题中,数量之间的关系不容易看出来。
而画图却能比较清楚地显示出来,小朋友们一定要学会这种帮助解题的好方法——画图示意法,这样能提高大家的动手能力和分析能力。
二、综合讲解:【例题1】鸡、兔关在同一笼子里,共有10个头,28条腿,笼里有几只鸡?几只兔?【思路导航】我们用“○”表示头,画10个“○”;用“|”表示腿,鸡有两条腿,兔子有四条腿,鸡的腿数比兔子的少。
先全画成鸡:从图中可以看出,10只鸡只有20条腿,而条件说“共有28条腿”,显然少了28﹣20﹦8(条)腿,这样,在鸡图上一只加两条腿,把它变成兔子,8条腿添改4次即可。
答:笼里有4只兔,有6只鸡。
举一反三1、鸡兔同笼,共有10个头,30条腿,有几只鸡?几只兔?2、鸡兔同笼,共有14个头,38条腿,有几只鸡?几只兔?【例题3】一只蛐蛐6条腿,一只蜘蛛8条腿。
有蛐蛐和蜘蛛共10只,共68蛐蛐和蜘蛛各有多少只?【思路导航】可以用图来帮助分析。
用“○”表示头,但由于蛐蛐和蜘蛛的腿比较多,画“|”不方便,我们就用数字表示,写在头的下面。
先把它们看成是腿较少的动物——蛐蛐。
6 6 6 6 6 6 6 6 6 6从图中可以看出,10只蛐蛐共有60条腿,比已知条件少了68-60=8(条)腿。
而一只蜘蛛比一只蛐蛐多2条腿,8条腿只需改4只蛐蛐就可以了。
6 6 6 6 6 6 6 6 6 62 2 2 2答:有6只蛐蛐,4只蜘蛛。
举一反三1、蛐蛐和蜘蛛共10只,74条腿,蛐蛐和蜘蛛各有几只?2、蛐蛐和蜘蛛共12只,82条腿,蛐蛐和蜘蛛各有几只?【例题3】一辆自行车有2个轮子,一辆三轮车有3个轮子。
车棚里放着自行车和三轮车共8辆,共20个轮子。
自行车和三轮车各有多少辆?【思路导航】根据以上方法,这题同样可画图示意。
鸡兔同笼题的解法
鸡兔同笼题的解法现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,聪明的小朋友,你能算出鸡和兔子各有多少只吗?1.最快乐“画图法”【分析】画图法也是低年级学生很好接受的一种方法,可以让数学变得形象化,有助于创造力的培养。
假设14只全部是鸡,先把鸡画好。
这样就有14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。
2.金鸡独立法【分析】让每只鸡都一只脚站立,每只兔都用两只后脚站立,那么地上的总脚数是原来的一半,即19只脚。
鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下的就是兔的头数19-14=5只,鸡有14-5=9只。
3.最逗“吹哨法”【分析】假设及和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。
这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。
4.特异功能法【分析】鸡有2条腿,比兔子少2条,这不公平,但是鸡有2只翅膀,兔子却没有。
假设鸡有特异功能,把两只翅膀变成2条腿,那么鸡也有4条腿,此时腿的总数是14×4=56条,但实际上只有38条,为什么?因为我们把鸡的翅膀当作腿来算,所以鸡的翅膀有56-38=18只,鸡有18÷2=9只,兔就是14-9=5只。
5.最坑“耍兔法”【分析】喊口令:“兔子,耍酷!”此时兔子们都把两只前脚高高抬起,两只后脚着地,呈酷酷的姿态,此时鸡兔都是两只脚着地。
在地上脚的总数是14×2=28只,而原来有38只脚,多出38-28=10只。
为什么会多呢?因为兔子们把它们的2只前脚抬了起来,所以兔的只数是10÷2=5只,鸡则是14-5=9只。
鸡兔同笼画图法ppt课件.ppt
明明有5元和2元的人民币共7张, 共23元,那5元有几张?
7×2=14(元) 23-14=9(元)
zhì
今有雉兔同笼,上有三十五头,
下有九十四足,问雉兔各几何?
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
意思是:
笼子里有若干只鸡和兔.从上面 数,有35个头,从下面数,有94只脚. 鸡和兔各有几只?
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
鸡
兔 有5只
鸡 有3只
如果全是鸡,一共有多少条腿?
8×2=16(条)
其实是有几条腿呢?
26条
少了几条腿呢? 那就要添上这10条腿。
26-16=10(条)
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
例2
笼子里有若干只鹤和龟。从上 面数,有10个头,从下面数,有28条腿. 鹤和龟各有几只?
鸡兔同笼 画图法
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
例1
笼子里有若干只鸡和兔.从上面 数,有8个头,从下面数,有26条腿.鸡 和兔各有几只?
鸡
兔
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
画图法解鸡兔同笼
画图法解鸡兔同笼一、教学目标1、掌握假设法解鸡兔同笼已知“头和”与“腿和”求各自只数。
2、掌握一系列“鸡兔同笼”同类的变形题。
3、建立假设法思想并养成画图的良好习惯。
4、锻炼从题目中挖掘隐藏信息的能力。
二、鸡兔同笼画图流程1、假设:全是鸡。
2、比较:算出腿数差。
3、添腿(一只鸡加两条腿变成兔)4、检查。
三、题目讲解1、鸡兔同笼大闯关问题1:笼子里有9只鸡,那么一共有()条腿。
问题2:笼子里有8只兔,那么一共有()条腿问题3:笼子里有6只鸡和兔,那么最少有()条腿,最多有()条腿,还有可能是()条腿。
问题4 :笼子有鸡和兔,从上面数共有7个头,从下面数共有20条腿。
那么鸡有()只,兔有()只。
例题1:爷爷在一个笼子里养着鸡和兔,从上面数共有5个头,从下面数共有14条腿,鸡和兔各有多少只?练习题1:笼子里有鸡和兔,数数头有8个,数数腿有22条,笼子里费别有多少只鸡和兔?例题2:唐老鸭带着家人来到青青草原度假,草原上有小黄鸭和大黄狗一共是10只,共有34条腿,小黄鸭和大黄狗各有多少只?练习2:三脚猫和四脚蛇共有7只,总共有24条腿,三脚猫和四脚蛇各有多少只?例题3:停车场里有自行车和三轮车一共有10辆,其中每辆自行车有2个轮子,每辆三轮车有3个轮子,所有自行车和三轮车一共有28个轮子,问:自行车、三轮车各有多少辆?练习3:商店里有独轮车和自行车共8辆,一共有14个轮子,请问独轮车和自行车各有多少辆?例题4:有34名学生去划船,共租7条船,已知每条大船坐6人,每条小船坐4人,大船和小船各租了多少条?练习4:妈妈到花卉市场买了玫瑰花和月季花共9枝,每支玫瑰花3元,每支月季花2元,共付了22元,妈妈买了多少的玫瑰花和月季花?作业习题:1、一只蚂蚁有6条腿,一只蜘蛛有8条腿,现有蚂蚁和蜘蛛共10只,问分别有多少只蚂蚁和蜘蛛?2、王奶奶买了5角和2角的邮票共10张,花去3元8角,那么这两种邮票各买了多少张?3、孙悟空抓了很多只妖怪,妖怪都有2只眼睛,但是有的妖怪有4条腿,有的妖怪有8条腿,八戒数了数,一共有20只眼睛,60条腿,请问有几只四脚怪,几只八脚怪?。
鸡兔同笼解题方法兔子5只
鸡兔同笼解题方法兔子5只题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,球鸡和兔子各有多少只?(请用尽量多的方法解答)『方法一:人见人爱的列表法』如果二年级小朋友做这道题,可以用列表法!直观、易理解,还不容易出错~好啦,我们来看一下!根据上面的表格,我们可以看出,鸡为9只,兔子为5只。
我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些哦!『方法二:最快乐的画图法』画图可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。
14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。
『方法三:最酷的金鸡独立法』分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。
鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。
『方法四:最逗的吹哨法』分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。
这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。
(惊现跑男中包贝尔的抬脚法有木有!)『方法五:最常用的假设法』分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。
『方法六:最常用的假设法』分析:假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子变成一只鸡腿减少2条,18÷2=9只,所以需要9只兔子变成鸡,即鸡为9只,兔子为14 - 9=5只。
人教版四年级数学下册第9单元《鸡兔同笼》课件(共19张PPT)
对照假设法
假设全是鸡
假设全是兔
方法总结
我们在解决“鸡兔同笼”问题时都用了哪些方法?
方法总结
鸡:3只
兔:5只
方法总结
假设全部都是鸡 8x2=16(只)
26-16=10(只) 兔:1源自÷(4-2)=5(只) 鸡:8-5=3(只)
现在我们就用刚才学到 的这些方法解决《孙子 算经》中的《鸡笼同笼》 问题,你会选用哪一种
人 教 版
鸡兔同笼 小 学 数 学 四 年 级 下 册
笼子中可能会有几只鸡 几只兔呢?
“笼子里有若干只鸡和兔,从 上面数,有8个头;从下面数, 有26只脚。鸡和兔各有几只?”
①鸡和兔共8只。②鸡和兔共有26条腿。 ③鸡有2条腿。 ④兔有4条腿。
列表法
脚总数:3×2+5×4=26(只) 鸡有3只,兔有5只。
方法?为什么?
假设法
假设法
笼子里有若干鸡和兔,从上面数,有35个头; 从下面数。有94只脚。鸡和兔各有几只?
假设法:假设笼子里全都是兔 35x4=140(只) 140-94=46(只)4-2=2(只) 鸡:46÷2=23(只) 兔:35-23=12(只) 答:兔有12只,鸡有23只。
列表法 画图法 假设法
当数据比较小时适用。 当数据比较小时适用。 当数据比较大时适用。
“鸡兔同笼”的方法可以运用到什么情况上??
请同学们们运用今天所学的“鸡兔同笼”的方法进行解答。
同学们 再见
假设法
假设全是鸡
假设法
1.假设8只全是兔,一共有几只脚?
8x4=32(只)
2.与条件26只相比,相差几只脚? 32-16=6(只)
4.相差的6只脚,能换成几只鸡? 鸡:6÷2=3(只)
鸡兔同笼的13种解法
根据上面的表格,我们可以看出,鸡为9只,兔子为5只.我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较年夜,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些!(方法二:最快乐的方法“画图法”)分析:画图法也是低年级小朋友很好接受的一个方法,呵呵,画图还可以让数学变得形象化,而且经常画图还有助于缔造力的培养!假设14只全部是鸡,先把鸡给画好.这样就有14×2=28条,差38-28=10条,而每一只鸡补2条腿就酿成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡.(方法三:最酷的方法“金鸡自力法”)分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚.鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只.(方法四:最逗的方法“吹哨法”)分析:假设及和兔接受过特种军队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着.这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只.(方法五:最经常使用的方法“假设法”)分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡酿成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡酿成兔子,即兔子为5只,鸡为14-5=9只.(方法六:最经常使用的方法“假设法”)分析:假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子酿成一只鸡腿减少2条,18÷2=9只,所以需要9只鸡9兔子酿成鸡,即鸡为9只,兔子为14-9=5只.(方法七:最牛的方法“特异功能法”)分析:鸡有2条腿,比兔子少2条腿,这不公平,可是鸡有2只同党,兔子却没有.假设鸡有特级功能,把两只同党酿成2条腿,那么鸡也有4条腿,此时腿的总数是14×4=56条,但实际上只有38条,为什么呢?因为我们把鸡的同党看成腿来算,所以鸡的同党有56-38=18只,鸡有18÷2=9只,兔就是14-9=5只.(方法八:最牛的方法“特异功能法”)分析:假设每只鸡兔都具有“特异功能”,鸡飞起来,兔立起来,这时立在地上的脚全是兔的,它的脚数就是38-14×2=10条,因此兔的只数有10÷2=5只,进而知道鸡有14-5=9只.鸡兔具有“特异功能”,这个方法想得太棒了!呵呵,小朋友也要发挥自己的想象喔!(方法九:最牛的方法“特异功能法”)假设孙悟空酿成兔子,说“变”,每只兔子又长出一个头来,然后对妖精说“将它劈开”,酿成“一头两脚”的两只“半兔”,半兔与鸡都是两只脚,因而共有28÷2=19只鸡兔,19-14=5只,这就是兔子的数目,固然鸡就有14-5=9只.呵呵,小朋友把兔“劈开”成“半兔”,想得奇吧!(方法十:最古老的方法“砍足法”)分析:假如把每只砍失落1只脚、每只兔砍失落3只脚,则每只鸡就酿成了“独角鸡”,每只兔就酿成了“双脚兔”.这样,鸡和兔的脚的总数就由38只酿成了19只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总数19与总头数14的差,就是兔子的只数,即19-14=5(只).所以,鸡的只数就是35-12=23(只)了. 呵呵,这个方法是古人想出来的,但有点残酷!(方法十一:史上最坑的方法“耍兔法”)分析:假如刘老师喊口令:“兔子,耍酷!”此时兔子们都把两只前脚高高抬起,两只后脚着地,呈酷酷的姿态,此时鸡兔都是两只脚着地.在地上脚的总数是14×2=28只,而原来有38只脚,多出38-28=10只.为什么会多呢?因为兔子们把它们的2只前脚抬了起来,所以兔的只数是10÷2=5只,鸡则是14-5=9只.方法十二:最万能的方法“方程法”分析:设鸡的数量为x 只,则兔子有(14-x)只,有2x+4(14-x)=38,解出x=9,所以有鸡9只,兔子14-9=5只.(方法十三:最万能的方法“方程法”)分析:设兔子的数量为x只,则鸡有(14-x)只,有4x+2(14-x)=38.解得x=5,所以兔子有5只,鸡有14-5=9只.我们不单学会了解答鸡兔同笼的题目,而且我们还发现了数学趣味无穷,在数学的世界里,只要小朋友们放飞自己的想象,将会想出很多奇妙的方法,有意想不到的收获!。
鸡兔同笼问题所有方法总结
一、“画图法”
1. 假设全是鸡,先把35只鸡画好
……
2. 这样还差94-35x2=24条腿 3. 鸡变成兔还差2条腿,24条腿补在 鸡身上,需要变24÷2=12只鸡为兔
……
鸡兔同笼问题方法总结
二、“假设法”
1. 假设全是鸡 则有35x2=70条腿,比实际少94-70=24条腿 鸡变成兔要加2条腿,那么有24÷2=12只鸡变为兔 也就是有12只兔,35-12=23只鸡
…… …… ……
……
使用“分组法”的前提是两种物一样多,或者成整数倍的关系 根据“鸡的数量是兔子的3倍” 我们把3只鸡和1只兔分为一组 则每组腿数是:2x3+4x1=10(条) 组数为:110÷10=11(组) 兔子有11x1=11只 鸡有11x3=33只
鸡兔同笼问题方法总结
四、“方程法”
1. 设鸡的数量为x只,则兔子有(35-x)只 列方程为:2x+4(35-x)=94 2x+4x35-4x=94 x=23
所以:鸡有23只 兔子有35-23=12只
鸡兔同笼问题方法总结
五、“分组法”
鸡兔同笼,鸡的数量是兔子的3倍,兔子和鸡的腿数总和 为110条。请问:鸡和兔子各有几只?
2. 假设全是兔 则有35x4=140条腿,比实际多140-94=46条腿 兔变成鸡要减2条腿,那么有46÷2=23只兔变为鸡 也就是有23只鸡,35-23=“金鸡独立法”
1. 让每只鸡都一只脚站立着,每只兔都用两只后脚站立着 2. 那么地上的总脚数只是原来的一半,即47只脚。 3. 鸡的脚数与头数相同 4. 兔的脚数是兔的头数的2倍 5. 因此从47里减去头数35 6. 剩下来的就是兔的头数47-35=12只 7. 鸡有35-12=23只
“鸡兔同笼”问题的图形化表示与解析
• 通过给定的头和脚的数量,求解鸡和兔子的数量
• 鸡兔同笼问题可以通过代数方程组表示
• 设鸡的数量为x,兔子的数量为y
• 根据题意,可以得到两个方程:x + y = n(头的数量)和
2x + 4y = m(脚的数量)
• 鸡兔同笼问题有多种解法,包括代数法、图形法和暴力法等
利用图形化方法求解鸡兔同笼问题的案例分析
案例一:二维平面图形法求解
• 给定头的数量为8,脚的数量为14
• 画出8个矩形排列的图形,其中4个矩形表示鸡,4个矩形表示兔子
• 通过计算矩形的面积,得到鸡的数量为4,兔子的数量为4
案例二:三维立体图形法求解
• 给定头的数量为9,脚的数量为16
• 画出9个立方体排列的图形,其中3个立方体表示鸡,6个立方体表示兔子
• 通过计算立方体的体积,学生可以求解鸡兔同笼问题
⌛️
案例三:利用动画进行教学
• 在教学过程中,老师可以展示鸡兔同笼问题的动画
• 通过观看动画,学生可以更直观地理解鸡兔同笼问题
• 通过分析动画,学生可以掌握鸡兔同笼问题的解题思路
05
鸡兔同笼问题的图形化表示与解析的软件工具
利用计算机软件工具实现鸡兔同笼问题的图形化表示
鸡兔同笼问题在数学史上具有重要地位
• 被认为是初等代数问题的代表
• 为解决更复杂的代数问题提供了思路和方法
鸡兔同笼问题在现代教育中的应用
• 作为小学数学课程的内容
• 锻炼学生的逻辑思维能力和代数思想
⌛️
鸡兔同笼问题的基本描述
• 鸡兔同笼问题是一一个笼子里
案例一:利用二维平面图形法进行教学
• 在教学过程中,老师可以引导学生画出鸡兔同笼问题的二维图形
人教版数学四年级第十四讲《数学广角-鸡兔同笼》-含解析-(知识精讲+典型例题+课后练习+进门考)
人教版数学四年级春季第十四讲《数学广角-鸡兔同笼上》知识点1、画图法解鸡兔同笼两只鸡和一只兔子一共有8条腿。
思考:那如果把其中一只鸡换成一只兔子会多2条腿。
思考:笼子里有鸡和兔共5只,共有腿14天条,请求出笼中的鸡和兔子各有几只?步骤假设全是鸡。
一共有腿5×2=10条。
比较:与实际比较少了,14-10=4条腿调整:每只鸡可添两条腿,一共添,4÷2=2次兔子有两只,鸡有5-2=3只检验:2×4+3×2=14条腿总结:把一只鸡变成一只兔子,会多两条腿。
小练习:鸡、兔共有6只,共有16条腿,鸡和兔各有几只?答案:鸡4只,兔2只2.鸡,兔共7只,共有20条腿,鸡和兔各有几只?答案:鸡4只,兔3只3.鸡兔共有10只,共有28条腿,鸡和兔各有几只?答案:鸡6只,兔4只笔记部分:画图解鸡兔同笼用简易图表示鸡和兔子,假设全是鸡多出的腿数,再进行调整。
例题1、笼子里有一些鸡和兔,数一数鸡腿和兔腿一共有50条,请问。
1.如果从笼子里拿走三只鸡,这是腿和是多少?2.如果从笼子里拿走5只鸡,再放进去5只兔,这时腿和是多少?答案:44条,60条练习1、笼子里有一些鸡和兔,数一数鸡腿和兔腿一共有80条,现在卡莉亚用魔法把笼子里的10只鸡变成了10只兔子,请问这是笼子里的腿和是多少?答案:100条4-2=2条。
10×2=20条。
80+20=100条。
例题2、笼子里有鸡和兔共8只,共有腿24条,那么下图中应该把几只鸡换成兔子?答案:8×2=16条(24-16)÷2=4次把4只鸡。
换成了兔子,这是鸡有4只,兔子也有4只,腿和正好是:4×2+4×4=24条练习2、笼子里鸡和兔有10只共有腿32条,那么下图中应该把几只鸡换成兔子?答案:10×2=20条(32-20)÷2=6(次)也就是把6只鸡换成了兔子,这是鸡有4只,兔子有6只。
四年级数学下册鸡兔同笼知识点梳理与思维导图
脚:用小线段表示脚,给每只动物都画上两只脚。 数用了几只脚,剩下几只脚。
添脚:剩下的脚添给脚多的动物。
鸡
假设:假设全是某种动物。
假设法 乘:用乘法计算假设的动物有多少条腿。
兔
(常用法)减:与题目中所给的腿数做减法
同
除:除以两种动物的腿数之差。
笼
求:先求出来的是未假设的动物的只数,然后做减法求出假设的动物只数。
抬腿法
都抬腿减半:让两种动物都抬起一半的腿。题目中的腿数÷2 减半腿减头:减半的腿数减去头数等于腿多的动物的只数。
(减半) 头数减前头:用总的头数减去前面求出的头数就是腿少的动物的只数。
变式问题
举例:能用“鸡兔同笼”的方法解的植树、租船等问题。 找头:找题目中哪个数量相当于“头数”。 找腿:找题目中哪个数量相当于“脚数”。 解法:用假设法,先乘再减然后除。
鸡兔同笼知识点梳理 及思维导图
列表法 画图法
行:三行,两种动物各占一行,脚数占一行。鸡 8 7 6 5 4 3 2 1 0
列:看共有多少只动物(或多少头)。
兔0 1 2 3 4 5 6 7 8
数:逐一举例。从假设全是某种动物开始, 脚 16 18 20 22 24 26 28 30 32
头一行递减,一行递加。同时计算脚数,直至符合题意。
“鸡兔同笼”例题13种讲解方法,考试常考
“鸡兔同笼”例题13种讲解方法,考试常考题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,球鸡和兔子各有多少只?(请用尽量多的方法解答)『方法一:人见人爱的列表法』如果二年级小朋友做这道题,可以用列表法!直观、易理解,还不容易出错~好啦,我们来看一下!根据上面的表格,我们可以看出,鸡为9只,兔子为5只。
我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些哦!『方法二:最快乐的画图法』画图可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。
14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。
『方法三:最酷的金鸡独立法』分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。
鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。
『方法四:最逗的吹哨法』分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。
这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。
(惊现跑男中包贝尔的抬脚法有木有!)『方法五:最常用的假设法』分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。
小学 “鸡兔同笼” 讲解方法(13种),总有一种适合你!
小学“鸡兔同笼”讲解方法(13种),总有一种适合你!题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,球鸡和兔子各有多少只?(请用尽量多的方法解答)『方法一:人见人爱的列表法』如果二年级小朋友做这道题,可以用列表法!直观、易理解,还不容易出错~好啦,我们来看一下!根据上面的表格,我们可以看出,鸡为9只,兔子为5只。
我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些哦!『方法二:最快乐的画图法』画图可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。
14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。
『方法三:最酷的金鸡独立法』分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。
鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。
『方法四:最逗的吹哨法』分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。
这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。
(惊现跑男中包贝尔的抬脚法有木有!)『方法五:最常用的假设法』分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2元
鸡
5元
兔
鸡兔同笼的模型
明明有5元和2元的人民币共7张, 共23元,那5元有几张?
7×2=14(元) 23-14=9(元)
10×2=20(条) 28-20=8(条)
自行车和三轮车共10辆,共有 26个轮子,其中自行车有几辆?
自行车 鸡
三轮车
ห้องสมุดไป่ตู้
兔
鸡兔同笼的模型
自行车和三轮车共10辆,共有 26个轮子,其中自行车有几辆?
10×2=20(个) 26-20=6(个)
明明有5元和2元的人民币共7张, 共23元,那5元有几张?
zhì
今有雉兔同笼,上有三十五头, 下有九十四足,问雉兔各几何?
意思是:
笼子里有若干只鸡和兔.从上面 数,有35个头,从下面数,有94只脚. 鸡和兔各有几只?
鸡兔同笼 画图法
笼子里有若干只鸡和兔.从上面 数,有8个头,从下面数,有26条腿.鸡 和兔各有几只?
鸡
兔
兔 有5只 鸡
鸡 有3只
如果全是鸡,一共有多少条腿?
8×2=16(条)
其实是有几条腿呢?
26条
少了几条腿呢? 那就要添上这10条腿。
26-16=10(条)
笼子里有若干只鹤和龟。从上 面数,有10个头,从下面数,有28条腿. 鹤和龟各有几只?
鹤
鸡
龟兔
鸡兔同笼
龟鹤问题
笼子里有若干只鹤和龟。从上 面数,有10个头,从下面数,有28条腿. 鹤和龟各有几只?